ENUMERATING DOUBLE PSEUDOLINE ARRANGEMENTS

Julien Ferté, Vincent Pilaud, and Michel Pocchiola

École Normale Supérieure, Paris
INTRODUCTION
INTRODUCTION

Pseudoline Arrangements

Projective plane \mathcal{P} = disk with antipodal boundary points identified

A simple closed curve of \mathcal{P} is a pseudoline if it is not contractible

The complement of a pseudoline is a topological disk
INTRODUCTION
Pseudoline Arrangements

Projective plane \mathcal{P} = disk with antipodal boundary points identified

A simple closed curve of \mathcal{P} is a pseudoline if it is not contractible

A pseudoline arrangement is a finite set of pseudolines such that any two of them have a unique intersection point

Pseudoline arrangements correspond via duality to points configurations in geometric projective planes

Julien Ferté, Vincent Pilaud, and Michel Pocchiola
Enumerating double pseudoline arrangements
Projective plane \mathcal{P} = disk with antipodal boundary points identified

A simple closed curve of \mathcal{P} is a pseudoline if it is not contractible

A pseudoline arrangement is a finite set of pseudolines such that any two of them have a unique intersection point

Pseudoline arrangements correspond via duality to points configurations in geometric projective planes
Projective plane \mathcal{P} = disk with antipodal boundary points identified
A simple closed curve of \mathcal{P} is a **double pseudoline** if it is contractible

The complement of a double pseudoline ℓ has two connected components: a Möbius strip M_ℓ and a topological disk D_ℓ
INTRODUCTION

Double Pseudoline Arrangements

Projective plane $\mathcal{P} =$ disk with antipodal boundary points identified

A simple closed curve of \mathcal{P} is a **double pseudoline** if it is contractible

A **double pseudoline arrangement** is a finite set of double pseudolines such that any two of them

(i) have exactly four intersection points (and cross transversally at these points), and

(ii) induce a cell decomposition of \mathcal{P}

Double pseudoline arrangements correspond via duality to configurations of disjoint convex bodies in geometric projective planes

Julien Ferté, Vincent Pilaud, and Michel Pocchiola ■ Enumerating double pseudoline arrangements
INTRODUCTION

Double Pseudoline Arrangements

Projective plane \(\mathcal{P} \) = disk with antipodal boundary points identified

A simple closed curve of \(\mathcal{P} \) is a **double pseudoline** if it is contractible

A **double pseudoline arrangement** is a finite set of double pseudolines such that any two of them
(i) have exactly four intersection points (and cross transversally at these points), and
(ii) induce a cell decomposition of \(\mathcal{P} \)

Double pseudoline arrangements correspond via duality to configurations of disjoint convex bodies in geometric projective planes

INTRODUCTION
Double Pseudoline Arrangements

Projective plane $\mathcal{P} =$ disk with antipodal boundary points identified
A simple closed curve of \mathcal{P} is a double pseudoline if it is contractible

A double pseudoline arrangement is a finite set of double pseudolines such that any two of them
(i) have exactly four intersection points (and cross transversally at these points), and
(ii) induce a cell decomposition of \mathcal{P}

Double pseudoline arrangements correspond via duality to configurations of disjoint convex bodies in geometric projective planes

L. Habert & M. Pocchiola, Arrangements of double pseudolines (2006)
INTRODUCTION
Double Pseudoline Arrangements

Projective plane \(\mathcal{P} \) = disk with antipodal boundary points identified
A simple closed curve of \(\mathcal{P} \) is a double pseudoline if it is contractible

A double pseudoline arrangement is a finite set of double pseudolines such that any two of them
(i) have exactly four intersection points (and cross transversally at these points), and
(ii) induce a cell decomposition of \(\mathcal{P} \)

Double pseudoline arrangements correspond via duality to configurations of disjoint convex bodies
in geometric projective planes

L. Habert & M. Pocchiola, Arrangements of double pseudolines (2006)
INTRODUCTION
Double Pseudoline Arrangements

Projective plane $\mathcal{P} =$ disk with antipodal boundary points identified
A simple closed curve of \mathcal{P} is a double pseudoline if it is contractible

A double pseudoline arrangement is a finite set of double pseudolines such that any two of them
(i) have exactly four intersection points (and cross transversally at these points), and
(ii) induce a cell decomposition of \mathcal{P}

Double pseudoline arrangements correspond via duality to configurations of disjoint convex bodies in geometric projective planes

L. Habert & M. Pocchiola, Arrangements of double pseudolines (2006)

Julien Ferté, Vincent Pilaud, and Michel Pocchiola ■ Enumerating double pseudoline arrangements
Two arrangements A and B are isomorphic if there is a homeomorphism of \mathcal{P} that sends A on B.
Two arrangements A and B are isomorphic if there is a homeomorphism of \mathcal{P} that sends A on B.
Two arrangements A and B are isomorphic if there is a homeomorphism of \mathcal{P} that sends A on B.

Two arrangements A and B are isomorphic if there is a homeomorphism of \mathcal{P} that sends A on B.
Two arrangements A and B are isomorphic if there is a homeomorphism of \mathcal{P} that sends A on B.

Two arrangements are isomorphic if and only if their face lattices are isomorphic.
Two arrangements A and B are isomorphic if there is a homeomorphism of \mathcal{P} that sends A on B. The number of isomorphism classes of arrangements of n pseudolines is

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>135</td>
<td>4382</td>
<td>312356</td>
<td>41848591</td>
</tr>
</tbody>
</table>

On-line Encyclopedia of Integer Sequences Identification A006248

O. Aichholzer, F. Aurenhammer, & H. Krasser, Enumerating order types for small point sets with applications (2002)

The value a_{11} is due to F. Aurenhammer (2002)
Isomorphism

Two arrangements A and B are isomorphic if there is a homeomorphism of \mathcal{P} that sends A on B.

The number of isomorphism classes of arrangements of n pseudolines is:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>135</td>
<td>4382</td>
<td>312356</td>
<td>41848591</td>
<td></td>
</tr>
</tbody>
</table>

Our result: The number of isomorphism classes of arrangements of n double pseudolines is:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_n</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>6570</td>
<td>181403533</td>
</tr>
</tbody>
</table>
INTRODUCTION

Isomorphism

Two arrangements A and B are isomorphic if there is a homeomorphism of \mathcal{P} that sends A on B

The number of isomorphism classes of arrangements of n pseudolines is

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>135</td>
<td>4382</td>
<td>312356</td>
<td>41848591</td>
<td></td>
</tr>
</tbody>
</table>

Our result : The number of isomorphism classes of arrangements of n double pseudolines is

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_n</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>6570</td>
<td>181403533</td>
</tr>
</tbody>
</table>

Comments on the computation of A_5 :

1. **RUNNING TIME** : $\simeq 3$ weeks on 4 processors of 2 GHz
2. **RESULT SIZE** : complete data base represents $\simeq 15$ Go

Julien Ferté, Vincent Pilaud, and Michel Pocchiola Enumerating double pseudoline arrangements
INTRODUCTION

Example

Julien Ferté, Vincent Pilaud, and Michel Pocchiola

Enumerating double pseudoline arrangements
MUTATIONS
A mutation is a homotopy of arrangements in which only one curve \(\ell \) moves, sweeping a single vertex of the remaining arrangement \(L \setminus \{\ell\} \)
MUTATIONS

Connectivity

THEOREM. Any two double pseudoline arrangements (with the same number of double pseudolines) are homotopic via a finite sequence of mutations, followed by a homeomorphism

L. Habert & M. Pocchiola, *Arrangements of double pseudolines* (2006)
MUTATIONS
Connectivity

THEOREM. Any two double pseudoline arrangements (with the same number of double pseudolines) are homotopic via a finite sequence of mutations, followed by a homeomorphism

L. HABERT & M. POCCHIOLA, Arrangements of double pseudolines (2006)

⇒ first enumeration algorithm: exploring the graph of mutations
MUTATIONS

Connectivity

Julien Ferté, Vincent Pilaud, and Michel Pocchiola

Enumerating double pseudoline arrangements
MUTATIONS

Connectivity

THEOREM. Any two double pseudoline arrangements (with the same number of double pseudolines) are homotopic via a finite sequence of mutations, followed by a homeomorphism.

L. Habert & M. Pocchiola, *Arrangements of double pseudolines* (2006)

⇒ first enumeration algorithm: *exploring the graph of mutations*
Fails for arrangements of five double pseudolines (*RAM memory limitation*)

Julien Ferté, Vincent Pilaud, and Michel Pocchiola ■ Enumerating double pseudoline arrangements
MUTATIONS
Connectivity

THEOREM. Any two double pseudoline arrangements (with the same number of double pseudolines) are homotopic via a finite sequence of mutations, followed by a homeomorphism

L. HABERT & M. POCCHIOLA, *Arrangements of double pseudolines* (2006)

⇒ first enumeration algorithm: *exploring the graph of mutations*
Fails for arrangements of five double pseudolines (*RAM memory limitation*)

THEOREM. Any two double pseudoline arrangements containing a subarrangement L (and with the same number of double pseudolines) are homotopic via a finite sequence of mutations where L remains fixed, followed by a homeomorphism

V. PILAUD & M. POCCHIOLA, *A relative homotopy theorem for arrangements of double pseudolines*
INCREMENTAL ALGORITHM
INCREMENTAL ALGORITHM

Notations

\(\mathcal{A}_n \) = the set of isomorphism classes of arrangements of \(n \) double pseudolines

pointed arrangement \(\mathcal{A}^\bullet \) = arrangement \(A \) with a distinguished double pseudoline

\(\mathcal{A}^\bullet_n \) = the set of isomorphism classes of pointed arrangements
INCREMENTAL ALGORITHM

Notations

\(\mathcal{A}_n \) = the set of isomorphism classes of arrangements of \(n \) double pseudolines

pointed arrangement \(A^\bullet \) = arrangement \(A \) with a distinguished double pseudoline

\(\mathcal{A}_n^\bullet \) = the set of isomorphism classes of pointed arrangements

\[\downarrow\]

An isomorphism between two pointed arrangements \(A^\bullet \) and \(B^\bullet \) is a homeomorphism of \(\mathcal{P} \) that sends \(A^\bullet \) on \(B^\bullet \) respecting the distinguished double pseudoline
\[\mathcal{A}_n = \text{the set of isomorphism classes of arrangements of } n \text{ double pseudolines} \]

pointed arrangement \(A^\bullet = \text{arrangement } A \text{ with a distinguished double pseudoline} \)

\[\mathcal{A}^\bullet_n = \text{the set of isomorphism classes of pointed arrangements} \]

\[\Downarrow \]

An isomorphism between two pointed arrangements \(A^\bullet \) and \(B^\bullet \) is a homeomorphism of \(\mathcal{P} \) that sends \(A^\bullet \) on \(B^\bullet \) respecting the distinguished double pseudoline
INCREMENTAL ALGORITHM

Notations

\(\mathcal{A}_n \) = the set of isomorphism classes of arrangements of \(n \) double pseudolines

pointed arrangement \(A^\cdot \) = arrangement \(A \) with a distinguished double pseudoline

\(\mathcal{A}^\cdot_n \) = the set of **isomorphism** classes of pointed arrangements

\[\downarrow \]

An **isomorphism** between two pointed arrangements \(A^\cdot \) and \(B^\cdot \) is a homeomorphism of \(\mathcal{P} \) that sends \(A^\cdot \) on \(B^\cdot \) respecting the distinguished double pseudoline
INCREMENTAL ALGORITHM
Incremental method

Given the set $A_n = \{a_1, \ldots, a_p\}$, our algorithm enumerates A_{n+1} by mutation of an added double pseudoline.
INCREMENTAL ALGORITHM
Incremental method

Given the set $A_n = \{a_1, \ldots, a_p\}$, our algorithm enumerates A_{n+1} by mutation of an added double pseudoline

For all $i \in \{1, \ldots, p\}$, we

1. add a double pseudoline α to the arrangement a_i
INCREMENTAL ALGORITHM

Incremental method

Given the set $A_n = \{a_1, \ldots, a_p\}$, our algorithm enumerates A_{n+1} by mutation of an added double pseudoline

For all $i \in \{1, \ldots, p\}$, we

1. add a double pseudoline α to the arrangement a_i
2. enumerate the set S^\bullet_i of arrangements of A^\bullet_{n+1} containing a_i, by mutation of α
INCREMENTAL ALGORITHM

Incremental method

Given the set $\mathcal{A}_n = \{a_1, \ldots, a_p\}$, our algorithm enumerates \mathcal{A}_{n+1} by mutation of an added double pseudoline.

For all $i \in \{1, \ldots, p\}$, we

1. add a double pseudoline α to the arrangement a_i
2. enumerate the set S_i^\bullet of arrangements of \mathcal{A}_{n+1} containing a_i, by mutation of α
3. select in S_i the set R_i with no subarrangements in $\{a_1, \ldots, a_{i-1}\}$
INCREMENTAL ALGORITHM

Incremental method

Given the set $A_n = \{a_1, \ldots, a_p\}$, our algorithm enumerates A_{n+1} by mutation of an added double pseudoline.

For all $i \in \{1, \ldots, p\}$, we

1. add a double pseudoline α to the arrangement a_i
2. enumerate the set S_i of arrangements of A_{n+1}^\bullet containing a_i, by mutation of α
3. select in S_i the set R_i with no subarrangements in $\{a_1, \ldots, a_{i-1}\}$

R_i is the set of arrangements of A_{n+1} whose first subarrangement among $\{a_1, \ldots, a_p\}$ is a_i.

\[A_{n+1} = \bigsqcup_{i=1}^{p} R_i \]
How can we add a double pseudoline to an arrangement \(A \)?

1. choose an arbitrary double pseudoline and duplicate it
How can we add a double pseudoline to an arrangement A?

1. choose an arbitrary double pseudoline and duplicate it
How can we add a double pseudoline to an arrangement A?

1. choose an arbitrary double pseudoline and duplicate it
2. pump the added double pseudoline ℓ until no vertex of A lies in M_ℓ
How can we add a double pseudoline to an arrangement A?

1. choose an arbitrary double pseudoline and duplicate it
2. pump the added double pseudoline ℓ until no vertex of A lies in M_ℓ
INCREMENTAL ALGORITHM

Adding a double pseudoline

How can we add a double pseudoline to an arrangement A?

1. choose an arbitrary double pseudoline and **duplicate** it
2. **pump** the added double pseudoline ℓ until no vertex of A lies in M_ℓ
How can we add a double pseudoline to an arrangement A?

1. choose an arbitrary double pseudoline and duplicate it
2. pump the added double pseudoline ℓ until no vertex of A lies in M_ℓ
3. add four crossings
TWO OPEN PROBLEMS
TWO OPEN PROBLEMS

Axiomatization

Pseudoline arrangements admit simple axiomatizations:
(i) few axioms
(ii) dealing with configurations of at most five pseudolines

Enumeration = complete list of arrangements of at most five double pseudolines
= axiomatization
TWO OPEN PROBLEMS
Axiomatization

Pseudoline arrangements admit simple axiomatizations:
(i) few axioms
(ii) dealing with configurations of at most five pseudolines

Enumeration = complete list of arrangements of at most five double pseudolines
= axiomatization

Well, we have about 200,000,000 axioms

Is it possible to algorithmically reduce our axiomatization?
Certain pseudoline arrangements are not realizable in the Euclidean plane.

Inflating pseudolines into thin double pseudolines in such an arrangement give rise to non-realizable double pseudoline arrangement.

Are there smaller examples?
Thank you.