UNEXPECTED DIAGONALS

Vincent PILAUD (CNRS & École Polytechnique)

Bérénice DELCROIX-OGER (Univ. Montpellier) Guillaume LAPLANTE-ANFOSSI (Univ. Melbourne) Frédéric CHYZAK (INRIA) Kurt STOECKL (Univ. Melbourne)

arXiv:2308.12119

arXiv:2303.10986

Alin BOSTAN (INRIA)

slides available at: http://www.lix.polytechnique.fr/~pilaud/documents/presentations/diagonals.pdf

 \mathbb{P} polytope in \mathbb{R}^d

 $\underline{\text{diagonal}} \text{ of } \mathbb{P} = \delta : \mathbb{P} \to \mathbb{P} \times \mathbb{P} \\ p \mapsto (p,p)$

 \mathbb{P} polytope in \mathbb{R}^d

$$\frac{\text{diagonal}}{p} \text{ of } \mathbb{P} = \delta : \mathbb{P} \to \mathbb{P} \times \mathbb{P}$$
$$p \mapsto (p, p)$$

cellular approximation of the diagonal of $\mathbb{P} = \mathsf{map} \ \mathbb{P} \to \mathbb{P} \times \mathbb{P}$ s.t.

- \bullet its image is a union of faces of $\mathbb{P}\times\mathbb{P}$
- \bullet it agrees with δ on the vertices of $\mathbb P$
- \bullet it is homotopic to δ

10

00

 \mathbb{P} polytope in \mathbb{R}^d

$$\frac{\text{diagonal}}{p} \text{ of } \mathbb{P} = \delta : \mathbb{P} \to \mathbb{P} \times \mathbb{P}$$
$$p \mapsto (p, p)$$

cellular approximation of the diagonal of $\mathbb{P} = \mathsf{map} \ \mathbb{P} \to \mathbb{P} \times \mathbb{P}$ s.t.

- \bullet its image is a union of faces of $\mathbb{P}\times\mathbb{P}$
- \bullet it agrees with δ on the vertices of $\mathbb P$
- \bullet it is homotopic to δ

10

00

Alexander – Whitney singular homology

cubical singular homology

any vertex of the fiber polytope

Masuda – Thomas – Tonks – Vallette '21 Laplante-Anfossi '22

$$\sum \begin{pmatrix} \mathbb{P} \times \mathbb{P} & (p,q) \\ \downarrow & , & \downarrow \\ \mathbb{P} & \frac{p+q}{2} \end{pmatrix}$$

gives a cellular approximation of the diagonal of \mathbb{P} projecting back on \mathbb{P} , we see it as a polyhedral subdivision of \mathbb{P}

the vertex of the fiber polytope selected by (-v, v)

Masuda – Thomas – Tonks – Vallette '21 Laplante-Anfossi '22

$$\sum \begin{pmatrix} \mathbb{P} \times \mathbb{P} & (p,q) \\ \downarrow & , & \downarrow \\ \mathbb{P} & \frac{p+q}{2} \end{pmatrix}$$

gives a cellular approximation of the diagonal of \mathbb{P} projecting back on \mathbb{P} , we see it as a polyhedral subdivision $\Delta_{\mathbb{P},v}$ of \mathbb{P}

THM. Faces of
$$\Delta_{\mathbb{P},v} \subseteq$$
 pairs (F,G) such that $\max_v(F) \leq \min_v(G)$

Laplante-Anfossi '22

When these are exactly the faces, it is called "magical formula" This is the case for simplices, cubes, associahedra, but not permutahedra (see later)

THM. Faces of
$$\Delta_{\mathbb{P},v} \subseteq$$
 pairs (F,G) such that $\max_v(F) \leq \min_v(G)$

Laplante-Anfossi '22

When these are exactly the faces, it is called "magical formula" This is the case for simplices, cubes, associahedra, but not permutahedra (see later)

PERMUTAHEDRON & ASSOCIAHEDRON

<u>weak order</u> = permutations of [n]ordered by paths of simple transpositions $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 Λ

M

 $| \wedge \rangle$

Iλλ

٨N

۲١λ

 $| \Box \rangle$

M

KII

IN

121

 \mathbb{D}

<u>weak order</u> = permutations of [n]ordered by paths of simple transpositions $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

M

||

right **≬**

A B

MI

rotation

 \mathbb{D}

B C

٨Ŋ

۸۱۸

 \mathbb{N} $| \Box \rangle$ ٨N M $|\Lambda|$ $\left[\right]$

 $\frac{\text{weak order}}{\text{ordered by paths of simple transpositions}}$

 $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 $\underline{sylvester \ congruence} = equivalence \ classes \ are \ sets \ of \ linear \ extensions \ of \ binary \ trees \\ = equivalence \ classes \ are \ fibers \ of \ BST \ insertion$

= rewriting rule $UacVbW \equiv_{sylv} UcaVbW$ with a < b < c

<u>quotient lattice</u> = lattice on classes with $X \leq Y \iff \exists x \in X, y \in Y, x \leq y$

 $\frac{\text{weak order}}{\text{ordered by paths of simple transpositions}}$

 $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 $\underline{sylvester \ congruence} = equivalence \ classes \ are \ sets \ of \ linear \ extensions \ of \ binary \ trees$ $= equivalence \ classes \ are \ fibers \ of \ BST \ insertion$

= rewriting rule $UacVbW \equiv_{sylv} UcaVbW$ with a < b < c

<u>quotient lattice</u> = lattice on classes with $X \leq Y \iff \exists x \in X, y \in Y, x \leq y$

FANS: BRAID FAN & SYLVESTER FAN

FANS: BRAID FAN & SYLVESTER FAN

FANS: BRAID FAN & SYLVESTER FAN

quotient fan = $\mathbb{C}(T)$ is obtained by glueing $\mathbb{C}(\sigma)$ for all linear extensions σ of T

POLYWOOD

LATTICES – FANS – POLYTOPES

permutahedron $\mathbb{P}erm(n)$

 \implies braid fan

 \implies weak order on permutations

associahedron Asso(n)

 \implies Sylvester fan

 \implies Tamari lattice on binary trees

$F\operatorname{-VECTOR}$ OF DIAGONALS

ⓒ G. Laplante-Anfossi

F-VECTOR OF DIAGONALS

$$f_{k} = \sum_{F \le G} \prod_{i \in [2]} \prod_{p \in G_{i}} (\#F_{i}[p] - 1)!$$
$$f_{0} = [x^{n}] \exp\left(\sum_{m} \frac{x^{m}}{m(m+1)} \binom{2m}{m}\right)$$
$$f_{n-1} = 2(n+1)^{n-2}$$

$$f_k = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}$$

Delcroix-Oger – Josuat-Vergès – Laplante-Anfossi – P. – Stoeckl '23⁺

Bostan – Chyzak – P. '23⁺

DIAGONAL OF THE ASSOCIAHEDRON

arXiv:2303.10986

with Alin BOSTAN (INRIA) Frédéric CHYZAK (INRIA)

NUMBER OF TAMARI INTERVALS

Tam(n) = Tamari lattice on binary trees with n nodes

NUMBER OF TAMARI INTERVALS

Tam(n) = Tamari lattice on binary trees with n nodes

FIRST REFINED FORMULA ON TAMARI INTERVALS

Tam(n) = Tamari lattice on binary trees with n nodes<math display="block">des(T) = number of binary trees covered by Tasc(T) = number of binary trees covering T

FIRST REFINED FORMULA ON TAMARI INTERVALS

Tam(n) = Tamari lattice on binary trees with n nodes<math display="block">des(T) = number of binary trees covered by Tasc(T) = number of binary trees covering T

THM. For any
$$n, k \ge 1$$
,
 $\# \{S \le T \in \operatorname{Tam}(n) \mid \operatorname{des}(S) + \operatorname{asc}(T) = k\} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}$

$n \backslash k$	0	1	2	3	4	5	6	7	8	\sum
1	1									1
2	1	2								3
3	1	6	6							13
4	1	12	33	22						68
5	1	20	105	182	91					399
6	1	30	255	816	1020	408				2530
7	1	42	525	2660	5985	5814	1938			16965
8	1	56	966	7084	24794	42504	33649	9614		118668
9	1	72	1638	16380	81900	215280	296010	197340	49335	857956

(L,\leq,\wedge,\vee) lattice

join semidistributive $\iff x \lor y = x \lor z$ implies $x \lor (y \land z) = x \lor y$ for all $x, y, z \in L$ \iff any $x \in L$ admits a canonical join representation $x = \bigvee J$

<u>canonical</u> join complex = simplicial complex of canonical join representations = a simplex J for each element $\bigvee J$ of L

Reading '15 Barnard '19

(L,\leq,\wedge,\vee) lattice

 $\frac{\text{canonical meet complex} = \text{simplicial complex of canonical meet representations}}{= \text{a simplex } M \text{ for each element } \bigwedge M \text{ of } L$

(L,\leq,\wedge,\vee) lattice

 $\begin{array}{l} \underline{semidistributive} \iff join \ semidistributive \ and \ meet \ semidistributive \ \iff any \ x \in L \ admits \ canonical \ representations \ x = \bigvee J = \bigwedge M \\ \underline{canonical \ complex} = simplicial \ complex \ of \ canonical \ representations \ = a \ simplex \ J \sqcup M \ for \ each \ interval \ \bigvee J \leq \bigwedge M \ in \ L \end{array}$

CANONICAL COMPLEX OF THE TAMARI LATTICE

(L,\leq,\wedge,\vee) lattice

<u>canonical complex</u> = simplicial complex of canonical representations

= a simplex $J \sqcup M$ for each interval $\bigvee J \leq \bigwedge M$ in L

CANONICAL COMPLEX OF THE TAMARI LATTICE

THM. For any
$$n, k \ge 1$$
,
 $f_k(\mathbb{CC}_n) = \# \{S \le T \in \operatorname{Tam}(n) \mid \operatorname{des}(S) + \operatorname{asc}(T) = k\} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}$

CANONICAL COMPLEX OF THE TAMARI LATTICE

1 + 12 + 33 + 22 = 68

Reading '15 Albertin – P. '22
SECOND REFINED FORMULA ON TAMARI INTERVALS

Tam(n) = Tamari lattice on binary trees with n nodes<math display="block">des(T) = number of binary trees covered by Tasc(T) = number of binary trees covering T

THM. For any
$$n, k \ge 1$$
,

$$\sum_{S \le T \in \text{Tam}(n)} \binom{\text{des}(S) + \text{asc}(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}$$

$$\frac{n \setminus k \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8}{1 \ 1 \ 1}$$

$$\frac{n \setminus k \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8}{1 \ 1 \ 1}$$

$$\frac{n \setminus k \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8}{1 \ 1 \ 1}$$

$$\frac{n \setminus k \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8}{1 \ 1 \ 1}$$

$$\frac{n \setminus k \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8}{1 \ 1 \ 1}$$

$$\frac{n \setminus k \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8}{1 \ 1 \ 1}$$

$$\frac{n \setminus k \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8}{1 \ 1 \ 1}$$

$$\frac{n \setminus k \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8}{1 \ 1 \ 1}$$

 $\Delta_{Asso(n)} = diagonal of (n-1)-dimensional associahedron$

 $\Delta_{\mathbb{A}sso(n)} = diagonal of (n-1)-dimensional associahedron$

THM. For any
$$n, k \ge 1$$
,

$$f_k(\Delta_{\operatorname{Asso}(n)}) = \sum_{S \le T \in \operatorname{Tam}(n)} \binom{\operatorname{des}(S) + \operatorname{asc}(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}$$

CONNECTION BETWEEN THE TWO FORMULAS

THM. For any
$$n, k \ge 1$$
,
 $f_k(\mathbb{CC}_n) = \# \{S \le T \in \operatorname{Tam}(n) \mid \operatorname{des}(S) + \operatorname{asc}(T) = k\} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}$

THM. For any
$$n, k \ge 1$$
,

$$f_k(\Delta_{\operatorname{Asso}(n)}) = \sum_{S \le T \in \operatorname{Tam}(n)} \binom{\operatorname{des}(S) + \operatorname{asc}(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}$$

CONNECTION BETWEEN THE TWO FORMULAS

THM. For any
$$n, k \ge 1$$
,
 $f_k(\mathbb{CC}_n) = \# \{S \le T \in \operatorname{Tam}(n) \mid \operatorname{des}(S) + \operatorname{asc}(T) = k\} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}$

THM. For any
$$n, k \ge 1$$
,

$$f_k(\Delta_{\operatorname{Asso}(n)}) = \sum_{S \le T \in \operatorname{Tam}(n)} \binom{\operatorname{des}(S) + \operatorname{asc}(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}$$

Second formula follows from the first since ...

THM. For any
$$n, k, r \in \mathbb{N}$$
,

$$\sum_{\ell=k}^{n-1} \binom{n+1}{\ell+2} \binom{r}{\ell} \binom{\ell}{k} = \frac{n(n+1)}{(r+1)(r+2)} \binom{n-1}{k} \binom{r+n+1-k}{n+1}.$$

... by application of Chu – Vandermonde equality

 $n(T) = {\sf number}$ of nodes of T $\ell(T) = {\sf number}$ of bounded edges on the left branch of T

$$\mathbb{A}(u,v,t,z) \coloneqq \sum_{S \leq T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\operatorname{des}(S) + \operatorname{asc}(T)}$$

 $n(T) = {\sf number}$ of nodes of T $\ell(T) = {\sf number}$ of bounded edges on the left branch of T

$$\mathbb{A}(u,v,t,z) \coloneqq \sum_{S \leq T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\operatorname{des}(S) + \operatorname{asc}(T)}$$

We want to compute

$$A := A(t,z) := \sum_{S \leq T} t^{n(S)} z^{\operatorname{des}(S) + \operatorname{asc}(T)} = \mathbb{A}(1,1,t,z)$$

we will use u and v as catalytic variables ...

 $n(T) = {\sf number}$ of nodes of T $\ell(T) = {\sf number}$ of bounded edges on the left branch of T

$$\mathbb{A}(u,v,t,z) \coloneqq \sum_{S \leq T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\operatorname{des}(S) + \operatorname{asc}(T)}$$

We want to compute

$$A \coloneqq A(t,z) \coloneqq \sum_{S \leq T} t^{n(S)} z^{\operatorname{des}(S) + \operatorname{asc}(T)} = \mathbb{A}(1,1,t,z)$$

we will use u and v as catalytic variables ...

PROP. The generating functions $A_u := \mathbb{A}(u, 1, t, z)$ and $A_1 := \mathbb{A}(1, 1, t, z)$ satisfy the quadratic functional equation

$$(u-1)A_u = t(u-1+u(u+z-1)A_u-zA_1)(1+uzA_u)$$

GRAFTING DECOMPOSITIONS

 $S \setminus T =$ binary tree obtained by grafting S on the leftmost leaf of T $S = S_0 \setminus S_1 \setminus \ldots \setminus S_k$ grafting decomposition

$$=$$

LEM. If
$$S = S_0 \setminus S_1 \setminus \ldots \setminus S_k$$
 and $T = T_0 \setminus T_1 \setminus \ldots \setminus T_k$ are s.t. $n(S_i) = n(T_i)$ for all $i \in [k]$,
then $S \leq T \iff S_i \leq T_i$ for all $i \in [k]$ Chapoton '07

LEM. If $S \leq T$, then we can write $S = S_0 \setminus S_1 \setminus \ldots \setminus S_\ell$ and $T = T_0 \setminus T_1 \setminus \ldots \setminus T_\ell$ where $\ell = \ell(T)$ and $n(S_i) = n(T_i)$ for all $i \in [\ell]$ Chapoton '07

 $\ell(T) = \operatorname{number}$ of bounded edges on the left branch of T

 $n(T) = {\sf number}$ of nodes of T $\ell(T) = {\sf number}$ of bounded edges on the left branch of T

$$\mathbb{A}(u,v,t,z) \coloneqq \sum_{S \leq T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\operatorname{des}(S) + \operatorname{asc}(T)}$$

and

Consider

$$A_u(t,z) := \mathbb{A}(u, 1, t, z)$$

= all Tamari intervals

$$A^\circ_u(t,z) \coloneqq \mathbb{A}(u,0,t,z)$$

= indecomposable intervals

 $A_u = A_u(t, z) =$ all Tamari intervals $A_u^\circ = A_u^\circ(t, z) =$ indecomposable intervals

 $\sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\operatorname{des}(S) + \operatorname{asc}(T)}$

 $A_u = A_u(t, z) =$ all Tamari intervals $A_u^\circ = A_u^\circ(t, z) =$ indecomposable intervals

$$\sum_{S < T} u^{\ell(S)} t^{n(S)} z^{\operatorname{des}(S) + \operatorname{asc}(T)}$$

1. all intervals = indecomposable intervals \setminus (ε + all intervals)

 $A_u = A_u^{\circ} \qquad (1 + uzA_u)$

 $A_u = A_u(t, z) =$ all Tamari intervals $A_u^\circ = A_u^\circ(t, z) =$ indecomposable intervals

$$\sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\operatorname{des}(S) + \operatorname{asc}(T)}$$

1. all intervals = indecomposable intervals \setminus (ε + all intervals) $A_u = A_u^\circ$ (1 + uzA_u)

2. from any Tamari interval (S,T) where $S = S_0/S_1/.../S_{\ell(S)}$, we can construct $\ell(S)+2$ indecomposable Tamari intervals (S'_k,T') for $0 \le k \le \ell(S)+1$, where

 $S'_{k} = \left(S_{0}/\dots/S_{k-1}\right)/Y \setminus \left(S_{k}/\dots/S_{\ell(S)}\right) \quad \text{and} \quad T' = Y \setminus T$ $S'_{0} = Y/(S_{0}/S_{1}/S_{2}) \quad S'_{1} = S_{0}/Y \setminus \left(S_{1}/S_{2}\right) \quad S'_{2} = \left(S_{0}/S_{1}\right)/Y \setminus S_{2} \quad S'_{3} = \left(S_{0}/S_{1}/S_{2}\right)/Y$

... and all indecomposable intervals are obtained this way

$$A_u^\circ = t\left(1 + z\frac{uA_u - A_1}{u - 1} + uA_u\right)$$

Chapoton '07

 $A_u = A_u(t, z) =$ all Tamari intervals $A_u^\circ = A_u^\circ(t, z) =$ indecomposable intervals

1.

$$\sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\operatorname{des}(S) + \operatorname{asc}(T)}$$

$$A_u = A_u^{\circ}(1 + uzA_u)$$

2.
$$A_u^{\circ} = t \left(1 + z \frac{uA_u - A_1}{u - 1} + uA_u \right)$$

PROP. The generating functions $A_u := \mathbb{A}(u, 1, t, z)$ and $A_1 := \mathbb{A}(1, 1, t, z)$ satisfy the quadratic functional equation

$$(u-1)A_u = t(u-1+u(u+z-1)A_u-zA_1)(1+uzA_u)$$

QUADRATIC METHOD

PROP. The generating functions $A_u := \mathbb{A}(u, 1, t, z)$ and $A_1 := \mathbb{A}(1, 1, t, z)$ satisfy the quadratic functional equation

$$(u-1)A_u = t(u-1+u(u+z-1)A_u-zA_1)(1+uzA_u)$$

Quadratic equation with a catalytic variable... <u>quadratic method</u> The discriminant of this quadratic polynomial must have multiple roots, hence, its own discriminant vanishes

CORO. The generating function A = A(t, z) is a root of the polynomial $\begin{aligned} t^3 z^6 X^4 \\ &+ t^2 z^4 (tz^2 + 6tz - 3t + 3) X^3 \\ &+ tz^2 (6t^2 z^3 + 9t^2 z^2 - 12t^2 z + 2tz^2 + 3t^2 - 6tz + 21t + 3) X^2 \\ &+ (12t^3 z^4 - 4t^3 z^3 - 9t^3 z^2 - 10t^2 z^3 + 6t^3 z + 26t^2 z^2 \\ &- t^3 + 6t^2 z + tz^2 + 3t^2 - 12tz - 3t + 1) X \\ &+ t(8t^2 z^3 - 12t^2 z^2 + 6t^2 z - tz^2 - t^2 + 10tz + 2t - 1) \end{aligned}$

REPARAMETRIZATION

CORO. The generating function A = A(t, z) is a root of the polynomial $\begin{aligned} t^3 z^6 X^4 \\ &+ t^2 z^4 (tz^2 + 6tz - 3t + 3) X^3 \\ &+ tz^2 (6t^2 z^3 + 9t^2 z^2 - 12t^2 z + 2tz^2 + 3t^2 - 6tz + 21t + 3) X^2 \\ &+ (12t^3 z^4 - 4t^3 z^3 - 9t^3 z^2 - 10t^2 z^3 + 6t^3 z + 26t^2 z^2 \\ &- t^3 + 6t^2 z + tz^2 + 3t^2 - 12tz - 3t + 1) X \\ &+ t(8t^2 z^3 - 12t^2 z^2 + 6t^2 z - tz^2 - t^2 + 10tz + 2t - 1) \end{aligned}$

Reparametrize by

$$t = \frac{s}{(s+1)(sz+1)^3} \qquad X = s - zs^2 - zs^3$$

CORO. The generating function A = A(t, z) can be written $A = S - zS^2 - zS^3$ where $t = \frac{S}{(S+1)(Sz+1)^3}$

LAGRANGE INVERSION

CORO. The generating function A = A(t,z) can be written $A = S - zS^2 - zS^3 \qquad \text{where} \qquad t = \frac{S}{(S+1)(Sz+1)^3}$

THM. (Lagrange inversion) If $S = t\psi(S)$, then $[t^n] S^r = \frac{r}{n} [s^{n-r}] \phi(s)^n$ for any $r \ge 1$

Here $\phi(s) := (s+1)(sz+1)^3$ Hence $[s^a] \phi(s)^n = [s^a](s+1)^n (sz+1)^{3n} = \sum_{i+j=a} \binom{n}{i} \binom{3n}{j} z^j$ Hence $[t^n z^k] S^r = \frac{r}{n} [s^{n-r} z^k] \phi(s)^n = \frac{r}{n} \binom{n}{n-r-k} \binom{3n}{k} = \frac{r}{n} \binom{n}{k+r} \binom{3n}{k}$ Finally,

$$[t^{n}z^{k}]A = [t^{n}z^{k}]S - [t^{n}z^{k-1}]S^{2} - [t^{n}z^{k-1}]S^{3} = \frac{2}{n(n+1)}\binom{3n}{k}\binom{n+1}{k+2}$$

BIJECTIONS TO PLANAR TRIANGULATIONS

Tam(n) = Tamari lattice on binary trees with n nodes

THM. For any
$$n \ge 1$$
,
 $\#\{S \le T \in Tam(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}$
Chapoton '07

Also counts rooted 3-connected planar triangulations with 2n + 2 faces Tutte

BIJECTIONS TO PLANAR TRIANGULATIONS

Tam(n) = Tamari lattice on binary trees with n nodes

THM. For any
$$n \ge 1$$
,
 $\#\{S \le T \in Tam(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}$
Chapoton '07

Also counts rooted 3-connected planar triangulations with 2n + 2 faces Tutte

BIJECTIONS TO PLANAR TRIANGULATIONS

Tam(n) = Tamari lattice on binary trees with n nodes

THM. For any
$$n \ge 1$$
,
 $\#\{S \le T \in \operatorname{Tam}(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}$
Chapoton '07

Also counts rooted 3-connected planar triangulations with 2n + 2 faces Tutte

Bernardi - Bonichon, '09

SCHNYDER WOODS

M planar triangulation with external vertices v_0, v_1, v_3 n internal nodes, 3n internal edges, 2n + 1 internal triangles

<u>Schnyder wood</u> = color (with 0, 1, 2) and orient the internal edges s.t.

- the edges colored i form a spanning tree oriented towards v_i
- each vertex satisfies the vertex rule:

SCHNYDER WOODS

M planar triangulation with external vertices v_0, v_1, v_3 n internal nodes, 3n internal edges, 2n + 1 internal triangles

<u>Schnyder wood</u> = color (with 0, 1, 2) and orient the internal edges s.t.

- ullet the edges colored i form a spanning tree oriented towards v_i
- each vertex satisfies the vertex rule:

Used for graph drawing and representations:

SCHNYDER WOODS

M planar triangulation with external vertices v_0, v_1, v_3 n internal nodes, 3n internal edges, 2n + 1 internal triangles

<u>Schnyder wood</u> = color (with 0, 1, 2) and orient the internal edges s.t.

- ullet the edges colored i form a spanning tree oriented towards v_i
- each vertex satisfies the vertex rule:

THM. The Schnyder woods of a planar triangulation form a lattice structure under reorientations of clockwise essential cycles

CORO. Any planar triangulation admits a unique Schnyder wood with no clockwise cycle

Ossona de Mendez '94 Propp '97 Felsner '04

BERNARDI – BONICHON BIJECTION

BERNARDI – BONICHON BIJECTION

binary trees $S \leq T$ descents of S ascents of T with n nodes

Dyck paths $\mu \leq \nu$ double falls of μ valleys of ν with semilength n

planar triangulations with n internal vertices

intermediate red vertices intermediate blue vertices

COUNTING INTERNAL DEGREES

THM. The generating function $F := F(u, v, w) := \sum_{S \leq T} u \checkmark v \checkmark w \checkmark$ is given by $uvF = uU + vV + wUV - \frac{UV}{(1+U)(1+V)}$ where the series U := U(u, v, w) and V := V(u, v, w) satisfy the system $U = (v + wU)(1 + U)(1 + V)^2$ $V = (u + wV)(1 + V)(1 + U)^2$ Fusy - Humbert '19

COUNTING INTERNAL DEGREES

CORO. The function $A := A(t, z) := \sum_{S \leq T} t^{n(S)} z^{\operatorname{des}(S) + \operatorname{asc}(T)} = tF(tz, tz, t)$ is given by $tz^2A = 2tzS + tS^2 - \frac{S^2}{(1+S)^2}$ where the series S := S(t, z) satisfies

$$S = t(z+S)(1+S)^3$$

... and Lagrange inversion again

(thanks to Éric Fusy)

CANOPY

T binary tree with n nodes, labeled in inorder and oriented towards its root.

canopy of
$$T = \text{vector} \operatorname{can}(T) \in \{-,+\}^{n-1}$$
 with $\operatorname{can}(T)_i = -$

$$\iff (j+1)$$
st leaf of T is a right leaf

- \iff there is an oriented path joining its *j*th node to its (j+1)st node
- \iff the *j*th node of *T* has an empty right subtree
- $\Longleftrightarrow \mathsf{the}\ (j+1)\mathsf{st}\ \mathsf{node}\ \mathsf{of}\ T\ \mathsf{has}\ \mathsf{a}\ \mathsf{non-empty}\ \mathsf{left}\ \mathsf{subtree}$
- \iff the cone corresponding to T is located in the halfspace $x_j \leq x_{j+1}$

CANOPY AGREEMENTS

T binary tree with n nodes, labeled in inorder and oriented towards its root.

<u>canopy</u> of $T = \text{vector } \operatorname{can}(T) \in \{-,+\}^{n-1} \text{ with } \operatorname{can}(T)_i = \iff$ the *j*th node of *T* has an empty right subtree \iff the (j+1)st node of *T* has a non-empty left subtree

LEM.
$$\operatorname{asc}(T) = \# \{ i \mid \operatorname{can}(T)_i = - \}$$
 and $\operatorname{des}(T) = \# \{ i \mid \operatorname{can}(T)_i = + \}$

LEM. If
$$S \le T$$
, then
• $can(S) \le can(T)$ componentwise
• $des(S) = \# \{i \mid can(S)_i = can(T)_i = +\}$ and $asc(S) = \# \{i \mid can(S)_i = can(T)_i = -\}$

CORO.

$$\operatorname{des}(S) + \operatorname{asc}(T) = \#$$
canopy agreements between S and T

 $\sum (\tau + \frac{1}{2} + \frac{1}{2} - 1) u \tau v^{2} w^{2}$ meandres

$$\sum_{\text{meandres}} \left(\begin{array}{c} \mathbf{\xi} \\ \mathbf{\xi} \end{array} + \begin{array}{c} \mathbf{\xi} \\ \mathbf{\xi} \end{array} - 1 \right) u \mathbf{\xi} v^{\mathbf{\xi}} w^{\mathbf{\xi}} = \quad \mathbb{CHM}(u, v, w) \\ \cdot \\ \mathbb{OHM}(u, v, w) \end{array}$$

$$\nabla \mathbf{x}_{\Delta} = \mathbf{x}_{\Delta} \mathbf{x}_{\Delta} = \mathbf{x}_{\Delta} \mathbf{x}_{\Delta} = \mathbf{x}_{\Delta} \mathbf{$$

$$\sum_{\text{meandres}} \left(\mathbf{x} + \mathbf{k} + \mathbf{k} - 1 \right) u \mathbf{x} v^{\mathbf{k}} w^{\mathbf{k}} = \mathbb{CHM}(u, v, w) \cdot \mathbb{OHM}(u, v, w)$$

$$\nabla \mathbf{x}_{\mathbf{\lambda}} = \mathbf{x}_{\mathbf{\lambda}} + \mathbf{x}_{\mathbf{\lambda}} = \mathbf{x}_{\mathbf{\lambda}} + \mathbf{x}_{\mathbf{\lambda}} = \mathbf{x}_{\mathbf{\lambda}} + \mathbf{x}_{\mathbf{\lambda}} = \mathbf{x}_{\mathbf{\lambda}} + \mathbf{x}_{\mathbf{\lambda}} + \mathbf{x}_{\mathbf{\lambda}} = \mathbf{x}_{\mathbf{\lambda}} + \mathbf{x}_{\mathbf{\lambda}}$$

$$\mathbb{CHM} = \frac{1}{(1 - \mathbb{CHM})^2} \left(u + \frac{w \ \mathbb{OHM}}{1 - \mathbb{OHM}} \right)$$

$$\sum_{\text{meandres}} \left(\begin{array}{c} \mathbf{\xi} \\ \mathbf{\xi} \end{array} + \begin{array}{c} \mathbf{\xi} \\ \mathbf{\xi} \end{array} - 1 \right) u \mathbf{\xi} v^{\mathbf{\xi}} w^{\mathbf{\xi}} = \mathbb{CHM}(u, v, w) \cdot \mathbb{OHM}(u, v, w)$$

$$\nabla = \sqrt{2} = \sqrt{2} = \sqrt{2}$$

$$\mathbb{CHM} = \frac{1}{(1 - \mathbb{CHM})^2} \left(u + \frac{w \,\mathbb{OHM}}{1 - \mathbb{OHM}} \right) \qquad \text{and} \qquad \mathbb{OHM} = \frac{1}{(1 - \mathbb{OHM})^2} \left(v + \frac{w \,\mathbb{CHM}}{1 - \mathbb{CHM}} \right)$$

$$\sum (\boldsymbol{\xi} + \boldsymbol{\xi} + \boldsymbol{\xi} - 1) (tz) \boldsymbol{\xi} (tz)^{\boldsymbol{\xi}} t^{\boldsymbol{\xi}} = \mathbb{H}\mathbb{M}(t, z)^2$$

meandres

where
$$\mathbb{HM} = \frac{t}{(1 - \mathbb{HM})^2} \left(z + \frac{\mathbb{HM}}{1 - \mathbb{HM}} \right)$$

$$\sum (t + \frac{1}{\xi} + \frac{1}{\xi} - 1) (tz) \xi (tz)^{\frac{1}{\xi}} t^{\frac{1}{\xi}} = \mathbb{HM}(t, z)^2$$

meandres

where
$$\mathbb{HM} = \frac{t}{(1 - \mathbb{HM})^2} \left(z + \frac{\mathbb{HM}}{1 - \mathbb{HM}} \right)$$

Lagrange inversion again:

$$\begin{bmatrix} t^n z^k \end{bmatrix} \mathbb{H}\mathbb{M}^2 = \frac{2}{n} \begin{bmatrix} s^{n-2} z^k \end{bmatrix} \frac{1}{(1-s)^{2n}} \left(z + \frac{s}{1-s} \right)^n = \frac{2}{n} \binom{n}{k} \begin{bmatrix} s^{n-2} \end{bmatrix} \frac{s^{n-k}}{(1-s)^{3n-k}} \\ = \frac{2}{n} \binom{n}{k} \begin{bmatrix} s^{k-2} \end{bmatrix} \frac{1}{(1-s)^{3n-k}} = \frac{2}{n} \binom{n}{k} \binom{3n-3}{k-2} \\ = \frac{2}{n} \binom{n}{k} \begin{bmatrix} s^{k-2} \end{bmatrix} \frac{1}{(1-s)^{3n-k}} = \frac{2}{n} \binom{n}{k} \binom{3n-3}{k-2}$$

$$\sum (t + \frac{1}{\xi} + \frac{1}{\xi} - 1) (tz) \xi (tz)^{\frac{1}{\xi}} t^{\frac{1}{\xi}} = \mathbb{HM}(t, z)^2$$

meandres

where
$$\mathbb{HM} = \frac{t}{(1 - \mathbb{HM})^2} \left(z + \frac{\mathbb{HM}}{1 - \mathbb{HM}} \right)$$

Lagrange inversion again:

$$\begin{bmatrix} t^n z^k \end{bmatrix} \mathbb{H}\mathbb{M}^2 = \frac{2}{n} \begin{bmatrix} s^{n-2} z^k \end{bmatrix} \frac{1}{(1-s)^{2n}} \left(z + \frac{s}{1-s} \right)^n = \frac{2}{n} \binom{n}{k} \begin{bmatrix} s^{n-2} \end{bmatrix} \frac{s^{n-k}}{(1-s)^{3n-k}} \\ = \frac{2}{n} \binom{n}{k} \begin{bmatrix} s^{k-2} \end{bmatrix} \frac{1}{(1-s)^{3n-k}} = \frac{2}{n} \binom{n}{k} \binom{3n-3}{k-2} \\ = \frac{2}{n} \binom{n}{k} \begin{bmatrix} s^{k-2} \end{bmatrix} \frac{1}{(1-s)^{3n-k}} = \frac{2}{n} \binom{n}{k} \binom{3n-3}{k-2}$$

Hence

$$[t^n z^k] A(t,z) = \frac{1}{n+1} [t^{n+1} z^{k+2}] \mathbb{H}\mathbb{M}^2 = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}$$

Fang – Fusy – Nadeau '23⁺

DIAGONAL OF THE PERMUTAHEDRON

Kurt STOECKL (Univ. Melbourne)

DIAGONAL OF THE PERMUTAHEDRON

 $\Delta_{\mathbb{P}erm(n)} = diagonal of (n-1)-dimensional permutahedron$

THM. k-faces of $\Delta_{\mathbb{P}erm(n)} \longleftrightarrow (\mu, \nu)$ ordered partitions of [n] such that $\forall (I, J) \in D(n), \ \exists k \in [n], \ \#\mu_{[k]} \cap I > \#\mu_{[k]} \cap J$ Laplante-Anfossi '22 or $\exists \ell \in [n], \ \#\mu_{[\ell]} \cap I < \#\mu_{[\ell]} \cap J$ where $D(n) \coloneqq \{(I, J) \mid I, J \subseteq [n], \ \#I = \#J, \ I \cap J = \emptyset, \min(I \cup J) \in I\}$

DIAGONAL OF THE PERMUTAHEDRON

 $\Delta_{\mathbb{P}erm(n)} = diagonal of (n-1)-dimensional permutahedron$

PROP. \mathcal{B}_n^2 = two generically translated copies of the braid arrangement $f_k(\Delta_{\operatorname{Perm}(n)}) = f_{n-k-1}(\mathcal{B}_n^2)$

Laplante-Anfossi '22

flat poset $\boldsymbol{Fl}(\mathcal{A})$ of an hyperplane arrangement $\mathcal{A}=$

reverse inclusion poset on nonempty intersections of hyperplanes of \mathcal{A}

flat poset $\boldsymbol{Fl}(\mathcal{A})$ of an hyperplane arrangement $\mathcal{A}=$

reverse inclusion poset on nonempty intersections of hyperplanes of \mathcal{A}

flat poset $\boldsymbol{Fl}(\mathcal{A})$ of an hyperplane arrangement $\mathcal{A} =$

reverse inclusion poset on nonempty intersections of hyperplanes of \mathcal{A}

<u>Möbius function</u> μ of a poset: $\mu(x, x) = 1$ and $\sum_{x < y < z} \mu(x, y) = 0$ for all x < z

flat poset $\boldsymbol{Fl}(\mathcal{A})$ of an hyperplane arrangement $\mathcal{A}=$

reverse inclusion poset on nonempty intersections of hyperplanes of \mathcal{A}

 $\underline{\text{M\"obius function}} \ \mu \text{ of a poset:} \ \mu(x,x) = 1 \text{ and } \sum_{x \leq y \leq z} \mu(x,y) = 0 \text{ for all } x < z$

flat poset $\boldsymbol{Fl}(\mathcal{A})$ of an hyperplane arrangement $\mathcal{A}=$

reverse inclusion poset on nonempty intersections of hyperplanes of \mathcal{A}

$$\underline{\text{M\"obius polynomial }}_{F \leq G} \mu(F, G) x^{\dim(F)} y^{\dim(G)}$$

THM.
$$f_{\mathcal{A}}(x) = \mu_{\mathcal{A}}(-x, -1)$$
 and $b_{\mathcal{A}}(x) = \mu_{\mathcal{A}}(-x, 1)$ Zaslavsky '75

$\ell\text{-}\mathsf{BRAID}$ ARRANGEMENT & PARTITION FORESTS

 $\mathcal{B}_n^{\ell} =$ union of ℓ generically translated copies of the braid arrangement

$\ell\text{-}\mathsf{BRAID}$ ARRANGEMENT & PARTITION FORESTS

PROP. Intersection poset of $\mathcal{B}_n^{\ell} \iff$ refinement poset on (ℓ, n) partition forests

$\ell\text{-}\mathsf{BRAID}$ ARRANGEMENT & PARTITION FORESTS

- $\mathcal{B}_n^{\ell} = \text{union of } \ell \text{ generically translated}$ copies of the braid arrangement
- (ℓ, n) partition forest =

 $\ell\text{-tuple}$ of partitions of [n] whose intersection hypergraph is a forest

PROP. Intersection poset of $\mathcal{B}_n^{\ell} \longleftrightarrow$ refinement poset on (ℓ, n) partition forests

MÖBIUS POLYNOMIAL

 $\mathbb{P}_p = \text{refinement poset on partitions of } [p]$ $\mathbb{P}\mathbb{F}_n^{\ell} = \text{refinement poset on } (\ell, n) \text{ partition forests}$

FACT 1. The Möbius function of \mathbb{P}_p is $\mu(\hat{0}, \hat{1}) = (-1)^{p-1}(p-1)!$

FACT 2. In
$$\mathbb{P}_p$$
, $[F,G] \simeq \prod_{p \in G} \mathbb{P}_{\#F[p]}$ where $F[p] = \text{restriction of } F$ to p

FACT 2.
$$[\mathbf{F}, \mathbf{G}] \simeq \prod_{i \in [\ell]} [F_i, G_i]$$
 for $\mathbf{F} = (F_1, \dots, F_\ell)$ and $\mathbf{G} = (G_1, \dots, G_\ell)$ in \mathbb{PF}_n^ℓ

FACT 4. Möbius is multiplicative $\mu_{P \times Q}((p,q),(p',q')) = \mu_P(p,p') \cdot \mu_Q(q,q')$

MÖBIUS POLYNOMIAL

 $\mathbb{P}_p = \text{refinement poset on partitions of } [p]$ $\mathbb{P}\mathbb{F}_n^{\ell} = \text{refinement poset on } (\ell, n) \text{ partition forests}$

FACT 1. The Möbius function of \mathbb{P}_p is $\mu(\hat{0}, \hat{1}) = (-1)^{p-1}(p-1)!$

FACT 2. In
$$\mathbb{P}_p$$
, $[F,G] \simeq \prod_{p \in G} \mathbb{P}_{\#F[p]}$ where $F[p] = \text{restriction of } F$ to p

FACT 2.
$$[\mathbf{F}, \mathbf{G}] \simeq \prod_{i \in [\ell]} [F_i, G_i]$$
 for $\mathbf{F} = (F_1, \dots, F_\ell)$ and $\mathbf{G} = (G_1, \dots, G_\ell)$ in \mathbb{PF}_n^ℓ

FACT 4. Möbius is multiplicative $\mu_{P \times Q}((p,q),(p',q')) = \mu_P(p,p') \cdot \mu_Q(q,q')$

THM.
$$\boldsymbol{\mu}_{\mathcal{B}_{n}^{\ell}} = x^{n-1-\ell n} y^{n-1-\ell n} \sum_{F \leq G} \prod_{i \in [\ell]} x^{\#F_{i}} y^{\#G_{i}} \prod_{p \in G_{i}} (-1)^{\#F_{i}[p]-1} (\#F_{i}[p]-1)!$$

Delcroix-Oger – Josuat-Vergès – Laplante-Anfossi – P. – Stoeckl '23⁺

FACE POLYNOMIAL

BOUNDED FACE POLYNOMIAL

THM.

$$\begin{split} \boldsymbol{b}_{\mathcal{B}_n^\ell}(x) &= (-1)^\ell x^{n-1-\ell n} \sum_{\boldsymbol{F} \leq \boldsymbol{G}} \prod_{i \in [\ell]} x^{\#F_i} \prod_{p \in G_i} -(\#F_i[p]-1)! \\ \\ \text{Delcroix-Oger} - \text{Josuat-Vergès} - \text{Laplante-Anfossi} - P. - \text{Stoeckl '23}^+ \end{split}$$

 $\begin{vmatrix} 0 & 1 & 2 & 3 \end{vmatrix} \Sigma$ $n \backslash k$ $n \backslash k$ $n \backslash k$ \sum \sum 0 1 $0 \ 0 \ 1$ $0 \ 0 \ 0 \ 1$ 132 138 50 224 684 702 243 $\ell = 2$ $\ell = 1$ $\ell = 3$

VERTICES

THM.
$$f_0(\mathcal{B}_n^{\ell}) = \#\{(\ell, n) \text{ partition trees}\} = \ell (n(\ell - 1) + 1)^{n-2}$$

Delcroix-Oger – Josuat-Vergès – Laplante-Anfossi – P. – Stoeckl '23⁺

VERTICES

THM. $f_0(\mathcal{B}_n^2) = \#\{(2, n) \text{ partition trees}\} = \#\text{spanning trees of } K_{n+1} \text{ with } 01$ Delcroix-Oger – Josuat-Vergès – Laplante-Anfossi – P. – Stoeckl '23⁺

1, 2, 8, 50, 432, 4802, 65536, 1062882, 20000000, 428717762, ...

VERTICES

THM. $f_0(\mathcal{B}_n^2) = \#\{(2, n) \text{ partition trees}\} = \#\text{spanning trees of } K_{n+1} \cdot \frac{2}{n+1} = 2(n+1)^{n-2}$ Delcroix-Oger – Josuat-Vergès – Laplante-Anfossi – P. – Stoeckl '23⁺

1, 2, 8, 50, 432, 4802, 65536, 1062882, 2000000, 428717762, ...

REGIONS

THM.
$$f_{n-1}(\mathcal{B}_n^{\ell}) = n! [z^n] \exp\left(\sum_{m \ge 1} \frac{F_{\ell,m} z^m}{m}\right)$$
 where $F_{\ell,m} = \frac{1}{(\ell-1)m+1} \binom{\ell m}{m}$
Delcroix-Oger - Josuat-Vergès - Laplante-Anfossi - P. - Stoeckl '23+

$$\frac{n \setminus \ell \mid 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6}{1 \quad 1 \quad -1} \leftarrow 1$$

$$2 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad \leftarrow \ell + 1$$

$$3 \quad 6 \quad 17 \quad 34 \quad 57 \quad 86 \quad 121 \quad \leftarrow 3\ell^2 + 2\ell + 1 \text{ [OEIS, A056109]}$$

$$4 \quad 24 \quad 149 \quad 472 \quad 1089 \quad 2096 \quad 3589$$

$$n! \rightarrow \quad \leftarrow \text{[OEIS, A213507]}$$

BOUNDED REGIONS

THM.
$$b_{n-1}(\mathcal{B}_n^{\ell}) = (n-1)! [z^{n-1}] \exp\left((\ell-1) \sum_{m \ge 1} F_{\ell,m} z^m\right)$$

Delcroix-Oger – Josuat-Vergès – Laplante-Anfossi – P. – Stoeckl '23⁺

