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DEFINITIONS

k ≥ 1 and n ≥ 2k + 1 two fixed integers

`-crossing = set of ` mutually crossing diagonals of the convex n-gon

k-relevant diagonal = at least k vertices on each side
= diagonals which may appear in a (k + 1)-crossing

∆n,k = simplicial complex of (k + 1)-crossing-free sets
of k-relevant diagonals of the convex n-gon
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EXAMPLES

k = 1 Maximal elements of ∆n,1 = triangulations of the n-gon
∆n,1 = boundary complex of the dual of the (n− 3)-dimensional associahedron
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EXAMPLES
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EXAMPLES

k = 1 Maximal elements of ∆n,1 = triangulations of the n-gon
∆n,1 = boundary complex of the dual of the (n− 3)-dimensional associahedron

n = 2k + 1 ∆2k+1,k = {∅}

n = 2k + 2 ∆2k+1,k = boundary complex of the k-simplex

n = 2k + 3 ∆2k+3,k = boundary complex of the cyclic polytope
of dimension 2k with 2k + 3 vertices
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POLYTOPE ?

k = 1 Maximal elements of ∆n,1 = triangulations of the n-gon
∆n,1 = boundary complex of the dual of the (n− 3)-dimensional associahedron

General k Maximal elements of ∆n,k = k-triangulations of the n-gon
∆n,k is pure of dimension k(n− 2k − 1)− 1
∆n,k is a topological sphere

V. Capoyleas & J. Pach, A Turán-type theorem on chords of a convex polygon, 1992

T. Nakamigawa, A generalization of diagonal flips in a convex polygon, 2000

J. Jonsson, Generalized triangulations of the n-gon, 2003

V. Pilaud & F. Santos, Multi-triangulations as complexes of star polygons, 2007

Q1. Is ∆n,k the boundary complex of a k(n− 2k − 1)-dimensional simplicial polytope ?

The first open case is k = 2 and n = 8
f -vector should be (12, 66, 192, 306, 252, 84) ! ! ?
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METHOD

USE SYMMETRY

Dn = dihedral group = isometries of the regular n-gon

Natural action of Dn on ∆n,k :
Dn ×∆n,k −→ ∆n,k

(ρ, E) 7−→ ρE = {ρe | e ∈ E}
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METHOD

USE SYMMETRY

Dn = dihedral group = isometries of the regular n-gon

Natural action of Dn on ∆n,k :
Dn ×∆n,k −→ ∆n,k

(ρ, E) 7−→ ρE = {ρe | e ∈ E}

DECOMPOSE INTO TWO STEPS

1. From face lattice to oriented matroids

Find all possible symmetric oriented matroids realizing ∆n,k

2. From oriented matroids to polytopes

Deduce the space of symmetric realizations of ∆n,k
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FROM FACE LATTICE TO ORIENTED MATROIDS

∆ a simplicial complex with an action of a group G
P ⊂ Rd a realization of ∆ symmetric under G, and V its vertex set

σ :

 V d+1 −→ {−1, 0,+1}

(v0, v1, . . . , vd) 7−→
orientation of the simplex
spanned by v0, v1, . . . , vd

= sign det

(
v0 v1 . . . vd
1 1 1 1

)
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P ⊂ Rd a realization of ∆ symmetric under G, and V its vertex set

σ :

 V d+1 −→ {−1, 0,+1}

(v0, v1, . . . , vd) 7−→
orientation of the simplex
spanned by v0, v1, . . . , vd

= sign det

(
v0 v1 . . . vd
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satisfies the relations :

(i) Alternating relations

A

B
C

+1

A

B
C

+1
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FROM FACE LATTICE TO ORIENTED MATROIDS

∆ a simplicial complex with an action of a group G
P ⊂ Rd a realization of ∆ symmetric under G, and V its vertex set

σ :

 V d+1 −→ {−1, 0,+1}

(v0, v1, . . . , vd) 7−→
orientation of the simplex
spanned by v0, v1, . . . , vd

= sign det

(
v0 v1 . . . vd
1 1 1 1

)
satisfies the relations :

(i) Alternating relations

(ii) Grassmann-Plucker relations

A
B C

D

A
B C

D

A
B C

D
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FROM FACE LATTICE TO ORIENTED MATROIDS

∆ a simplicial complex with an action of a group G
P ⊂ Rd a realization of ∆ symmetric under G, and V its vertex set

σ :

 V d+1 −→ {−1, 0,+1}

(v0, v1, . . . , vd) 7−→
orientation of the simplex
spanned by v0, v1, . . . , vd

= sign det

(
v0 v1 . . . vd
1 1 1 1

)
satisfies the relations :

(i) Alternating relations

(ii) Grassmann-Plucker relations

(iii) Necessary simplex orientations

A

B

RIDGE

FACET

FACET

C
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σ :
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(i) Alternating relations

(ii) Grassmann-Plucker relations
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FROM FACE LATTICE TO ORIENTED MATROIDS

∆ a simplicial complex with an action of a group G
P ⊂ Rd a realization of ∆ symmetric under G, and V its vertex set

σ :

 V d+1 −→ {−1, 0,+1}

(v0, v1, . . . , vd) 7−→
orientation of the simplex
spanned by v0, v1, . . . , vd

= sign det

(
v0 v1 . . . vd
1 1 1 1

)
satisfies the relations :

(i) Alternating relations

(ii) Grassmann-Plucker relations

(iii) Necessary simplex orientations

(iv) Symmetry

Example. Only one solution for ∆6,1

Proposition. 15 solutions for ∆8,2
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FROM ORIENTED MATROIDS TO POLYTOPES

Problem. For a given oriented matroid, find a matrix representing it or a proof that
such a matrix is impossible to find.

“On the one hand, there is a general algorithm to solve this problem. On the other hand,
it is known that this algorithm from real algebraic geometry is far from applicable for
our cases in the theory of oriented matroids.”

J. Bokowski, Computational Oriented Matroids, 2006

=⇒ USE HEURISTICAL METHODS

Our heuristic is symmetry
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FROM ORIENTED MATROIDS TO POLYTOPES

Consider the matrix of homogeneous coordinates of the vertices of P

M =

(
v1 v2 . . . vp
1 1 . . . 1

)
=

(
v1 v2 v3 vd+1

1 1 1 1

)(
Id+1 W

)
We use symmetry on the determinants of the submatrices of M to compute coefficients
(the volumes of the simplices spanned by vertices of P are preserved by isometries...)

Example. For ∆6,1, we obtain

M =


1 1 1 1
a 1 0 0

a + 3x− 2 0 1 0
a 0 0 1




1 −1 1 −1 1 −1 0 0 0
0 −2x + 2 3x− 2 −2x + 2 0 x 1 0 0
0 x −3x + 2 4x− 2 −3x + 2 x 0 1 0
0 x 0 −2x + 2 3x− 2 −2x + 2 0 0 1


with 0 < x < 1

2 and a + x 6= 1

Reciprocally...
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THE SPACE OF SYMMETRIC REALIZATIONS OF ∆6,1
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THE SPACE OF SYMMETRIC REALIZATIONS OF ∆8,2

Proposition. The space of symmetric realizations of ∆8,2 has dimension 4

Example. With some arbitrary values of the 4 parameters, we obtain a particular sym-
metric realization of ∆8,2 :

M '



0.21 0 0 −0.21 0.52 −0.74 0.74 −0.52 0 0 0 0
−0.95 0.66 0 −0.63 0.8 −0.4 −0.3 0.68 0 0 0 0
−0.17 0.75 −1 0.77 −0.21 −0.4 0.60 −0.34 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 1 −1
0.55 0.55 −0.55 −0.55 0.5 0.7 −0.7 −0.4 1 0 −1 0
−0.55 0.55 0.55 −0.4 −0.7 0.7 0.5 −0.55 0 1 0 −1

1 1 1 1 1 1 1 1 1 1 1 1



> polymake multiassociahedron82 F_VECTOR

F_VECTOR

12 66 192 306 252 84
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THANK YOU.
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