Séminaire Philippe Flajolet 12 février 2015

GEOMETRIC GEOMETRIC REALIZATIONS OF GRAPH ASSOCIAHEDRA

T. MANNEVILLE V. PILAUD (LIX) (CNRS & LIX)

POLYTOPES & COMBINATORICS

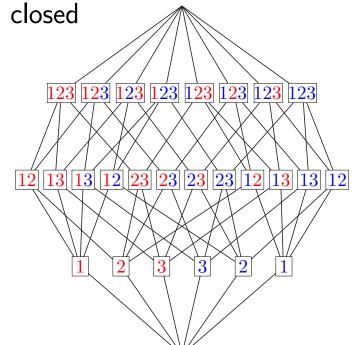
SIMPLICIAL COMPLEX

simplicial complex = collection of subsets of X downward closed

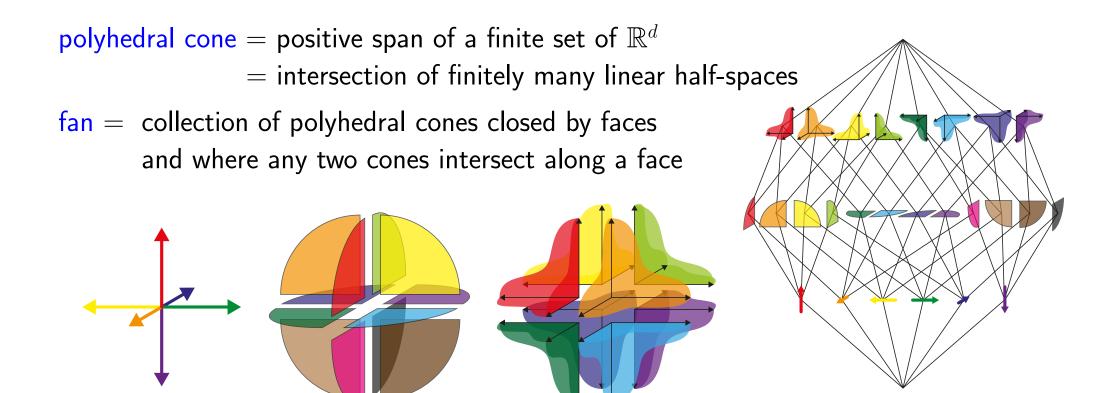
exm:

$$X = [n] \cup [n]$$

$$\Delta = \{I \subseteq X \mid \forall i \in [n], \ \{i, i\} \not\subseteq I\}$$

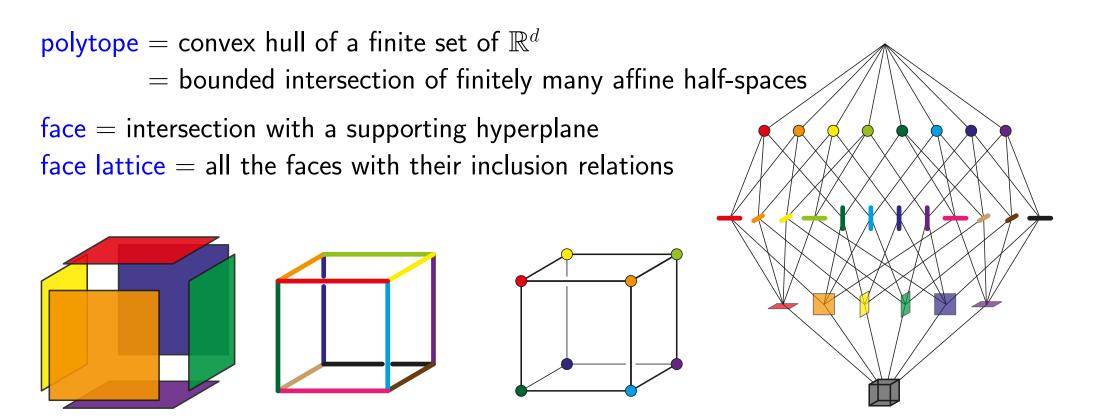


FANS



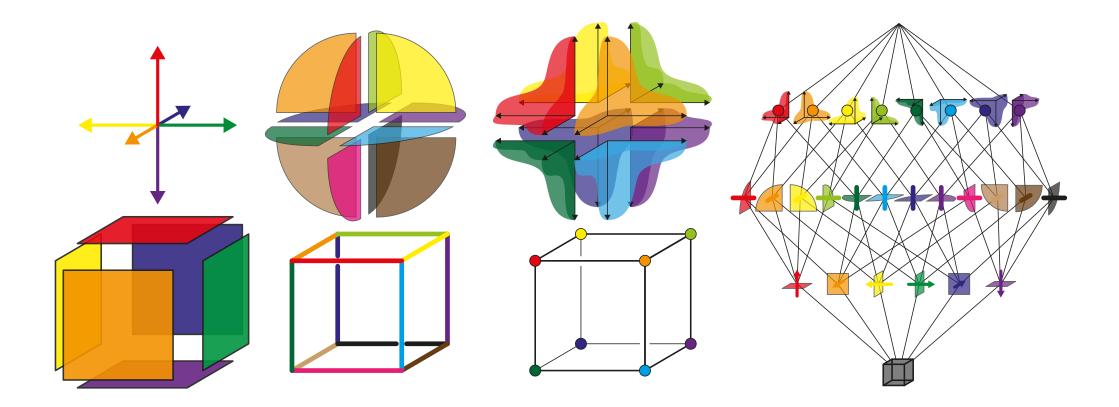
simplicial fan = maximal cones generated by d rays

POLYTOPES



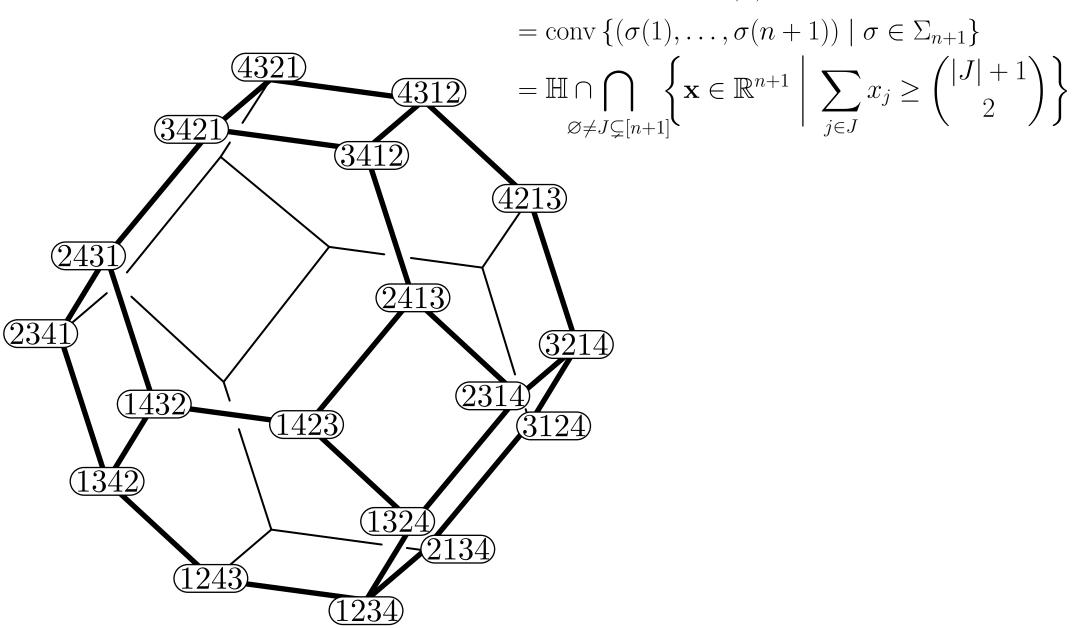
simple polytope = facets in general position = each vertex incident to d facets

SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES

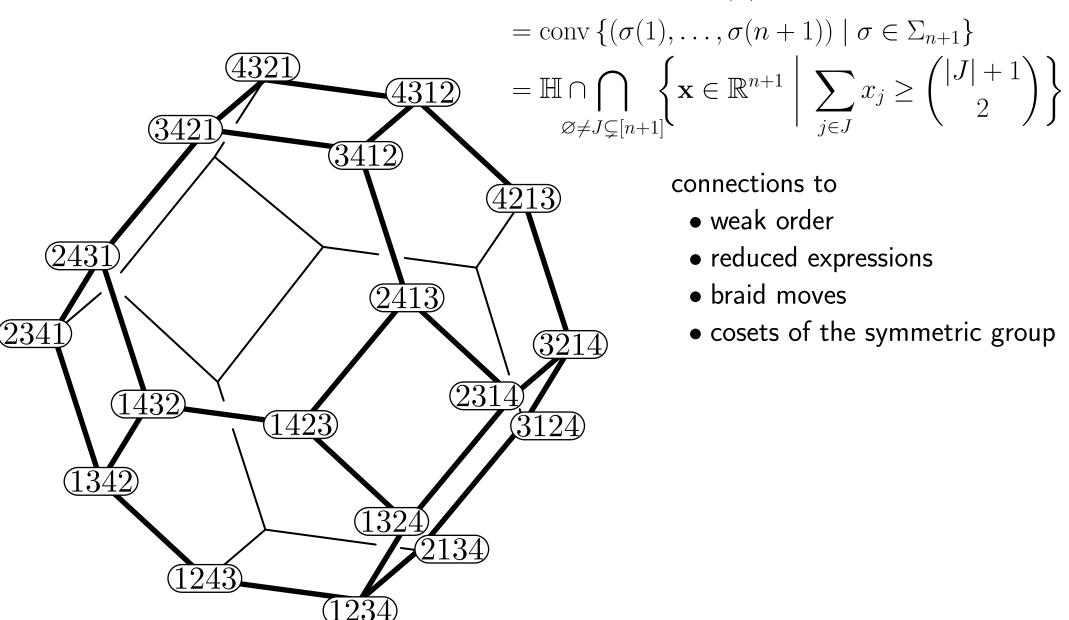


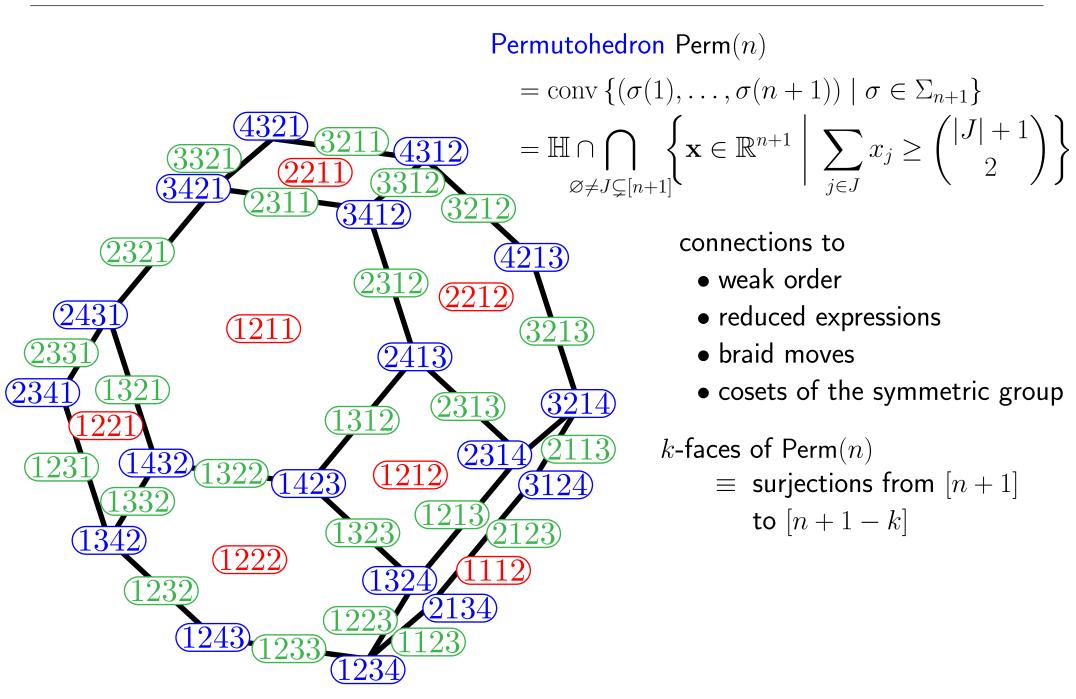
P polytope, F face of Pnormal cone of F = positive span of the outer normal vectors of the facets containing Fnormal fan of P = { normal cone of F | F face of P }

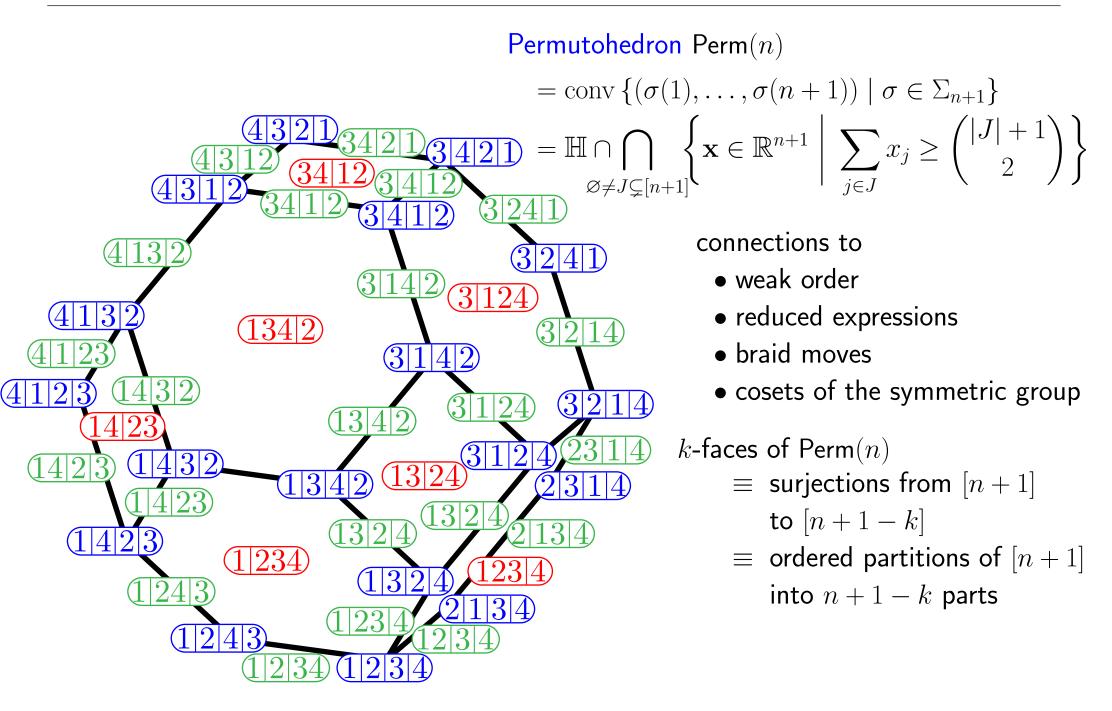
simple polytope \implies simplicial fan \implies simplicial complex

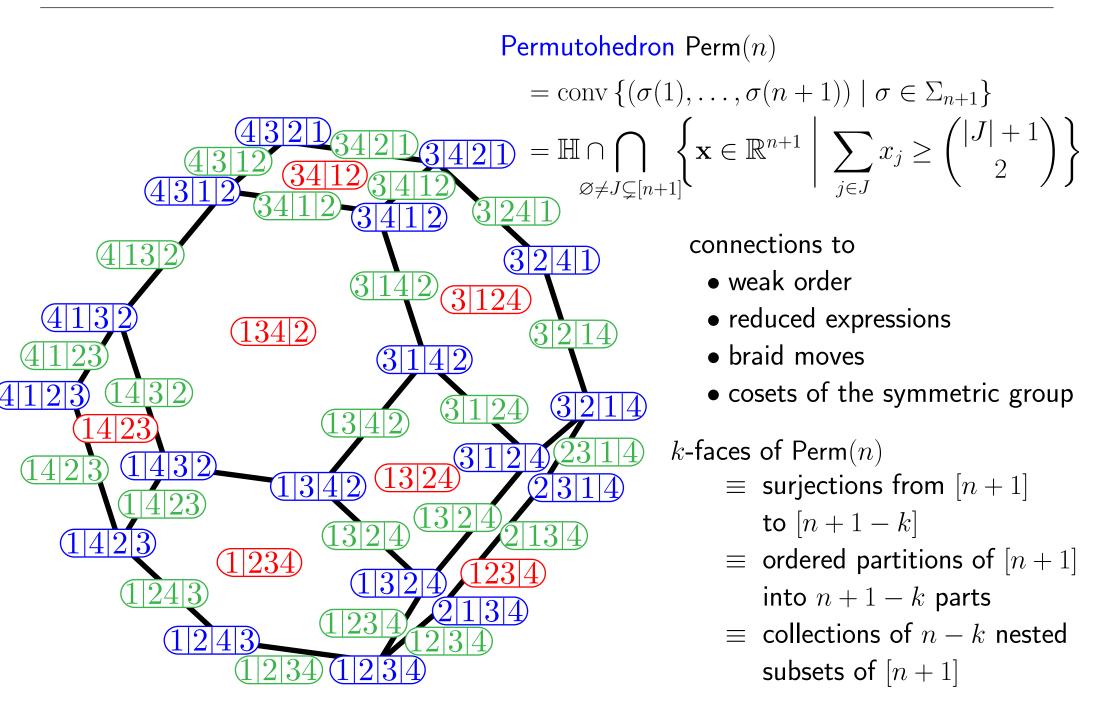


Permutohedron Perm(n)

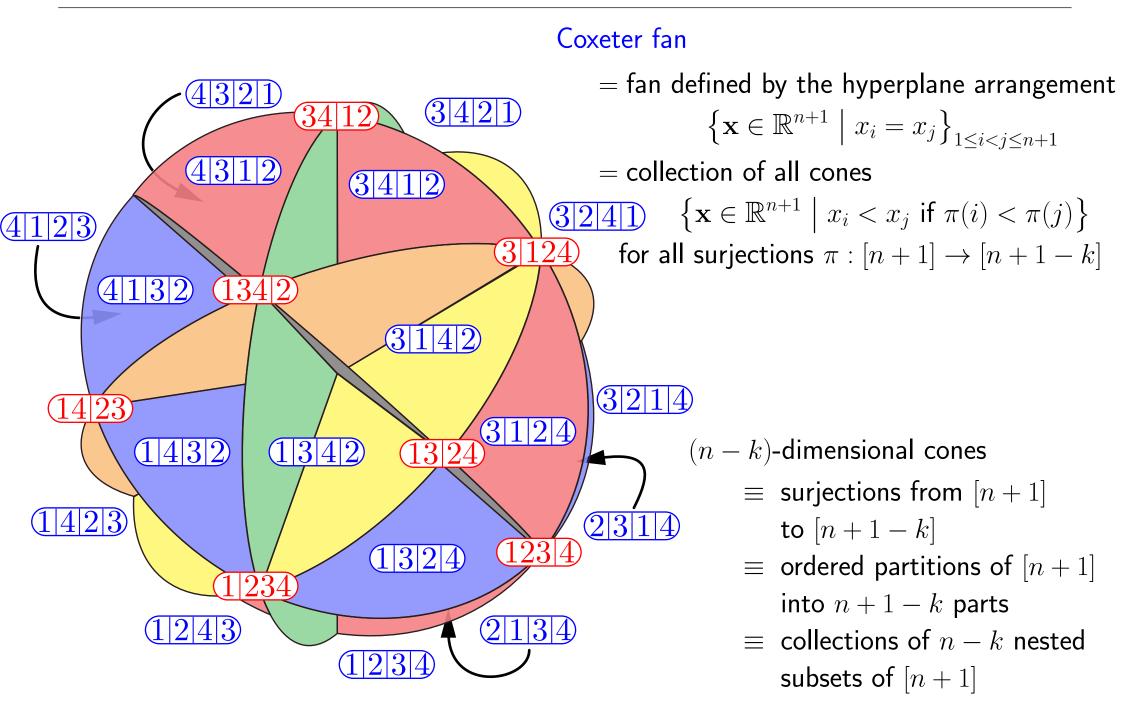








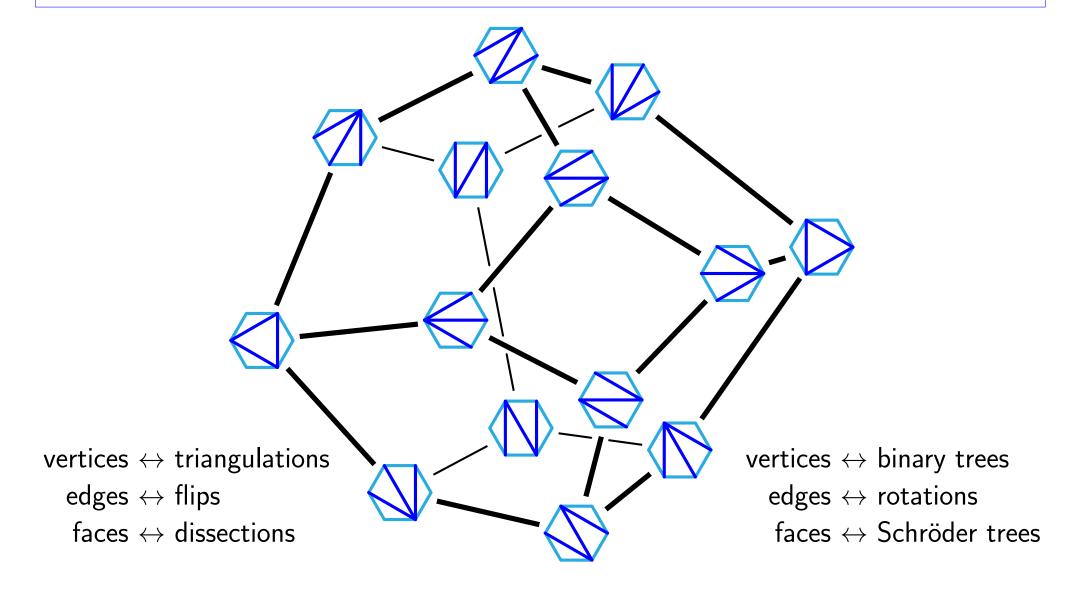
COXETER ARRANGEMENT



ASSOCIAHEDRA

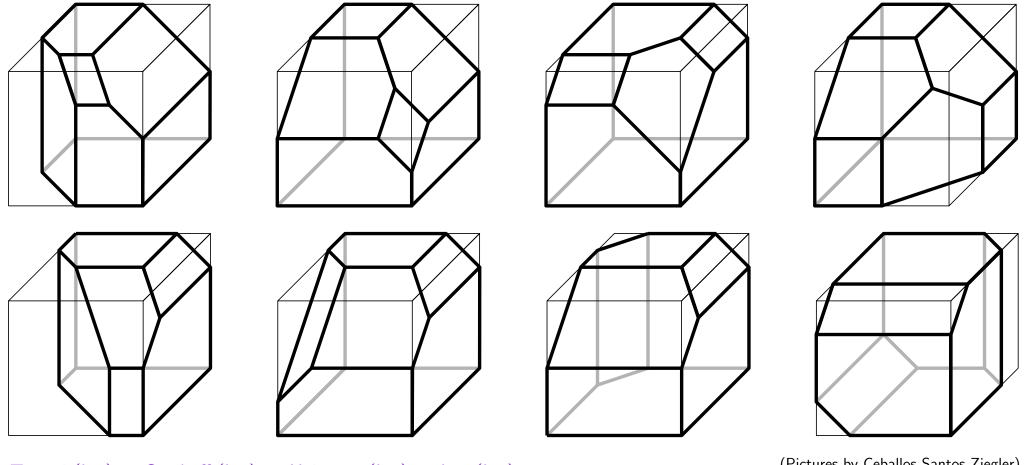
ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion



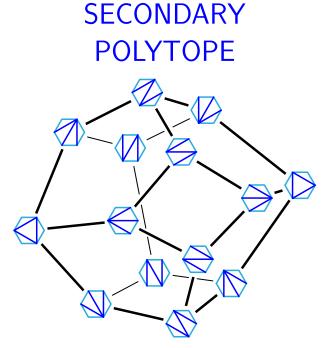
VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion

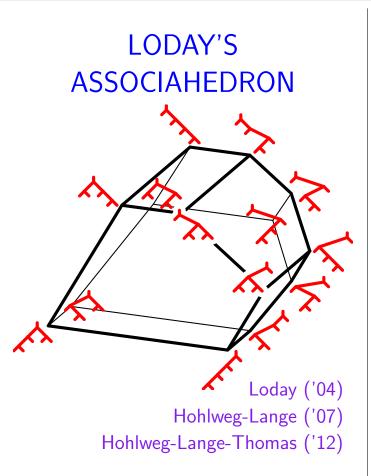


Tamari ('51) — Stasheff ('63) — Haimann ('84) — Lee ('89) —(Pictures by Ceballos-Santos-Ziegler)... — Gel'fand-Kapranov-Zelevinski ('94) — ... — Chapoton-Fomin-Zelevinsky ('02) — ... — Loday ('04) — ...— Ceballos-Santos-Ziegler ('11)

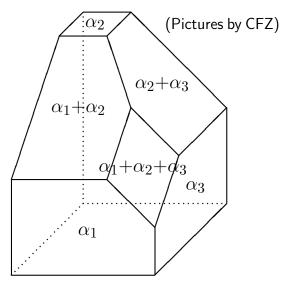
THREE FAMILIES OF REALIZATIONS



Gelfand-Kapranov-Zelevinsky ('94) Billera-Filliman-Sturmfels ('90)

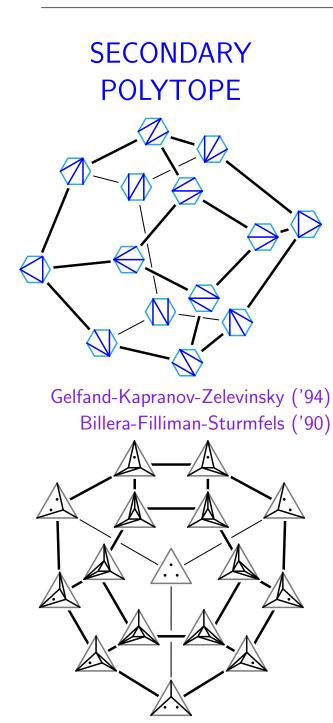


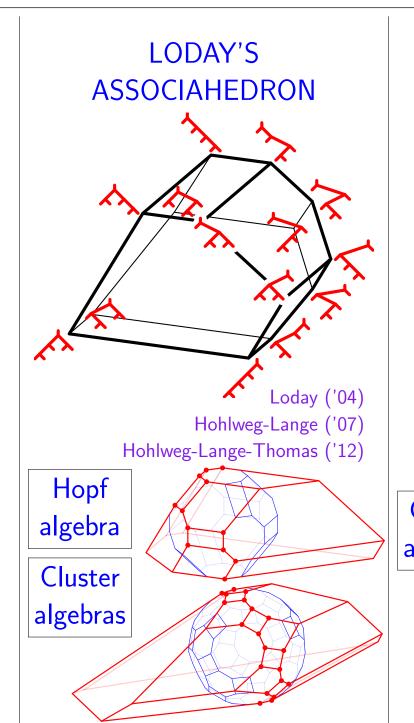
CHAP.-FOM.-ZEL.'S ASSOCIAHEDRON



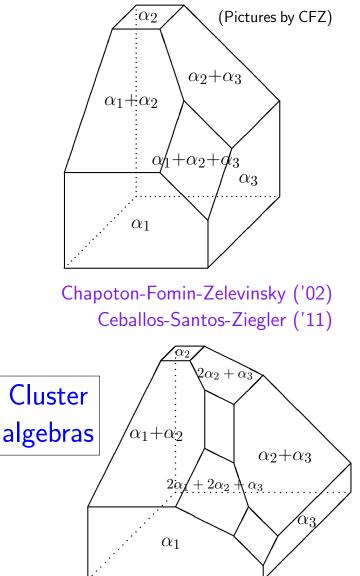
Chapoton-Fomin-Zelevinsky ('02) Ceballos-Santos-Ziegler ('11)

THREE FAMILIES OF REALIZATIONS





CHAP.-FOM.-ZEL.'S ASSOCIAHEDRON



GRAPH ASSOCIAHEDRA

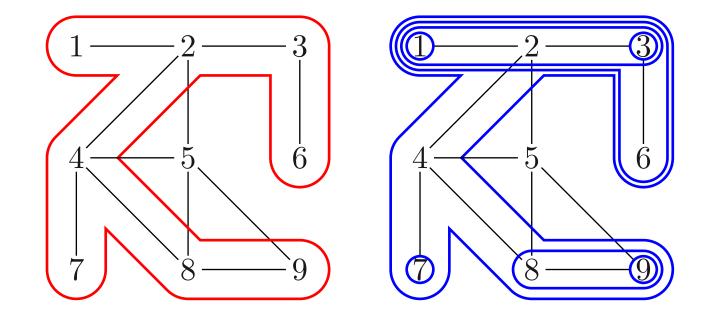
NESTED COMPLEX AND GRAPH ASSOCIAHEDRON

 ${\rm G}$ graph on ground set ${\rm V}$

Tube of $\mathrm{G}=$ connected induced subgraph of G

Compatible tubes = nested, or disjoint and non-adjacent

Tubing on G = collection of pairwise compatible tubes of G

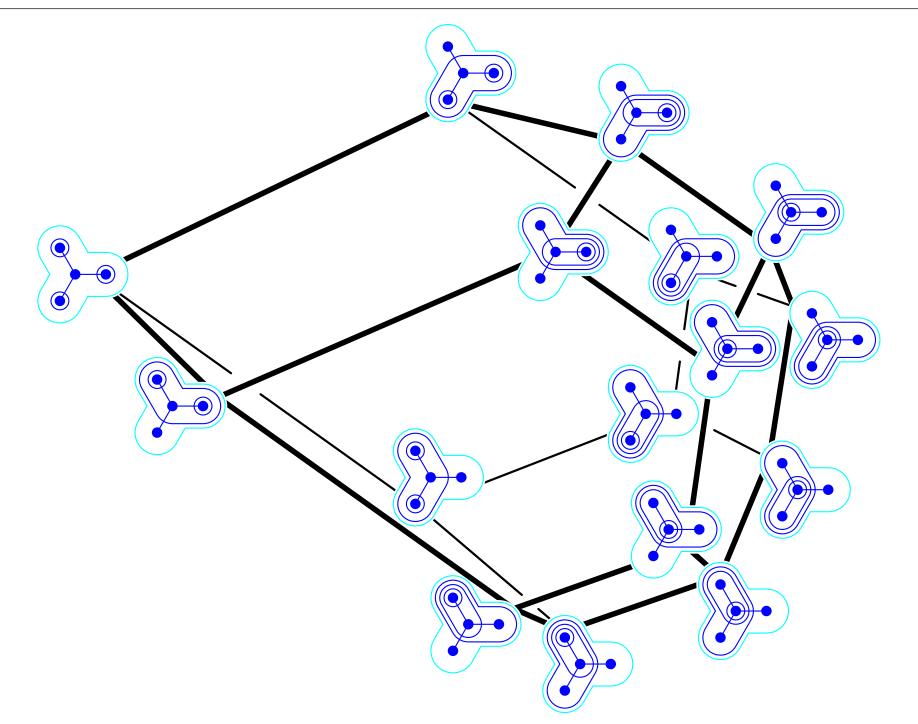


 $G\mbox{-}associahedron$ = polytopal realization of the nested complex on ${\rm G}$

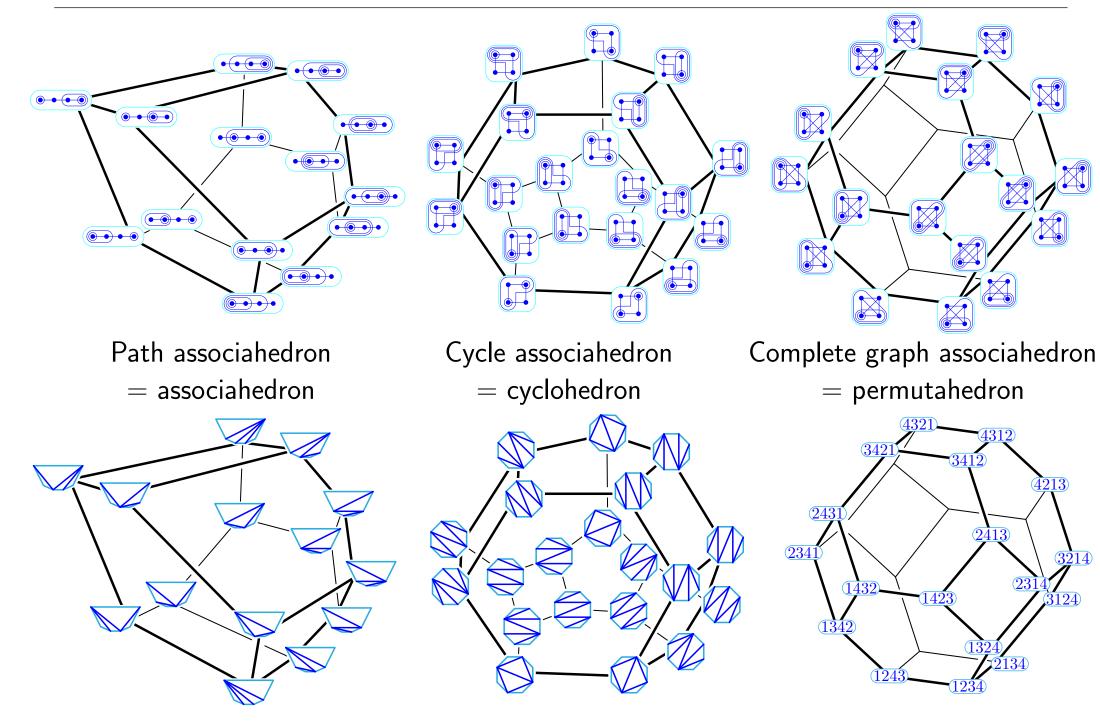
EXM: NESTED COMPLEX



EXM: GRAPH ASSOCIAHEDRON



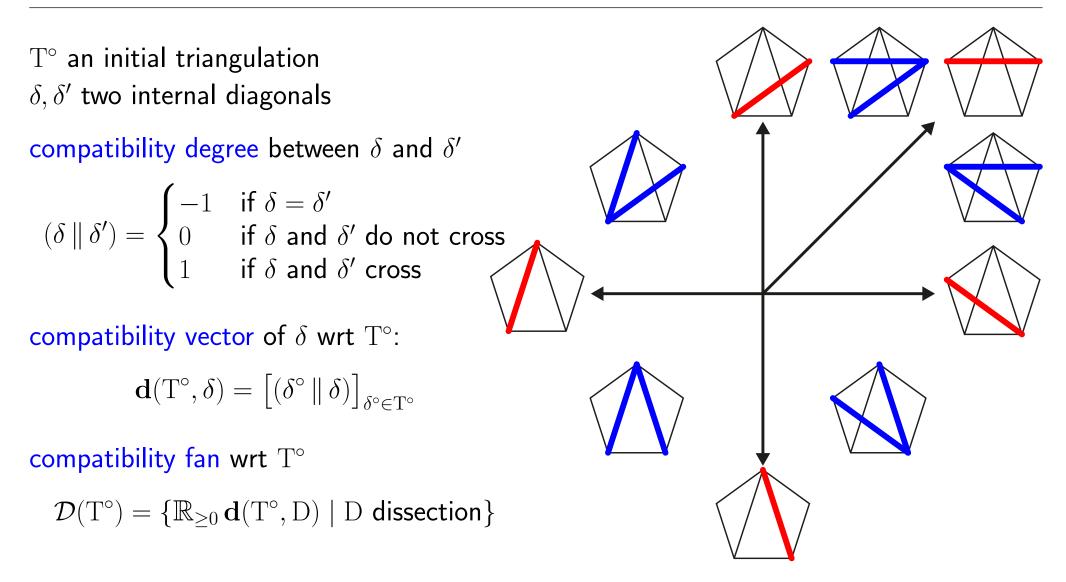
SPECIAL GRAPH ASSOCIAHEDRA



COMPATIBILITY FANS FOR GRAPHICAL NESTED COMPLEXES

Thibault Manneville & VP arXiv:1501.07152

COMPATIBILITY FANS FOR ASSOCIAHEDRA

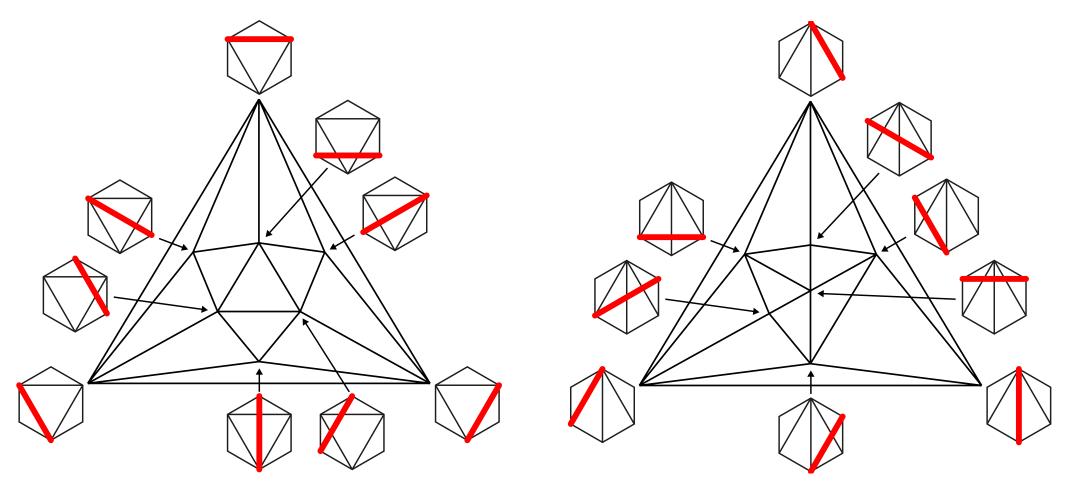


Fomin-Zelevinsky, Y-Systems and generalized associahedra ('03)

- Fomin-Zelevinsky, Cluster algebras II: Finite type classification ('03)
- Chapoton-Fomin-Zelevinsky, Polytopal realizations of generalized associahedra ('02)
- Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)

COMPATIBILITY FANS FOR ASSOCIAHEDRA

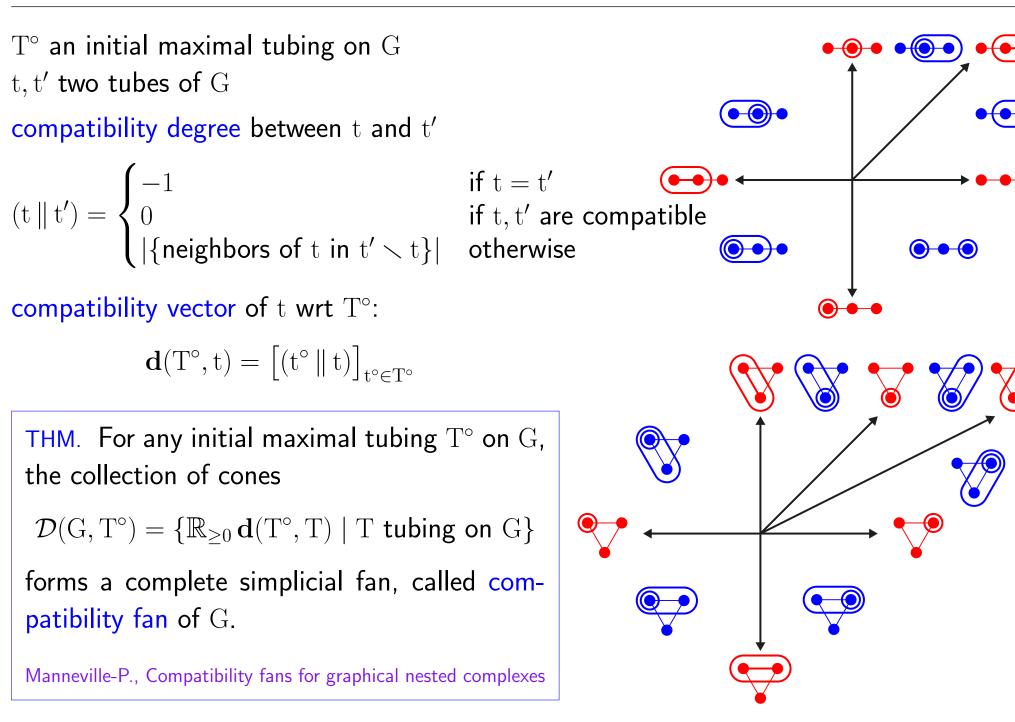
Different initial triangulations T° yield different realizations



THM. For any initial triangulation T° , the cones $\{\mathbb{R}_{\geq 0} \mathbf{d}(T^{\circ}, D) \mid D \text{ dissection}\}$ form a complete simplicial fan. Moreover, this fan is always polytopal.

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)

COMPATIBILITY FANS FOR GRAPHICAL NESTED COMPLEXES



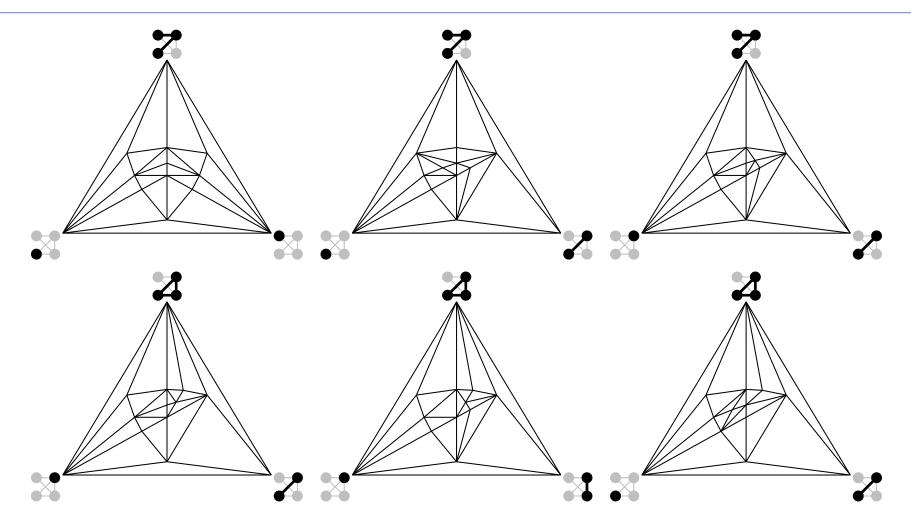
GRAPH CATALAN MANY SIMPLICIAL FAN REALIZATIONS

THM. When none of the connected components of ${\rm G}$ is a spider,

linear isomorphism classes of compatibility fans of ${
m G}$

= # orbits of maximal tubings on ${\rm G}$ under graph automorphisms of ${\rm G}.$

Manneville-P., Compatibility fans for graphical nested complexes



POLYTOPALITY?

QU. Are all compatibility fans polytopal?

POLYTOPALITY?

QU. Are all compatibility fans polytopal?

Polytopality of a complete simplicial fan \iff Feasibility of a linear program

Exm: We check that the compatibility fan on the complete graph K_7 is polytopal by solving a linear program on 126 variables and 17640 inequalities

QU. Are all compatibility fans polytopal?

Polytopality of a complete simplicial fan \iff Feasibility of a linear program

Exm: We check that the compatibility fan on the complete graph K_7 is polytopal by solving a linear program on 126 variables and 17640 inequalities

- \implies All compatibility fans on complete graphs of ≤ 7 vertices are polytopal...
- \implies All compatibility fans on graphs of ≤ 4 vertices are polytopal...

QU. Are all compatibility fans polytopal?

Polytopality of a complete simplicial fan \iff Feasibility of a linear program

Exm: We check that the compatibility fan on the complete graph K_7 is polytopal by solving a linear program on 126 variables and 17640 inequalities

- \implies All compatibility fans on complete graphs of ≤ 7 vertices are polytopal...
- \implies All compatibility fans on graphs of ≤ 4 vertices are polytopal...

To go further, we need to understand better the linear dependences between the compatibility vectors of the tubes involved in a flip

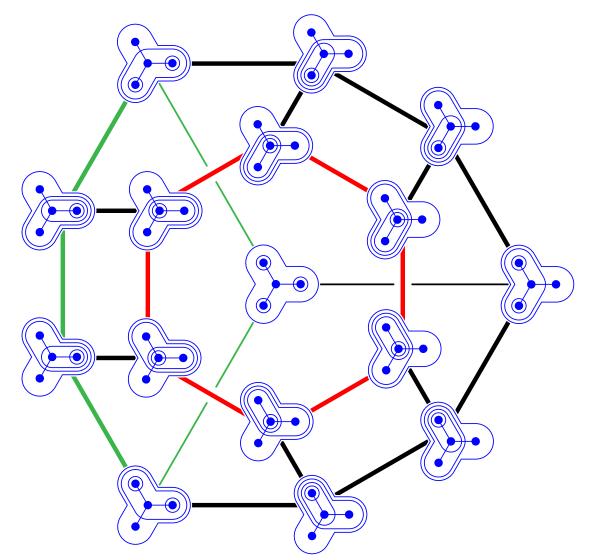
THM. All compatibility fans on the paths and cycles are polytopal

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11) Manneville-P., Compatibility fans for graphical nested complexes

POLYTOPALITY?

QU. Are all compatibility fans polytopal?

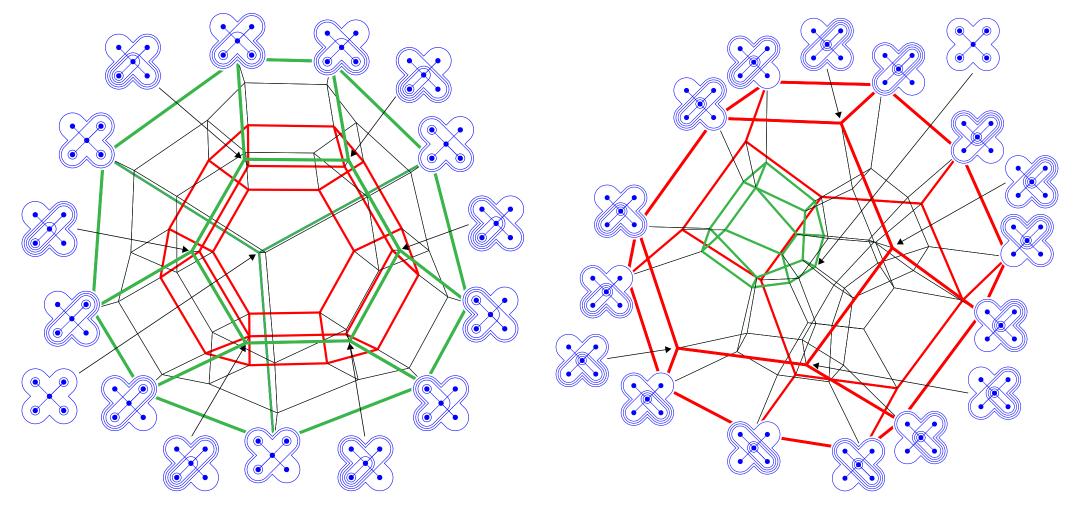
Remarkable realizations of the stellohedra



POLYTOPALITY?

QU. Are all compatibility fans polytopal?

Remarkable realizations of the stellohedra



Convex hull of the orbits under coordinate permutations of the set $\{\sum_{i>k} i \mathbf{e}_i \mid 0 \le k \le n\}$

SIGNED TREE ASSOCIAHEDRA

arXiv:1309.5222

LODAY'S ASSOCIAHEDRON

Asso(n) := conv {L(T) | T binary tree} =
$$\mathbb{H} \cap \bigcap_{1 \le i \le j \le n+1} \mathbb{H}^{\geq}(i, j)$$

L(T) := $\left[\ell(T, i) \cdot r(T, i)\right]_{i \in [n+1]}$ $\mathbb{H}^{\geq}(i, j) := \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \sum_{i \le k \le j} x_i \ge \binom{j-i+2}{2} \right\}$
Loday, Realization of the Stasheff polytope ('04)

LODAY'S ASSOCIAHEDRON

Asso(n) := conv {L(T) | T binary tree} =
$$\mathbb{H} \cap \bigcap_{1 \le i \le j \le n+1} \mathbb{H}^{\geq}(i, j)$$

L(T) := $\left[\ell(T, i) \cdot r(T, i)\right]_{i \in [n+1]}$ $\mathbb{H}^{\geq}(i, j) := \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \sum_{i \le k \le j} x_i \ge \binom{j-i+2}{2} \right\}$
Loday, Realization of the Stasheff polytope ('04)

• Asso(n) obtained by deleting inequalities in the facet description of the permutahedron

• normal cone of $\mathbf{L}(T)$ in $Asso(n) = \{ \mathbf{x} \in \mathbb{H} \mid x_i < x_j \text{ for all } i \to j \text{ in } T \}$

 $=\bigcup_{\sigma\in\mathcal{L}(\mathcal{T})}$ normal cone of σ in $\mathsf{Perm}(n)$

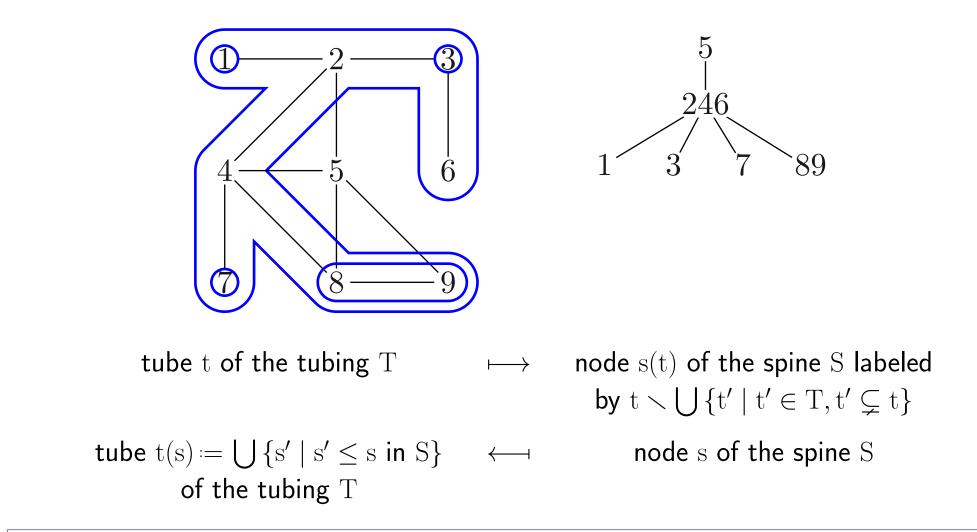
SPINES

spine of a tubing $\mathrm{T}=$ Hasse diagram of the inclusion poset of T



SPINES

spine of a tubing T = Hasse diagram of the inclusion poset of T



 $S \text{ spine on } G \iff \text{ for each node } s \text{ of } S \text{ with children } s_1 \dots s_k \text{, the tubes } t(s_1) \dots t(s_k)$ lie in distinct connected components of $G[t(s) \smallsetminus s]$

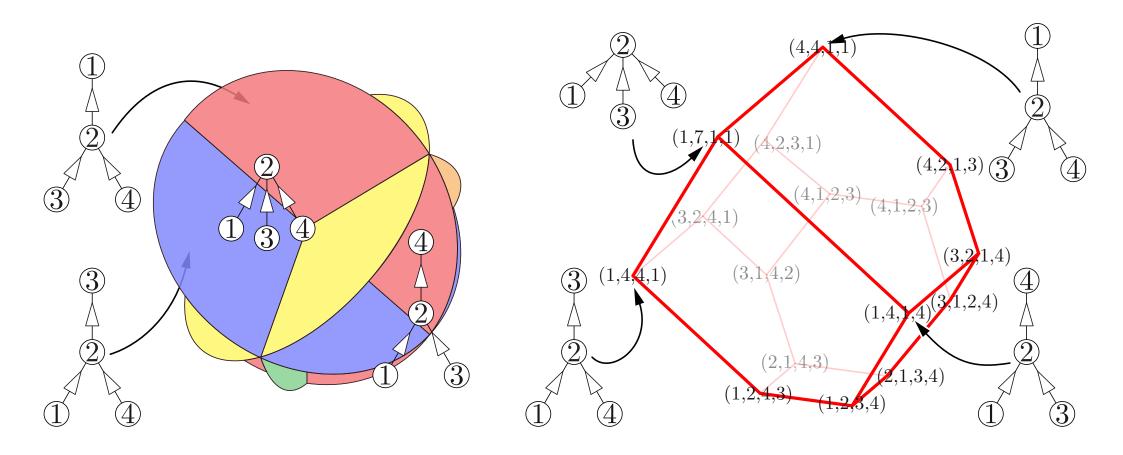
NESTED FANS AND GRAPH ASSOCIAHEDRA

THM. The collection of cones $\{ \{ \mathbf{x} \in \mathbb{H} \mid x_i < x_j \text{ for all } i \to j \text{ in } T \} \mid T \text{ tubing on } G \}$ forms a complete simplicial fan, called the nested fan of G. This fan is always polytopal.

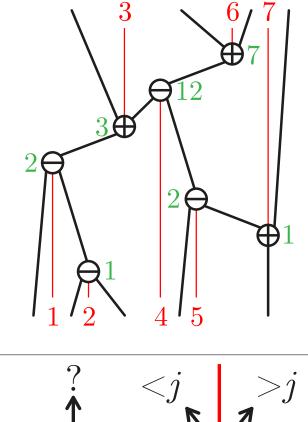
Carr-Devadoss, Coxeter complexes and graph associahedra ('06)

Postnikov, Permutohedra, associahedra, and beyond ('09)

Zelevinsky, Nested complexes and their polyhedral realizations ('06)

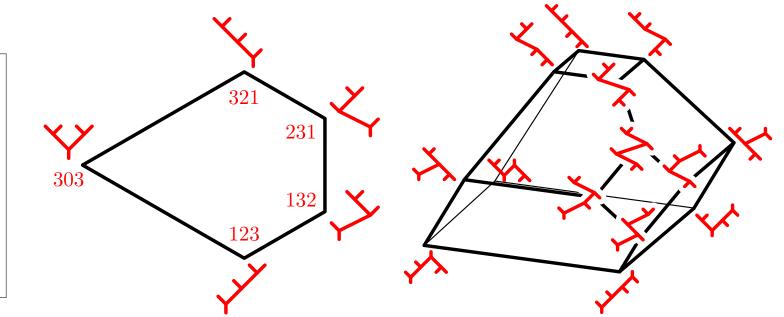


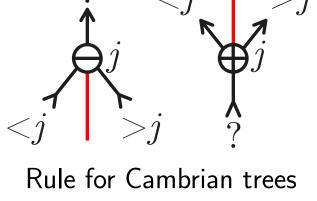
HOHLWEG-LANGE'S ASSOCIAHEDRA



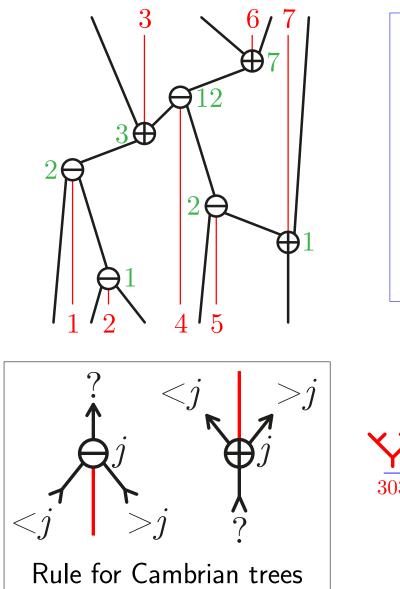
 $\begin{array}{ll} \mbox{for an arbitrary signature } \varepsilon \in \pm^{n+1}, \\ \mbox{Asso}(\varepsilon) &:= \ \mbox{conv} \left\{ \mathbf{HL}(\mathbf{T}) \mid \mathbf{T} \ \varepsilon\text{-Cambrian tree} \right\} \\ \mbox{with } \mathbf{HL}(\mathbf{T})_j &:= \begin{cases} \ensuremath{\ell}(\mathbf{T},j) \cdot r(\mathbf{T},j) & \mbox{if } \varepsilon(j) = - \\ \ensuremath{n+2} - \ensuremath{\ell}(\mathbf{T},j) \cdot r(\mathbf{T},j) & \mbox{if } \varepsilon(j) = + \end{cases} \end{array}$

Hohlweg-Lange, *Realizations of the associahedron and cyclohedron* ('07) Lange-P., *Using spines to revisit a construction of the associahedron* ('13⁺)



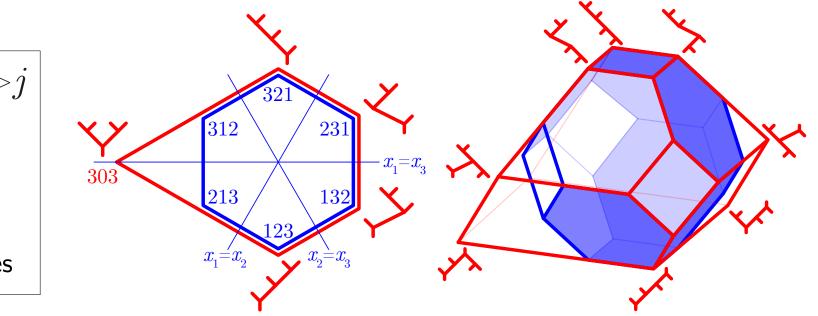


HOHLWEG-LANGE'S ASSOCIAHEDRA



 $\begin{array}{ll} \mbox{for an arbitrary signature } \varepsilon \in \pm^{n+1}, \\ \mbox{Asso}(\varepsilon) &:= \ \mbox{conv} \left\{ \mathbf{HL}(\mathbf{T}) \mid \mathbf{T} \ \varepsilon\text{-Cambrian tree} \right\} \\ \mbox{with } \mathbf{HL}(\mathbf{T})_j &:= \begin{cases} \ensuremath{\ell}(\mathbf{T},j) \cdot r(\mathbf{T},j) & \mbox{if } \varepsilon(j) = - \\ \ensuremath{n+2} - \ensuremath{\ell}(\mathbf{T},j) \cdot r(\mathbf{T},j) & \mbox{if } \varepsilon(j) = + \end{cases} \end{array}$

Hohlweg-Lange, *Realizations of the associahedron and cyclohedron* ('07) Lange-P., *Using spines to revisit a construction of the associahedron* ('13⁺)



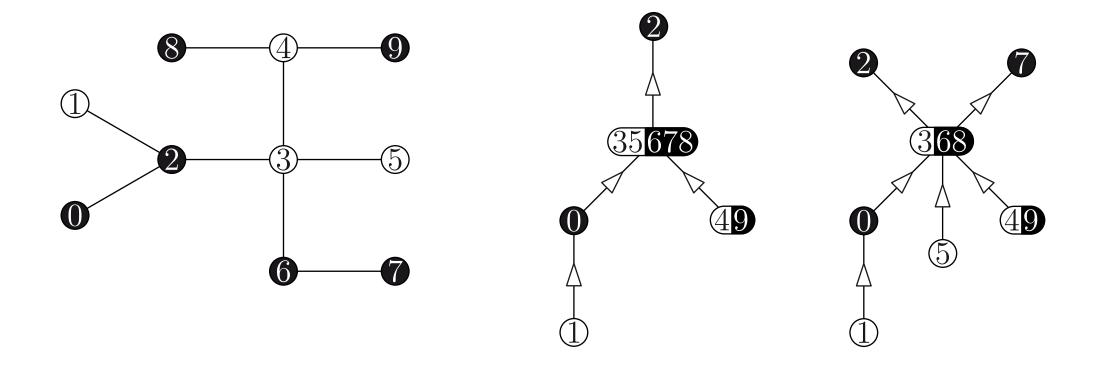
Asso(n) obtained by deleting inequalities in the facet description of the permutahedron
normal cone of HL(T) in Asso(ε) = {x ∈ H | x_i < x_j for all i → j in T}

SIGNED SPINES ON SIGNED TREES

T tree on the signed ground set $V = V^- \sqcup V^+$ (negative in white, positive in black)

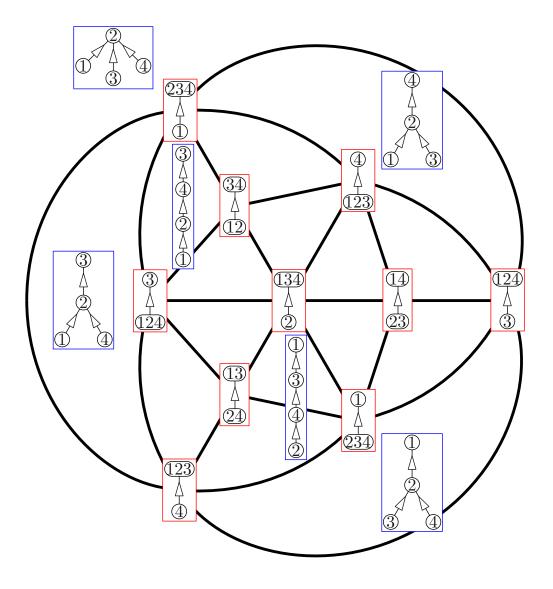
Signed spine on $\mathrm{T}=$ directed and labeled tree S st

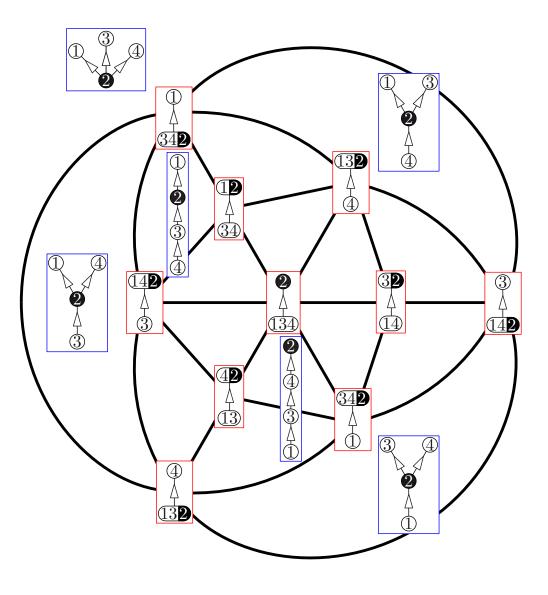
- (i) the labels of the nodes of $\rm S$ form a partition of the signed ground set $\rm V$
- (ii) at a node of S labeled by $U = U^- \sqcup U^+$, the source label sets of the different incoming arcs are subsets of distinct connected components of $T \smallsetminus U^-$, while the sink label sets of the different outgoing arcs are subsets of distinct connected components of $T \diagdown U^+$



SPINE COMPLEX

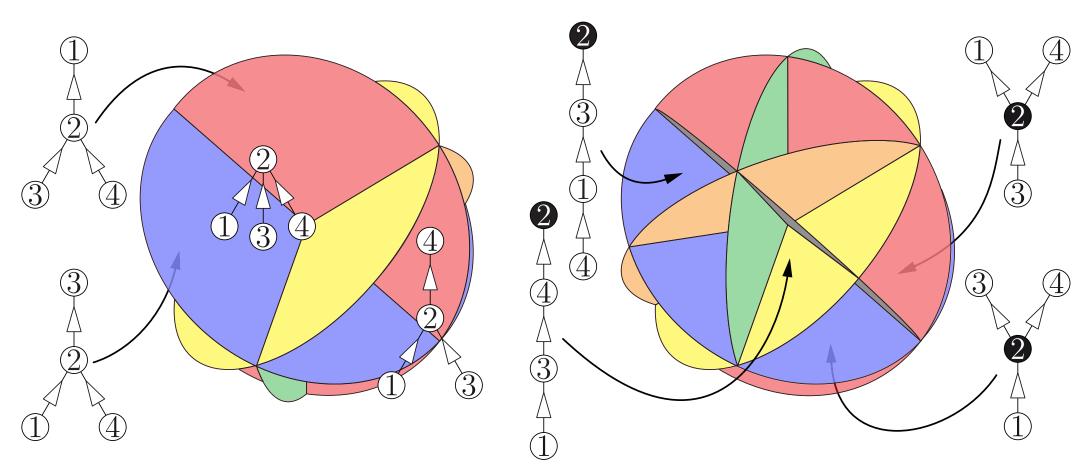
Signed spine complex S(T) = simplicial complex whose inclusion poset is isomorphic to the poset of edge contractions on the signed spines of T





SPINE FAN

For S spine on T, define $C(S) := \{ \mathbf{x} \in \mathbb{H} \mid x_u \leq x_v, \text{ for all arcs } u \to v \text{ in } S \}$



THEO. The collection of cones $\mathcal{F}(T) := \{C(S) \mid S \in \mathcal{S}(T)\}$ defines a complete simplicial fan on \mathbb{H} , which we call the spine fan

THM. The spine fan $\mathcal{F}(T)$ is the normal fan of the signed tree associahedron $\mathsf{Asso}(T)$, defined equivalently as

(i) the convex hull of the points

$$\mathbf{a}(\mathbf{S})_{v} = \begin{cases} \left| \left\{ \pi \in \Pi(\mathbf{S}) \mid v \in \pi \text{ and } r_{v} \notin \pi \right\} \right| & \text{if } v \in \mathbf{V}^{-} \\ \left| \mathbf{V} \right| + 1 - \left| \left\{ \pi \in \Pi(\mathbf{S}) \mid v \in \pi \text{ and } r_{v} \notin \pi \right\} \right| & \text{if } v \in \mathbf{V}^{+} \end{cases}$$

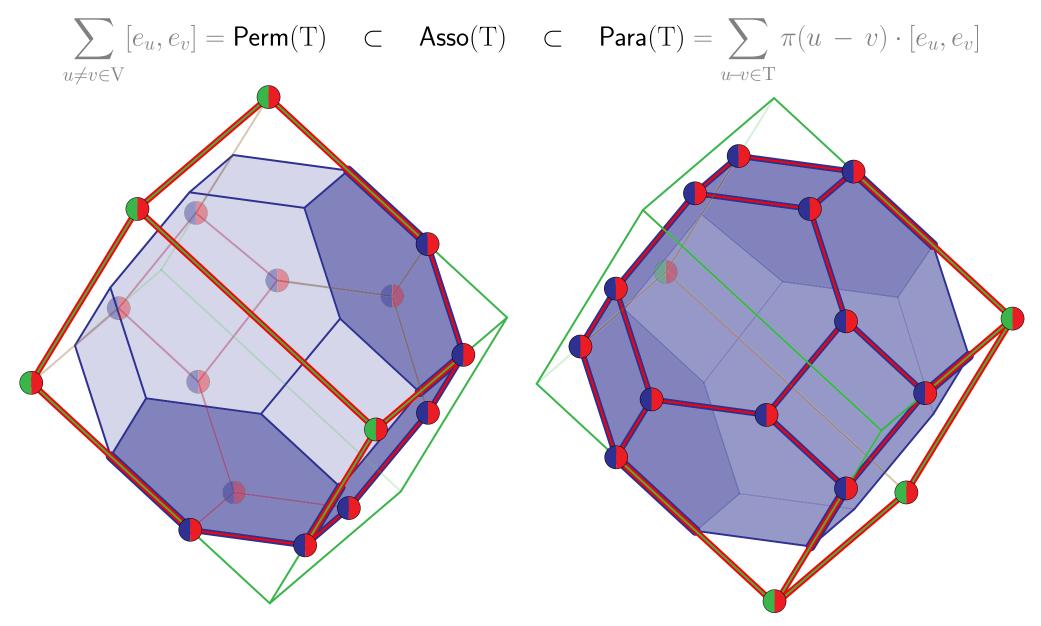
for all maximal signed spines $S \in \boldsymbol{\mathcal{S}}(T)$

(ii) the intersection of the hyperplane $\mathbb H$ with the half-spaces

$$\mathbf{H}^{\geq}(B) \coloneqq \left\{ \mathbf{x} \in \mathbb{R}^{\mathsf{V}} \mid \sum_{v \in B} x_v \ge \binom{|B|+1}{2} \right\}$$

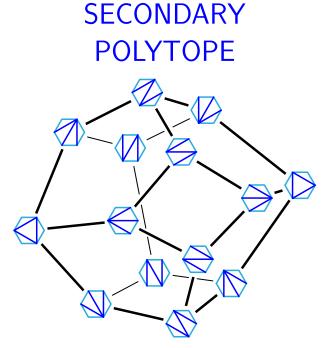
for all signed building blocks $B \in \mathcal{B}(T)$

The signed tree associahedron $\mathsf{Asso}(T)$ is sandwiched between the permutahedron $\mathsf{Perm}(V)$ and the parallelepiped $\mathsf{Para}(T)$

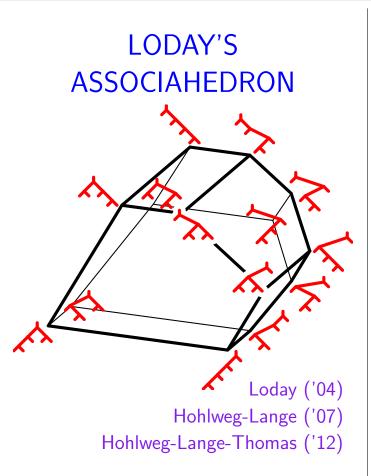


WHAT SHOULD I TAKE HOME FROM THIS TALK?

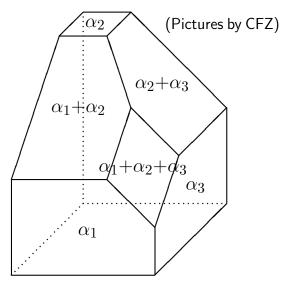
THREE FAMILIES OF REALIZATIONS



Gelfand-Kapranov-Zelevinsky ('94) Billera-Filliman-Sturmfels ('90)

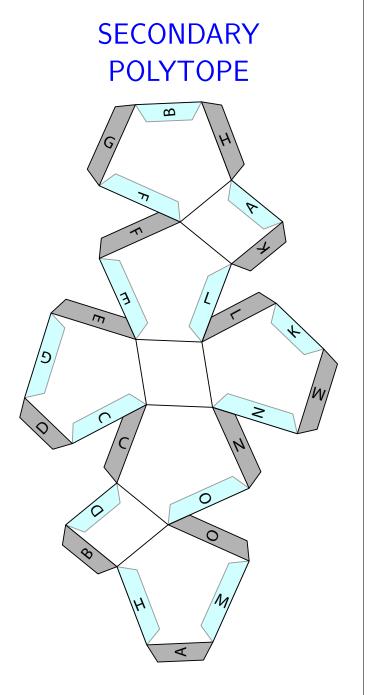


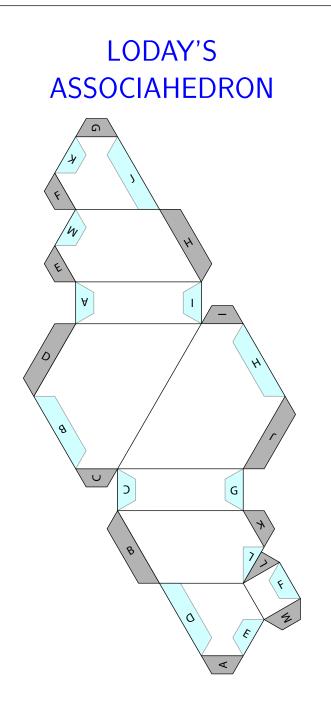
CHAP.-FOM.-ZEL.'S ASSOCIAHEDRON



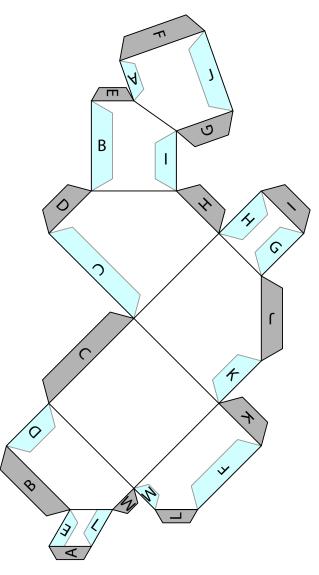
Chapoton-Fomin-Zelevinsky ('02) Ceballos-Santos-Ziegler ('11)

TAKE HOME YOUR ASSOCIAHEDRA!

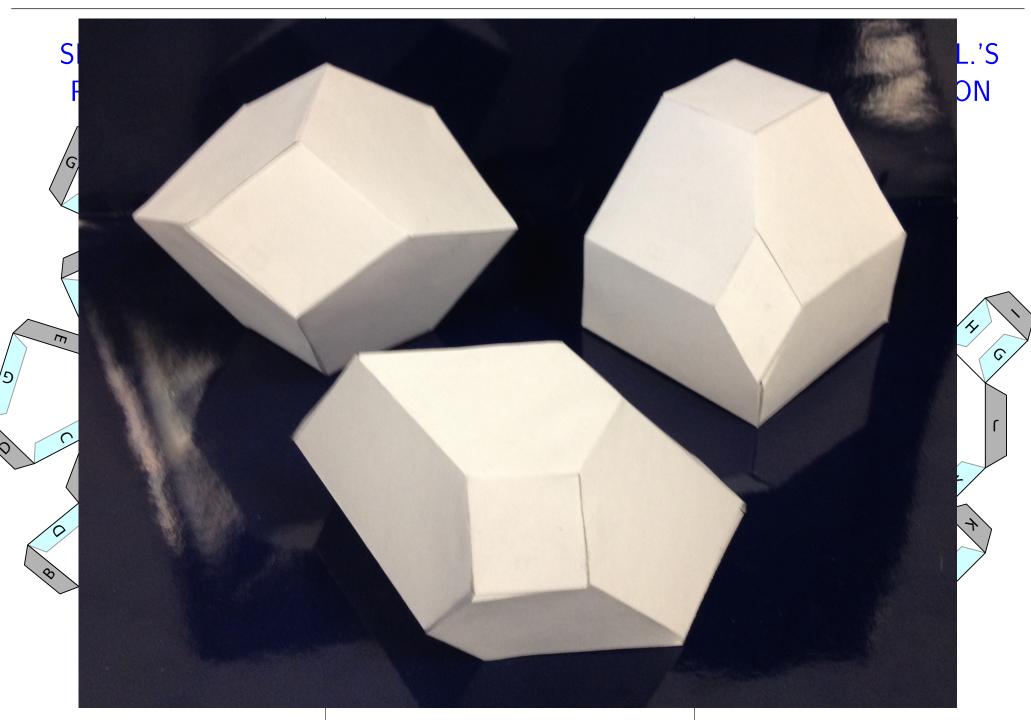




CHAP.-FOM.-ZEL.'S ASSOCIAHEDRON

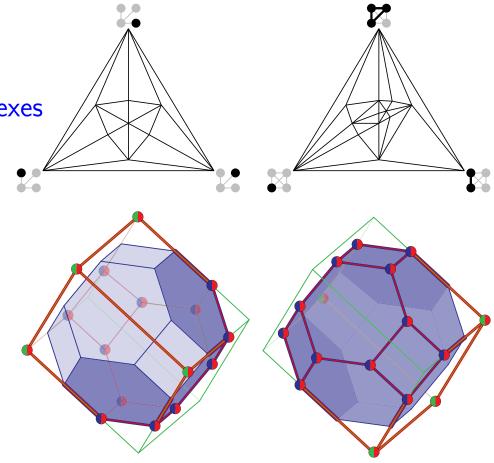


TAKE HOME YOUR ASSOCIAHEDRA!

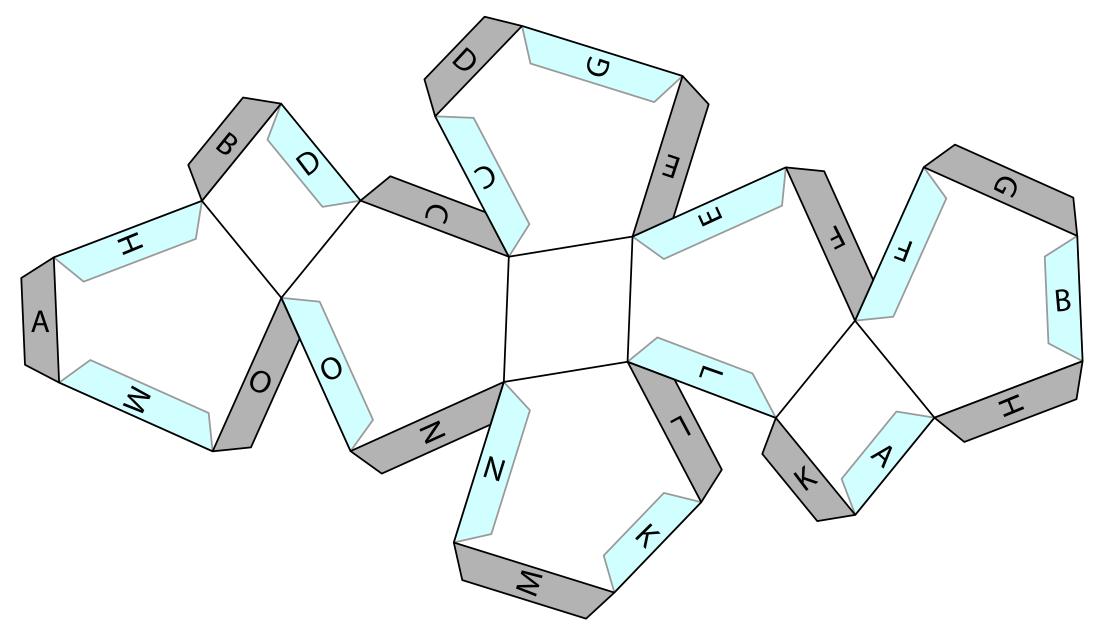


Thibault Manneville & VP Compatibility fans for graphical nested complexes arXiv:1501.07152

VP Signed tree associahedra arXiv:1309.5222

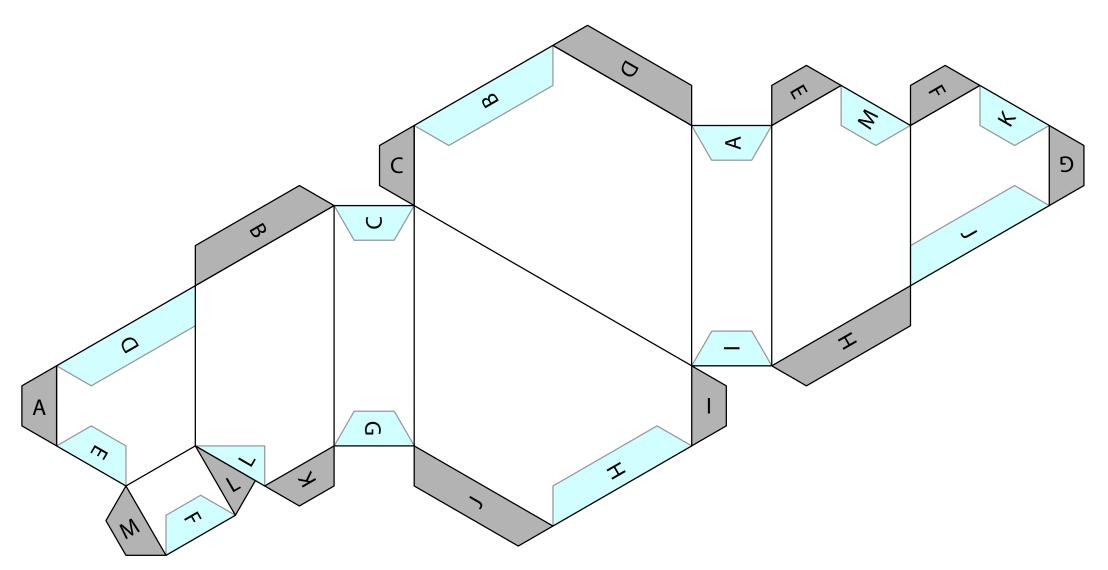


THANK YOU



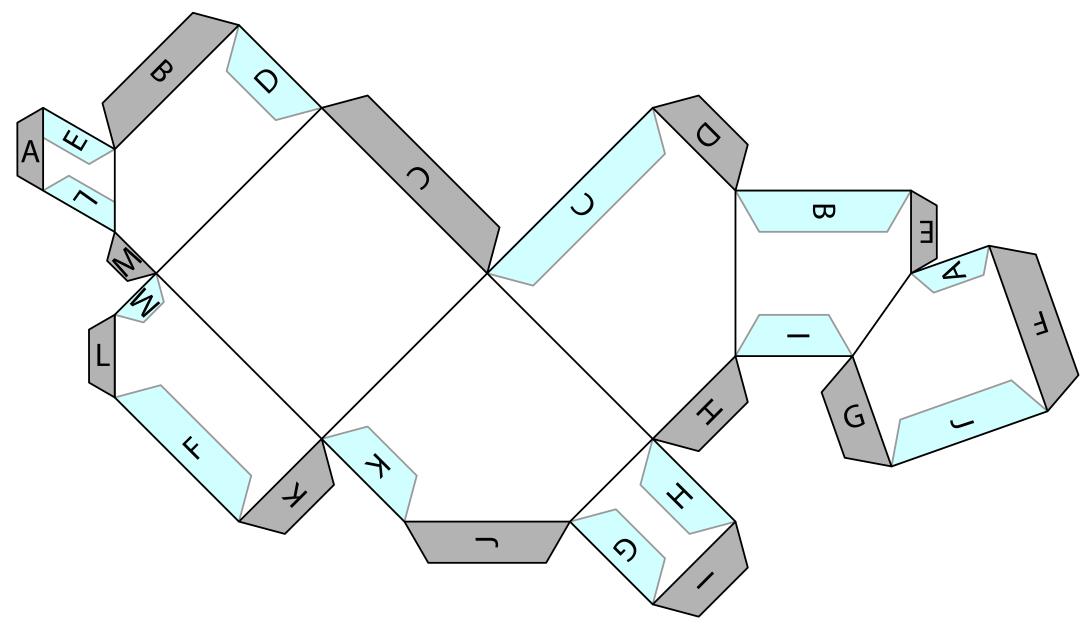
SECONDARY POLYTOPE

Gelfand-Kapranov-Zelevinsky ('94) Billera-Filliman-Sturmfels ('90)



LODAY'S ASSOCIAHEDRON

Loday ('04) Hohlweg-Lange ('07) Hohlweg-Lange-Thomas ('12)



CHAPOTON-FOMIN-ZELEVINSKY'S ASSOCIAHEDRON

Chapoton-Fomin-Zelevinsky ('02) Ceballos-Santos-Ziegler ('11)