

Vincent PILAUD

(CNRS \& École Polytechnique)
Michel POCCHIOLA (Université Paris 6)

Christian STUMP
(Freie Universität Berlin)
Francisco SANTOS
(Universidad de Cantabria)

POLYTOPES WITH PRESCRIBED COMBINATORICS

polytope $=$ convex hull of a finite set of \mathbb{R}^{d}
$=$ bounded intersection of finitely many half-spaces face $=$ intersection with a supporting hyperplane face lattice $=$ all the faces with their inclusion relations

Given a set of points, determine the face lattice of its convex hull.

Given a lattice, is there a polytope which realizes it?

POLYTOPES OF DIMENSION ≥ 4

Polytopes of dimension $3 \longleftrightarrow$ planar 3-connected graphs

Various open conjectures in dimension 4:

Hirsch conjecture

 diameter $\leq \#$ facets - dimensioncomplexity of the simplex algorithm
3^{d} Conjecture (Kalai)
f-vecteur shape (Barany, Ziegler)

Prismatoïdes
"Our main limits in understanding the combinatorial structure of polytopes still lie in our ability to raise the good questions and in the lack of examples, methods of constructing them, and means of classifying them." Kalai. Handbook of Discrete and Computational Geometry, 2004.

PERMUTAHEDRON
$\Pi_{n}=\operatorname{conv}\left\{(\sigma(1), \ldots, \sigma(n))^{T} \mid \sigma \in \mathfrak{S}_{n}\right\}$
$\partial \Pi_{n}=$ refinement poset on ordered partitions of $[n]$

SECONDARY POLYTOPE

$\Sigma(P)=\operatorname{conv}\left\{\sum_{p \in P} \operatorname{vol}(T, p) e_{p} \mid T\right.$ triang. $\left.P\right\}$
$\partial \Sigma(P)=$ refinement poset on regular polyhedral subdivisions of P

Triangulations

are non-regular

J. Humphreys, Reflection groups and Coxeter groups, 1990.

FINITE COXETER GROUPS
$W=$ finite Coxeter group

FINITE COXETER GROUPS
$W=$ finite Coxeter group
Coxeter fan

FINITE COXETER GROUPS

$W=$ finite Coxeter group Coxeter fan fundamental chamber

FINITE COXETER GROUPS

$W=$ finite Coxeter group
Coxeter fan fundamental chamber $S=$ simple reflections

FINITE COXETER GROUPS

$W=$ finite Coxeter group
Coxeter fan fundamental chamber $S=$ simple reflections $\Delta=\left\{\alpha_{s} \mid s \in S\right\}=$ simple roots

FINITE COXETER GROUPS

$W=$ finite Coxeter group
Coxeter fan
fundamental chamber
$S=$ simple reflections
$\Delta=\left\{\alpha_{s} \mid s \in S\right\}=$ simple roots
$\Phi=W(\Delta)=$ root system

FINITE COXETER GROUPS

$W=$ finite Coxeter group
Coxeter fan
fundamental chamber
$S=$ simple reflections
$\Delta=\left\{\alpha_{s} \mid s \in S\right\}=$ simple roots
$\Phi=W(\Delta)=$ root system
$\Phi^{+}=\Phi \cap \mathbb{R}_{\geq 0}[\Delta]=$ positive roots

FINITE COXETER GROUPS

$W=$ finite Coxeter group
Coxeter fan fundamental chamber $S=$ simple reflections
$\Delta=\left\{\alpha_{s} \mid s \in S\right\}=$ simple roots
$\Phi=W(\Delta)=$ root system
$\Phi^{+}=\Phi \cap \mathbb{R}_{\geq 0}[\Delta]=$ positive roots
$\nabla=\left\{\omega_{s} \mid s \in S\right\}=$ fundamental weights

FINITE COXETER GROUPS

$W=$ finite Coxeter group Coxeter fan fundamental chamber $S=$ simple reflections
$\Delta=\left\{\alpha_{s} \mid s \in S\right\}=$ simple roots
$\Phi=W(\Delta)=$ root system
$\Phi^{+}=\Phi \cap \mathbb{R}_{\geq 0}[\Delta]=$ positive roots
$\nabla=\left\{\omega_{s} \mid s \in S\right\}=$ fundamental weights

FINITE COXETER GROUPS

$W=$ finite Coxeter group
Coxeter fan
fundamental chamber
$S=$ simple reflections
$\Delta=\left\{\alpha_{s} \mid s \in S\right\}=$ simple roots
$\Phi=W(\Delta)=$ root system
$\Phi^{+}=\Phi \cap \mathbb{R}_{\geq 0}[\Delta]=$ positive roots
$\nabla=\left\{\omega_{s} \mid s \in S\right\}=$ fundamental weights permutahedron

FINITE COXETER GROUPS

$W=$ finite Coxeter group
Coxeter fan
fundamental chamber $S=$ simple reflections
$\Delta=\left\{\alpha_{s} \mid s \in S\right\}=$ simple roots
$\Phi=W(\Delta)=$ root system
$\Phi^{+}=\Phi \cap \mathbb{R}_{\geq 0}[\Delta]=$ positive roots
$\nabla=\left\{\omega_{s} \mid s \in S\right\}=$ fundamental weights permutahedron

TYPE $A_{n}=$ symmetric group \mathfrak{S}_{n+1}

$$
\begin{aligned}
S & =\{(i, i+1) \mid i \in[n]\} \\
\Delta & =\left\{e_{i+1}-e_{i} \mid i \in[n]\right\} \\
\text { roots } & =\left\{e_{i}-e_{j} \mid i, j \in[n+1]\right\} \\
\nabla & =\left\{\sum_{j>i} e_{j} \mid i \in[n]\right\}
\end{aligned}
$$

TYPE $B_{n}=$ semidirect product $\mathfrak{S}_{n} \rtimes\left(\mathbb{Z}_{2}\right)^{n}$

$$
\begin{gathered}
\qquad=\{(i, i+1) \mid i \in[n-1]\} \cup\{\chi\} \\
\Delta=\left\{e_{i+1}-e_{i} \mid i \in[n-1]\right\} \cup\left\{e_{1}\right\} \\
\text { roots }=\left\{ \pm e_{i} \pm e_{j} \mid i, j \in[n]\right\} \cup\left\{ \pm e_{i} \mid i \in[n]\right\} \\
\nabla=\left\{\sum_{j \geq i} e_{j} \mid i \in[n]\right\}
\end{gathered}
$$

SUBWORD COMPLEX

(W, S) a finite Coxeter system, $\mathrm{Q}=q_{1} q_{2} \cdots q_{m}$ a word on S, ρ an element of W.
Subword complex $\mathcal{S}(\mathrm{Q}, \rho)=$ simplicial complex of subsets of positions of Q whose complement contains a reduced expression of ρ.
A. Knutson \& E. Miller, Subword complexes in Coxeter groups, 2004.

$a b a b a \quad a b a b a \quad a b a b a$
 $a b a b a$ $a b a b a$
 $a b a b a$

$W=\mathfrak{S}_{3}$
$S=\left\{(12),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}=\{a, b\}$
$\mathrm{Q}=a b a b a$
$\rho=a b a=b a b$

$a b a b a$

The subword complex is either a sphere (when the Demazure product of Q is ρ) or a ball.

ababa

QUESTION. Are all spherical subword complexes polytopal?

TYPE A : PRIMITIVE SORTING NETWORKS

Classical situation of type A :

- Coxeter group $W=\mathfrak{S}_{n+1}$
- simple system $S=\left\{\tau_{i} \mid i \in[n]\right\}$, where $\tau_{i}=(i \quad i+1)$
- word $\mathrm{Q}=q_{1} q_{2} \cdots q_{m}$ on S
- w element of W

The subword complex can be interpreted with a primitive sorting network:

- \mathcal{N}_{Q} formed by $n+1$ levels and m commutators
- facets of $\mathcal{S}(\mathrm{Q}, w) \quad \longleftrightarrow$ pseudoline arrangements on \mathcal{N}_{Q}

FLIPS

flip $=$ exchange a contact with the corresponding crossing

FLIPS

flip $=$ exchange a contact with the corresponding crossing

COMBINATORIAL MODELS FOR GEOMETRIC GRAPHS

Type A subword complexes give combinatorial models for:

triangulations
of convex polygons

multitriangulations of convex polygons
pseudotriangulations of point sets in general position

pseudotriangulations of sets of disjoint convex bodies

VP \& M. Pocchiola, Pseudotriangulations, multitriangulations, and primitive sorting networks, 2012.
C. Stump, A new perspective on multitriangulations, 2011.

THREE GEOMETRIC STRUCTURES

Triangulations

Pseudotriangulations

Multitriangulations

triangulation $=$ maximal crossing-free set of edges
pseudotriangulation $=$ maximal crossing-free pointed set of edges

$$
k \text {-triangulation }=\text { maximal }(k+1) \text {-crossing-free set of edges }
$$

THREE GEOMETRIC STRUCTURES

Triangulations

Pseudotriangulations

Multitriangulations

triangulation $=$ maximal crossing-free set of edges
pseudotriangulation $=$ maximal crossing-free pointed set of edges

$$
k \text {-triangulation }=\text { maximal }(k+1) \text {-crossing-free set of edges }
$$

THREE GEOMETRIC STRUCTURES

Triangulations

Pseudotriangulations

Multitriangulations

triangulation $=$ maximal crossing-free set of edges $=$ decomposition into triangles
pseudotriangulation $=$ maximal crossing-free pointed set of edges $=$ decomposition into pseudotriangles
k-triangulation $=$ maximal $(k+1)$-crossing-free set of edges $=$ decomposition into k-stars

THREE GEOMETRIC STRUCTURES

Triangulations

Pseudotriangulations

Multitriangulations

flip $=$ exchange an internal edge with the common bisector of the two adjacent cells

THREE GEOMETRIC STRUCTURES

VP \& M. Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks, 2012.

DUALITY

DUALITY

Triangulations
Pseudotriangulations
Multitriangulations

30

${ }^{\circ} 8$ 30

03

 $k=2$

DUALITY

Triangulations

Pseudotriangulations

Multitriangulations

30
$k=2$

DUALITY

DUALITY

Triangulations

${ }_{0}$
$3 \circ$
2°

- 8

Pseudotriangulations

8
8 - 7
.7

6
4
2°

$$
\text { ○ } 3
$$

Multitriangulations
${ }_{0}$

5
.6
$\stackrel{\rightharpoonup}{5}$

$3 \circ$

$$
{ }^{\circ}{ }_{1}
$$

2°

Triangulations

Pseudotriangulations

Multitriangulations

DUALITY

Triangulations
Pseudotriangulations
Multitriangulations

DUALITY

Triangulations
Pseudotriangulations
Multitriangulations

DUALITY

Triangulations

Pseudotriangulations

DUALITY

DUALITY

DUALITY

DUALITY

DUALITY

DUALITY

Triangulations

DUALITY

Triangulations
Pseudotriangulations
Multitriangulations

DUALITY

Triangulations

Pseudotriangulations
Multitriangulations

VP \& M. Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks, 2012.

DUALITY

Triangulations

Pseudotriangulations

Multitriangulations

CENTRALLY SYMMETRIC GEOMETRIC GRAPHS

Type B subword complexes give models for centrally symmetric triangulations:

CENTRALLY SYMMETRIC GEOMETRIC GRAPHS

Type B subword complexes give models for centrally symmetric triangulations:

C. Ceballos, JP. Labbé \& C. Stump, Subword complexes, cluster complexes, \& gener. multiassoc., 2011. VP \& C. Stump, Brick polytopes of spherical subword complexes, 2012+ .

For a facet I of $\mathcal{S}(\mathrm{Q}, \rho)$ and a position $k \in[m]$, define the root $\mathrm{r}(I, k)=\mathrm{Q}_{[k-1] \backslash I}\left(\alpha_{q_{k}}\right)$, where $\mathrm{Q}_{[k-1] \backslash I}$ is the product of all reflections q_{j} for j from 1 to $k-1$ but not in I.

The root function of the facet I is $r(I, \cdot):[m] \longrightarrow \Phi$
The root configuration of I is $\mathrm{R}(I)=\{\mathrm{r}(I, i) \mid i \in I\}$

ROOT FUNCTION \& FLIPS

PROPOSITION. The root function encodes flips in subword complexes:

1. The map $\mathrm{r}(I, \cdot)$ is a bijection from the complement of I to $\operatorname{inv}(\rho)$.
2. If I and J are two adjacent facets of $\mathcal{S}(\mathrm{Q})$ with $I \backslash i=J \backslash j$, then j is the unique position in the complement of I such that $\mathrm{r}(I, i)= \pm \mathrm{r}(I, j)$.
3. In the situation of 2 , the root function of J is obtained from that of I by

$$
\mathrm{r}(J, k)= \begin{cases}s_{\mathrm{r}(I, i)}(\mathrm{r}(I, k)) & \text { if } \min (i, j)<k \leq \max (i, j), \\ \mathrm{r}(I, k) & \text { otherwise }\end{cases}
$$

C. Ceballos, JP. Labbé \& C. Stump, Subword complexes, cluster complexes, \& gener. multiassoc., 2011.

VP \& F. Santos, The brick polytope of a sorting network, 2012.
VP \& C. Stump, Brick polytopes of spherical subword complexes, 2012+.

BRICK POLYTOPE

\mathcal{N} a sorting network with $n+1$ levels

BRICK POLYTOPE

\mathcal{N} a sorting network with $n+1$ levels
Λ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $\mathrm{B}(\Lambda) \in \mathbb{R}^{n+1}$

BRICK POLYTOPE

\mathcal{N} a sorting network with $n+1$ levels
Λ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $\mathrm{B}(\Lambda) \in \mathbb{R}^{n+1}$ $\mathrm{B}(\Lambda)_{j}=$ number of bricks of \mathcal{N} below the j th pseudoline of Λ

BRICK POLYTOPE

\mathcal{N} a sorting network with $n+1$ levels
Λ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $\mathrm{B}(\Lambda) \in \mathbb{R}^{n+1}$ $\mathrm{B}(\Lambda)_{j}=$ number of bricks of \mathcal{N} below the j th pseudoline of Λ

BRICK POLYTOPE

\mathcal{N} a sorting network with $n+1$ levels
Λ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $\mathrm{B}(\Lambda) \in \mathbb{R}^{n+1}$ $\mathrm{B}(\Lambda)_{j}=$ number of bricks of \mathcal{N} below the j th pseudoline of Λ

BRICK POLYTOPE

\mathcal{N} a sorting network with $n+1$ levels
Λ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $\mathrm{B}(\Lambda) \in \mathbb{R}^{n+1}$ $\mathrm{B}(\Lambda)_{j}=$ number of bricks of \mathcal{N} below the j th pseudoline of Λ

BRICK POLYTOPE

\mathcal{N} a sorting network with $n+1$ levels
Λ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $\mathrm{B}(\Lambda) \in \mathbb{R}^{n+1}$ $\mathrm{B}(\Lambda)_{j}=$ number of bricks of \mathcal{N} below the j th pseudoline of Λ
Brick polytope $\mathcal{B}(\mathcal{N})=\operatorname{conv}\{\mathrm{B}(\Lambda) \mid \Lambda$ pseudoline arrangement supported by $\mathcal{N}\}$

BRICK POLYTOPE

WEIGHT FUNCTION, BRICK VECTOR \& BRICK POLYTOPE

(W, S) a finite Coxeter system, $\mathrm{Q}=q_{1} q_{2} \cdots q_{m}$ a word on S, w_{\circ} longest element of W. $\mathcal{S}(\mathrm{Q})=\mathcal{S}\left(\mathrm{Q}, w_{\circ}\right)$ spherical subword complex.

To a facet I of $\mathcal{S}(\mathrm{Q})$ and a position $k \in[m]$, associate a weight $\mathbf{w}(I, k)=\mathrm{Q}_{[k-1] \backslash I}\left(\omega_{q_{k}}\right)$, where $\mathrm{Q}_{[k-1] \backslash I}$ is the product of all reflections q_{j} for j from 1 to $k-1$ but not in I.
The brick vector of I is the vector $\mathrm{B}(I)=\sum_{k \in[m]} \mathrm{w}(I, k)$.
The brick polytope is the convex polytope $\mathcal{B}(\mathrm{Q})=\operatorname{conv}\{\mathrm{B}(I) \mid I$ facet of $\mathcal{S}(\mathrm{Q})\}$.

In type $A, \mathrm{w}(I, k)=$ characteristic vector of the pseudolines passing above the k th brick.
$\mathrm{B}(I)=$ (number of bricks below the j th pseudoline of $I)_{j \in[n+1]}$

BRICK VECTORS AND FLIPS

If Λ and Λ^{\prime} are two pseudoline arrangements supported by \mathcal{N} and related by aflip between their i th and j th pseudolines, then $\mathrm{B}(\Lambda)-\mathrm{B}\left(\Lambda^{\prime}\right) \in \mathbb{N}_{>0}\left(e_{j}-e_{i}\right)$.

THEOREM. The cone of the brick polytope $\mathcal{B}(\mathrm{Q})$ at the brick vector $\mathrm{B}(I)$ is generated by $-\mathrm{R}(I)$, for any facet I of $\mathcal{S}(\mathrm{Q})$.

BRICK POLYTOPE

The brick polytope is the convex polytope $\mathcal{B}(\mathrm{Q})=\operatorname{conv}\{\mathrm{B}(I) \mid I$ facet of $\mathcal{S}(\mathrm{Q})\}$.
THEOREM. The polar of the brick polytope $\mathcal{B}(\mathrm{Q})$ realizes the subword complex $\mathcal{S}(\mathrm{Q})$ $\Longleftrightarrow \mathrm{Q}$ is such that $\mathrm{R}(I)$ is linearly independent, for I facet of $\mathcal{S}(\mathrm{Q})$.

THEOREM. If Q is realizing, the cone of the brick polytope $\mathcal{B}(\mathrm{Q})$ at the brick vector $\mathrm{B}(I)$ is generated by $-\mathrm{R}(I)$, for any facet I of $\mathcal{S}(\mathrm{Q})$.

THEOREM. If Q is realizing, the Coxeter fan refines the normal fan of the brick polytope. More precisely,

$$
\text { normal cone of } \mathrm{B}(I) \text { in } \mathcal{B}(\mathrm{Q})=\bigcup_{\substack{w \in W \\ \mathrm{R}(I) \subset w\left(\Phi^{+}\right)}} w(\text { fundamental cone }) \text {. }
$$

THEOREM. If Q is realizing, the Coxeter fan refines the normal fan of the brick polytope.

REMEMBER THE RIGHT WEAK ORDER

INCREASING FLIP GRAPH

I, J two adjacent facets of $\mathcal{S}(\mathrm{Q})$, with $I \backslash i=J \backslash j$.
The flip from I to J is increasing if $i<j$.

INCREASING FLIP GRAPH

INCREASING FLIP GRAPH

I, J two adjacent facets of $\mathcal{S}(\mathrm{Q})$, with $I \backslash i=J \backslash j$.
The flip from I to J is increasing if $i<j$.

THEOREM. Assume that Q is realizing. Then I is covered by J in increasing flip order iff there exists $w_{I}, w_{J} \in W$ with $\mathrm{R}(I) \subset w_{I}\left(\Phi^{+}\right), \mathrm{R}(J) \subset w_{J}\left(\Phi^{+}\right)$and w_{I} is covered by w_{J} in weak order.

In other words, the oriented graph of the brick polytope is a quotient of the oriented graph of the permutohedron.

INCREASING FLIP GRAPH

THEOREM. If Q is realizing, the Hasse diagram of the increasing flip order is a quotient of the Hasse diagram of the weak order.

MINKOWSKI SUM

THEOREM. If Q is realizing, the brick polytope $\mathcal{B}(\mathrm{Q})$ is the Minkowski sum of the polytopes $\mathcal{B}(\mathrm{Q}, k)=\operatorname{conv}\{\mathrm{w}(I, k) \mid I$ facet of $\mathcal{S}(\mathrm{Q})\}$. In other words,

$$
\mathcal{B}(\mathrm{Q})=\operatorname{conv}_{I} \sum_{k} \mathrm{w}(I, k)=\sum_{k} \operatorname{conv}_{I} \mathrm{w}(I, k)=\sum_{k} \mathcal{B}(\mathrm{Q}, k) .
$$

F. Chapoton, S. Fomin \& A. Zelevinsky, Polytopal realizations of generalized associahedra, 2002. C. Hohlweg, C. Lange \& H. Thomas, Permutahedra and generalized associahedra, 2011. S. Stella, Polyhedral models for generalized associahedra via Coxeter elements, 2011. VP \& C. Stump, Brick polytopes of spherical subword complexes, 2012+. C. Hohlweg, Permutahedra and associahedra, 2013.

CLUSTER ALGEBRAS

cluster algebra $=$ commutative ring generated by distinguished cluster variables grouped into overlapping clusters
clusters computed by a mutation process:
cluster seed $=$ algebraic data $\left\{x_{1}, \ldots, x_{n}\right\}$, combinatorical data B (matrix or quiver) cluster mutation $=\left(\left\{x_{1}, \ldots, x_{k}, \ldots, x_{n}\right\}, B\right) \stackrel{\mu_{k}}{\longleftrightarrow}\left(\left\{x_{1}, \ldots, x_{k}^{\prime}, \ldots, x_{n}, \mu_{k}(B)\right)\right.$

$$
\begin{aligned}
x_{k} \cdot x_{k}^{\prime} & =\prod_{i, b_{i k}>0} x_{i}^{b_{i k}}+\prod_{i, b_{i k}<0} x_{i}^{-b_{i k}} \\
\left(\mu_{k}(B)\right)_{i j} & = \begin{cases}-b_{i j} & \text { if } k \in\{i, j\} \\
b_{i j}+\left|b_{i k}\right| \cdot b_{k j} & \text { if } k \notin\{i, j\} \text { and } b_{i k} \cdot b_{k j}>0 \\
b_{i j} & \text { otherwise }\end{cases}
\end{aligned}
$$

cluster complex $=$ simplicial complex $\mathrm{w} /$ vertices $=$ cluster variables $\&$ facets $=$ clusters

CLUSTER ALGEBRAS

THEOREM. (Laurent phenomenon)
All cluster variables are Laurent polynomials in the variables of the initial cluster seed.

```
S. Fomin \& A. Zelevinsky, Cluster algebras I: Fundations, 2002.
```

THEOREM. (Classification)
Finite type cluster algebras are classified by the Cartan-Killing classification for crystallographic root systems.
S. Fomin \& A. Zelevinsky, Cluster algebras II: Finite type classification, 2003.

In fact, for a root system Φ, there is a bijection

$$
\begin{array}{rlc}
\begin{array}{cl}
\text { cluster variables } & \longleftrightarrow \\
\Phi_{\geq-1}=\Phi^{+} \cup-\Delta \\
y=\frac{F\left(x_{1}, \ldots, x_{n}\right)}{x_{1}^{d_{1}} \cdots x_{n}^{d_{n}}} & \longleftrightarrow \\
\begin{array}{c}
\text { cluster }
\end{array} & \longleftrightarrow=d_{1} \alpha_{1}+\cdots+d_{n} \alpha_{n} \\
\text { cluster complex } & \longleftrightarrow
\end{array} \begin{array}{c}
\text { c-cluster }
\end{array} \\
\text { c-cluster complex }
\end{array}
$$

GENERALIZED ASSOCIAHEDRA

THEOREM. The cluster complex is polytopal.

F. Chapoton, S. Fomin \& A. Zelevinsky, Polytopal realizations of generalized associahedra, 2002. C. Hohlweg, C. Lange \& H. Thomas, Permutahedra and generalized associahedra, 2011. S. Stella, Polyhedral models for generalized associahedra via Coxeter elements, 2013.
C. Hohlweg, Permutahedra and associahedra, 2013.

GENERALIZED ASSOCIAHEDRA

GENERALIZED ASSOCIAHEDRA

GENERALIZED ASSOCIAHEDRA ARE BRICK POLYTOPES

New approach to the combinatorics and geometry of the cluster complex:
THEOREM. The subword complex $\mathcal{S}\left(\mathrm{cw}_{\circ}(\mathrm{c})\right)$ is isomorphic to the cluster complex.
C. Ceballos, JP. Labbé \& C. Stump, Subword complexes, cluster complexes, \& gener. multiassoc., 2011.
cluster variables $\longleftrightarrow \Phi_{\geq-1}=\Phi^{+} \cup-\Delta \quad \longleftrightarrow \quad$ position in $\mathrm{cw}_{\circ}(\mathrm{c})$

$$
\begin{array}{rlll}
y=\frac{F\left(x_{1}, \ldots, x_{n}\right)}{x_{1}^{d_{1}} \cdots x_{n}^{d_{n}}} & \longleftrightarrow \beta=d_{1} \alpha_{1}+\cdots+d_{n} \alpha_{n} & \longleftrightarrow & \begin{array}{ll}
i & \text { if } \beta=-\alpha_{c_{i}} \\
j & \text { if } \beta=\mathrm{r}([n], j)
\end{array} \\
\begin{array}{c}
\text { cluster }
\end{array} & \longleftrightarrow & \text { c-cluster } & \longleftrightarrow
\end{array} \begin{aligned}
& \text { facet of } \mathcal{S}\left(\mathrm{cw}_{\circ}(\mathrm{c})\right)
\end{aligned}
$$

THEOREM. The brick polytope $\mathcal{B}\left(\mathrm{cw}_{\mathrm{o}}(\mathrm{c})\right)$ realizes the subword complex $\mathcal{S}\left(\mathrm{cw}_{\mathrm{o}}(\mathrm{c})\right)$.

THEOREM. The brick polytope $\mathcal{B}\left(\mathrm{cw}_{\mathrm{o}}(\mathrm{c})\right)$ is a translate of the known realizations of the generalized associahedron.

FURTHER PROPERTIES OF GENERALIZED ASSOCIAHEDRA

CAMBRIAN LATTICES \& FANS. The graph of the associahedron $\operatorname{Asso}_{c}(W)$, oriented from e to w_{\circ} is the Hasse diagram of the c-Cambrian lattice.
The normal fan of the associahedron $\operatorname{Asso}_{c}(W)$ is the c-Cambrian fan, obtained by coarsening the braid fan.

Reading, Sortable elements and Cambrian lattices, 2007.
Reading \& Speyer, Cambrian fans, 2009.

DIAMETER. The diameter of the type A_{n} associahedron is $2 n-4$ for $n \geq 9$. | type D_{n} | $2 n-2$ for all n. |
| :--- | :--- |

All type $A_{n}, B / C_{n}, D_{n}, H_{3}, H_{4}, F_{4}, E_{6}$ associahedra fulfill the non-leaving face property: every geodesic connecting two vertices stays in the minimal face containing them.
L. Pournin, The diameter of associahedra, 2014.

VP \& C. Ceballos, The diameter of type D associahedra and the non-leaving face property, 2014^{+}.

BARYCENTER. The vertex barycenters of the permutahedron and associahedron coincide.
VP \& C. Stump, Vertex barycenter of generalized associahedra, 2013.

Brives nviti

VP \& C. Stump, Vertex barycenter of generalized associahedra, 2013.

THREE OPERATIONS

Evolution of the brick vector $\mathrm{B}_{\mathcal{N}}(\Lambda)$ under three operations:

1. Rotate: $\mathrm{B}_{\mathcal{N} \cup}\left(\Lambda^{\circlearrowleft}\right)-\mathrm{B}_{\mathcal{N}}(\Lambda) \in \omega_{i}+\mathbb{R}\left(e_{i+1}-e_{i}\right)$
2. Reflect: $\mathrm{B}_{\mathcal{N} \ddagger}\left(\Lambda^{\downarrow}\right)=\#\{$ bricks of $\mathcal{N}\} . \mathbb{1}-\left(\mathrm{B}_{\mathcal{N}}(\Lambda)\right) \hookleftarrow$
3. Reverse: $\mathrm{B}_{\mathcal{N}} \hookleftarrow\left(\Lambda^{\bullet}\right)=\left(\mathrm{B}_{\mathcal{N}}(\Lambda)\right) \hookleftarrow$

THREE OPERATIONS

Evolution of the translated brick vector $\overline{\mathrm{B}}_{c}(\Lambda)=\mathrm{B}_{c}(\Lambda)-\Omega_{c}$ under three operations:

1. Rotate: $\overline{\mathrm{B}}_{c}\left(\Lambda^{\circlearrowleft}\right)-\overline{\mathrm{B}}_{c}(\Lambda) \in \mathbb{R}\left(e_{i+1}-e_{i}\right)$
2. Reflect: $\overline{\mathrm{B}}_{c}{ }^{\ddagger}\left(\Lambda^{\downarrow}\right)=-\left(\overline{\mathrm{B}}_{c}(\Lambda)\right) \hookleftarrow$
3. Reverse: $\overline{\mathrm{B}}_{c} \hookleftarrow\left(\Lambda^{\bullet}\right)=\left(\overline{\mathrm{B}}_{c}(\Lambda)\right)$ -

THREE OPERATIONS

Evolution of the translated brick vector $\overline{\mathrm{B}}_{c}(\Lambda)=\mathrm{B}_{c}(\Lambda)-\Omega_{c}$ under three operations:

1. Rotate: $\overline{\mathrm{B}}_{c \circlearrowleft}\left(\Lambda^{\circlearrowleft}\right)-\overline{\mathrm{B}}_{c}(\Lambda) \in \mathbb{R}\left(e_{i+1}-e_{i}\right)$

All associahedra Asso_{c} have the same barycenter

THREE OPERATIONS

Evolution of the translated brick vector $\overline{\mathrm{B}}_{c}(\Lambda)=\mathrm{B}_{c}(\Lambda)-\Omega_{c}$ under three operations:

2. Reflect: $\overline{\mathrm{B}}_{c \downarrow}\left(\Lambda^{\downarrow}\right)=-\left(\overline{\mathrm{B}}_{c}(\Lambda)\right) \leftrightarrows$
3. Reverse: $\overline{\mathrm{B}}_{c} \hookleftarrow\left(\Lambda^{\hookleftarrow}\right)=\left(\overline{\mathrm{B}}_{c}(\Lambda)\right) \hookleftarrow$

The barycenter of the superposition of the vertices of $\mathrm{Asso}_{c} \downarrow$ and $\mathrm{Asso}_{c} \hookleftarrow$ is the origin

THREE OPERATIONS

Evolution of the translated brick vector $\overline{\mathrm{B}}_{c}(\Lambda)=\mathrm{B}_{c}(\Lambda)-\Omega_{c}$ under three operations:

All associahedra Asso_{c} have the same barycenter

The barycenter of the superposition of the vertices of $\mathrm{Asso}_{c} \downarrow$ and $\mathrm{Asso}_{c} \hookleftarrow$ is the origin

THEOREM. All associahedra Asso_{c} have vertex barycenter at the origin
... and the same method works for fairly balanced and generalized associahedra.

BARYCENTER

associahedron $\operatorname{Asso}_{c}^{u}(W)$ and of the permutahedron $\operatorname{Perm}{ }^{u}(W)$ coincide.

The point u is fairly balanced if $w_{0}(u)=-u$, where w_{o} is the longest element in W.

