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POLYTOPES WITH PRESCRIBED COMBINATORICS

polytope = convex hull of a finite set of Rd

= bounded intersection of finitely many half-spaces

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations

Given a set of points, determine the face lattice of its convex hull.

Given a lattice, is there a polytope which realizes it?



POLYTOPES OF DIMENSION ≥ 4

Polytopes of dimension 3 ←→ planar 3-connected graphs

Various open conjectures in dimension 4:

Hirsch conjecture
diameter ≤ #facets – dimension (Santos)

complexity of the simplex algorithm

3d Conjecture (Kalai)

f -vecteur shape (Barany, Ziegler)
Prismatöıdes

“Our main limits in understanding the combinatorial structure of polytopes still

lie in our ability to raise the good questions and in the lack of examples,

methods of constructing them, and means of classifying them.”

Kalai. Handbook of Discrete and Computational Geometry, 2004.



PERMUTAHEDRON SECONDARY POLYTOPE

Πn = conv
{

(σ(1), . . . , σ(n))T
∣∣ σ ∈ Sn

}
Σ(P ) = conv

{∑
p∈P vol(T, p)ep

∣∣ T triang. P
}

∂Πn = refinement poset on
ordered partitions of [n]

∂Σ(P ) = refinement poset on regular
polyhedral subdivisions of P
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J. Humphreys, Reflection groups and Coxeter groups, 1990.
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FINITE COXETER GROUPS

W = finite Coxeter group

Coxeter fan

fundamental chamber

S = simple reflections

∆ = {αs | s ∈ S} = simple roots

Φ = W (∆) = root system

Φ+ = Φ ∩R≥0[∆] = positive roots

∇ = {ωs | s ∈ S} = fundamental weights

permutahedron

weak order = u ≤ w ⇐⇒ ∃v ∈ W, uv = w and `(u) + `(v) = `(w)



EXAMPLES: TYPE A AND B

TYPE An = symmetric group Sn+1 TYPE Bn = semidirect product Sno(Z2)n

S = {(i, i + 1) | i ∈ [n]} S = {(i, i + 1) | i ∈ [n− 1]} ∪ {χ}
∆ = {ei+1 − ei | i ∈ [n]} ∆ = {ei+1 − ei | i ∈ [n− 1]} ∪ {e1}

roots = {ei − ej | i, j ∈ [n + 1]} roots = {±ei ± ej | i, j ∈ [n]} ∪ {±ei | i ∈ [n]}
∇ =

{∑
j>i ej

∣∣ i ∈ [n]
}

∇ =
{∑

j≥i ej
∣∣ i ∈ [n]

}
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SUBWORD COMPLEX

(W,S) a finite Coxeter system, Q = q1q2 · · · qm a word on S, ρ an element of W .

Subword complex S(Q, ρ) = simplicial complex of subsets of positions of Q whose

complement contains a reduced expression of ρ.

A. Knutson & E. Miller, Subword complexes in Coxeter groups, 2004.

W = S3

S = {(1 2), (2 3)} = {a, b}
Q = ababa

ρ = aba = bab

ababbaba
abaabababaabababaaba

ababababaababababa

ababababa ababababa

ababaaba abaababa

ababababa

ababaababa

The subword complex is either a sphere

(when the Demazure product of Q is ρ) or a ball.

QUESTION. Are all spherical subword complexes polytopal?



TYPE A: PRIMITIVE SORTING NETWORKS

Classical situation of type A:

• Coxeter group W = Sn+1

• simple system S = {τi | i ∈ [n]},
where τi = (i i + 1)

• word Q = q1q2 · · · qm on S

• w element of W

The subword complex can be interpreted

with a primitive sorting network:

• NQ formed by n + 1 levels

and m commutators

• facets of S(Q, w) ←→
pseudoline arrangements on NQ
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FLIPS

flip = exchange a contact with the corresponding crossing
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FLIPS

flip = exchange a contact with the corresponding crossing
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COMBINATORIAL MODELS FOR GEOMETRIC GRAPHS

Type A subword complexes give combinatorial models for:

triangulations

of convex polygons

multitriangulations

of convex polygons

pseudotriangulations

of point sets in

general position

pseudotriangulations

of sets of disjoint

convex bodies

VP & M. Pocchiola, Pseudotriangulations, multitriangulations, and primitive sorting networks, 2012.

C. Stump, A new perspective on multitriangulations, 2011.
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THREE GEOMETRIC STRUCTURES

Triangulations Pseudotriangulations Multitriangulations

k = 2

triangulation = maximal crossing-free set of edges

= decomposition into triangles

pseudotriangulation = maximal crossing-free pointed set of edges

= decomposition into pseudotriangles

k-triangulation = maximal (k + 1)-crossing-free set of edges

= decomposition into k-stars

VP & F. Santos, Multitriangulations as complexes of star polygons, 2009.



THREE GEOMETRIC STRUCTURES

Triangulations Pseudotriangulations Multitriangulations

k = 2

flip = exchange an internal edge with the common bisector of the two adjacent cells



THREE GEOMETRIC STRUCTURES

Triangulations Pseudotriangulations Multitriangulations

??
associahedron ←→ crossing-free sets of internal edges

pseudotriangulations polytope ←→ pointed crossing-free sets of internal edges

multiassociahedron ←→ (k + 1)-crossing-free sets of k-internal edges



DUALITYDUALITYDUALITYDUALITY

VP & M. Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks, 2012.
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VP & M. Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks, 2012.
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CENTRALLY SYMMETRIC GEOMETRIC GRAPHS

Type B subword complexes give models for centrally symmetric triangulations:
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CENTRALLY SYMMETRIC GEOMETRIC GRAPHS

Type B subword complexes give models for centrally symmetric triangulations:
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C. Ceballos, JP. Labbé & C. Stump, Subword complexes, cluster complexes, & gener. multiassoc., 2011.

VP & C. Stump, Brick polytopes of spherical subword complexes, 2012+.



ROOT FUNCTION
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For a facet I of S(Q, ρ) and a position k ∈ [m], define the root r(I, k) = Q[k−1]\I(αqk),

where Q[k−1]\I is the product of all reflections qj for j from 1 to k − 1 but not in I.

The root function of the facet I is r(I, ·) : [m] −→ Φ

The root configuration of I is R(I) = {r(I, i) | i ∈ I}



ROOT FUNCTION & FLIPS
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PROPOSITION. The root function encodes flips in subword complexes:

1. The map r(I, ·) is a bijection from the complement of I to inv(ρ).

2. If I and J are two adjacent facets of S(Q) with I r i = J r j, then j is the unique

position in the complement of I such that r(I, i) = ±r(I, j).

3. In the situation of 2, the root function of J is obtained from that of I by

r(J, k) =

{
sr(I,i)(r(I, k)) if min(i, j) < k ≤ max(i, j),

r(I, k) otherwise.

C. Ceballos, JP. Labbé & C. Stump, Subword complexes, cluster complexes, & gener. multiassoc., 2011.
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VP & F. Santos, The brick polytope of a sorting network, 2012.

VP & C. Stump, Brick polytopes of spherical subword complexes, 2012+.
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BRICK POLYTOPE

1

6

6

5

N a sorting network with n + 1 levels

Λ pseudoline arrangement supported by N 7−→ brick vector B(Λ) ∈ Rn+1

B(Λ)j = number of bricks of N below the jth pseudoline of Λ

Brick polytope B(N ) = conv {B(Λ) | Λ pseudoline arrangement supported by N}



BRICK POLYTOPE

B({2,3,5})=(1,6,3,8)

B({2,3,9})=(1,6,5,6)

B({2,5,6})=(2,6,2,8)

B({3,4,5})=(1,7,3,7)

B({3,4,9})=(1,7,5,5)

B({2,6,7})=(3,6,2,7)B({2,7,9})=(3,6,3,6)

B({4,6,7})=(3,7,2,6)B({4,7,9})=(3,7,3,5)

B({4,5,6})=(2,7,2,7)



WEIGHT FUNCTION, BRICK VECTOR & BRICK POLYTOPE

(W,S) a finite Coxeter system, Q = q1q2 · · · qm a word on S, w◦ longest element of W .

S(Q) = S(Q, w◦) spherical subword complex.

To a facet I of S(Q) and a position k ∈ [m], associate a weight w(I, k) = Q[k−1]\I(ωqk),

where Q[k−1]\I is the product of all reflections qj for j from 1 to k − 1 but not in I.

The brick vector of I is the vector B(I) =
∑

k∈[m] w(I, k).

The brick polytope is the convex polytope B(Q) = conv {B(I) | I facet of S(Q)}.
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6

6

5

In type A, w(I, k) = characteristic vector of the pseudolines passing above the kth brick.

B(I) = (number of bricks below the jth pseudoline of I)j∈[n+1]



BRICK VECTORS AND FLIPS

If Λ and Λ′ are two pseudoline arrangements supported by N and related by a flip between

their ith and jth pseudolines, then B(Λ)− B(Λ′) ∈ N>0 (ej − ei).

THEOREM. The cone of the brick polytope B(Q) at the brick vector B(I) is generated

by −R(I), for any facet I of S(Q).



BRICK POLYTOPE

The brick polytope is the convex polytope B(Q) = conv {B(I) | I facet of S(Q)}.

THEOREM. The polar of the brick polytope B(Q) realizes the subword complex S(Q)

⇐⇒ Q is such that R(I) is linearly independent, for I facet of S(Q).

THEOREM. If Q is realizing, the cone of the brick polytope B(Q) at the brick vector B(I)

is generated by −R(I), for any facet I of S(Q).

THEOREM. If Q is realizing, the Coxeter fan refines the normal fan of the brick polytope.

More precisely,

normal cone of B(I) in B(Q) =
⋃
w∈W

R(I)⊂w(Φ+)

w( fundamental cone ).



NORMAL FAN

THEOREM. If Q is realizing, the Coxeter fan refines the normal fan of the brick polytope.



REMEMBER THE RIGHT WEAK ORDER



INCREASING FLIP GRAPH

I, J two adjacent facets of S(Q), with I r i = J r j.

The flip from I to J is increasing if i < j.
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INCREASING FLIP GRAPH

B({2,3,5})=(1,6,3,8)

B({2,3,9})=(1,6,5,6)

B({2,5,6})=(2,6,2,8)

B({3,4,5})=(1,7,3,7)

B({3,4,9})=(1,7,5,5)

B({2,6,7})=(3,6,2,7)B({2,7,9})=(3,6,3,6)

B({4,6,7})=(3,7,2,6)B({4,7,9})=(3,7,3,5)

B({4,5,6})=(2,7,2,7)



INCREASING FLIP GRAPH

I, J two adjacent facets of S(Q), with I r i = J r j.

The flip from I to J is increasing if i < j.
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THEOREM. Assume that Q is realizing. Then I is covered by J in increasing flip order

iff there exists wI, wJ ∈ W with R(I) ⊂ wI(Φ
+), R(J) ⊂ wJ(Φ+) and wI is covered by

wJ in weak order.

In other words, the oriented graph of the brick polytope is a quotient of the oriented graph

of the permutohedron.



INCREASING FLIP GRAPH

THEOREM. If Q is realizing, the Hasse diagram of the increasing flip order is a quotient

of the Hasse diagram of the weak order.



MINKOWSKI SUM

THEOREM. If Q is realizing, the brick polytope B(Q) is the Minkowski sum of the

polytopes B(Q, k) = conv {w(I, k) | I facet of S(Q)}. In other words,

B(Q) = convI
∑

k
w(I, k) =

∑
k

convIw(I, k) =
∑

k
B(Q, k).



GENERALIZEDGENERALIZED
ASSOCIAHEDRAASSOCIAHEDRA
GENERALIZEDGENERALIZED

ASSOCIAHEDRAASSOCIAHEDRA

F. Chapoton, S. Fomin & A. Zelevinsky, Polytopal realizations of generalized associahedra, 2002.

C. Hohlweg, C. Lange & H. Thomas, Permutahedra and generalized associahedra, 2011.

S. Stella, Polyhedral models for generalized associahedra via Coxeter elements, 2011.

VP & C. Stump, Brick polytopes of spherical subword complexes, 2012+.

C. Hohlweg, Permutahedra and associahedra, 2013.



CLUSTER ALGEBRAS

cluster algebra = commutative ring generated by distinguished cluster variables grouped

into overlapping clusters

clusters computed by a mutation process :

cluster seed = algebraic data {x1, . . . , xn}, combinatorical data B (matrix or quiver)

cluster mutation = ({x1, . . . , xk, . . . , xn}, B)
µk←−−→ ({x1, . . . , x

′
k, . . . , xn, µk(B))

xk · x′k =
∏
i, bik>0

xbiki +
∏
i, bik<0

x−biki

(
µk(B)

)
ij

=


−bij if k ∈ {i, j}
bij + |bik| · bkj if k /∈ {i, j} and bik · bkj > 0

bij otherwise

cluster complex = simplicial complex w/ vertices = cluster variables & facets = clusters

S. Fomin & A. Zelevinsky, Cluster Algebras I, II, III, IV, 2002 – 2007.



CLUSTER ALGEBRAS

THEOREM. (Laurent phenomenon)

All cluster variables are Laurent polynomials in the variables of the initial cluster seed.

S. Fomin & A. Zelevinsky, Cluster algebras I: Fundations, 2002.

THEOREM. (Classification)

Finite type cluster algebras are classified by the Cartan-Killing classification for crystal-

lographic root systems.

S. Fomin & A. Zelevinsky, Cluster algebras II: Finite type classification, 2003.

In fact, for a root system Φ, there is a bijection

cluster variables ←→ Φ≥−1 = Φ+ ∪ −∆

y =
F (x1, . . . , xn)

xd11 · · · x
dn
n

←→ β = d1α1 + · · · + dnαn

cluster ←→ c-cluster

cluster complex ←→ c-cluster complex



GENERALIZED ASSOCIAHEDRA

THEOREM. The cluster complex is polytopal.

F. Chapoton, S. Fomin & A. Zelevinsky, Polytopal realizations of generalized associahedra, 2002.

C. Hohlweg, C. Lange & H. Thomas, Permutahedra and generalized associahedra, 2011.

S. Stella, Polyhedral models for generalized associahedra via Coxeter elements, 2013.

C. Hohlweg, Permutahedra and associahedra, 2013.



GENERALIZED ASSOCIAHEDRA



GENERALIZED ASSOCIAHEDRA



GENERALIZED ASSOCIAHEDRA ARE BRICK POLYTOPES

New approach to the combinatorics and geometry of the cluster complex:

THEOREM. The subword complex S(cw◦(c)) is isomorphic to the cluster complex.

C. Ceballos, JP. Labbé & C. Stump, Subword complexes, cluster complexes, & gener. multiassoc., 2011.

cluster variables ←→ Φ≥−1 = Φ+ ∪ −∆ ←→ position in cw◦(c)

y =
F (x1, . . . , xn)

xd11 · · · x
dn
n

←→ β = d1α1 + · · · + dnαn ←→

{
i if β = −αci
j if β = r([n], j)

cluster ←→ c-cluster ←→ facet of S(cw◦(c))

cluster complex ←→ c-cluster complex ←→ subword complex S(cw◦(c))

THEOREM. The brick polytope B(cw◦(c)) realizes the subword complex S(cw◦(c)).

THEOREM. The brick polytope B(cw◦(c)) is a translate of the known realizations of the

generalized associahedron.



FURTHER PROPERTIES OF GENERALIZED ASSOCIAHEDRA

CAMBRIAN LATTICES & FANS. The graph of the associahedron Assoc(W ), oriented from e

to w◦ is the Hasse diagram of the c-Cambrian lattice.

The normal fan of the associahedron Assoc(W ) is the c-Cambrian fan, obtained by

coarsening the braid fan.

Reading, Sortable elements and Cambrian lattices, 2007.

Reading & Speyer, Cambrian fans, 2009.

DIAMETER. The diameter of the type An

type Dn

associahedron is 2n− 4 for n ≥ 9.

2n− 2 for all n.

All type An, B/Cn, Dn, H3, H4, F4, E6 associahedra fulfill the non-leaving face property:

every geodesic connecting two vertices stays in the minimal face containing them.

L. Pournin, The diameter of associahedra, 2014.

VP & C. Ceballos, The diameter of type D associahedra and the non-leaving face property, 2014+.

BARYCENTER. The vertex barycenters of the permutahedron and associahedron coincide.

VP & C. Stump, Vertex barycenter of generalized associahedra, 2013.



BARYCENTERBARYCENTER

VP & C. Stump, Vertex barycenter of generalized associahedra, 2013.



THREE OPERATIONS

Evolution of the brick vector BN (Λ) under three operations:
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original rotate reflect reverse

1. Rotate: BN	(Λ	)− BN (Λ) ∈ ωi + R(ei+1 − ei)

2. Reflect: BN (Λ ) = #{bricks of N} . 11− (BN (Λ))

3. Reverse: BN (Λ ) = (BN (Λ))



THREE OPERATIONS

Evolution of the translated brick vector B̄c(Λ) = Bc(Λ)− Ωc under three operations:
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original rotate reflect reverse

1. Rotate: B̄c	(Λ	)− B̄c(Λ) ∈ R(ei+1 − ei)

2. Reflect: B̄
c

(Λ ) = −(B̄c(Λ))

3. Reverse: B̄c (Λ ) = (B̄c(Λ))



THREE OPERATIONS

Evolution of the translated brick vector B̄c(Λ) = Bc(Λ)− Ωc under three operations:
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original rotate reflect reverse

1. Rotate: B̄c	(Λ	)− B̄c(Λ) ∈ R(ei+1 − ei)

All associahedra Assoc have the same barycenter



THREE OPERATIONS

Evolution of the translated brick vector B̄c(Λ) = Bc(Λ)− Ωc under three operations:
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original rotate reflect reverse

2. Reflect: B̄
c

(Λ ) = −(B̄c(Λ))

3. Reverse: B̄c (Λ ) = (B̄c(Λ))

The barycenter of the superposition of the vertices of Asso
c

and Assoc is the origin



THREE OPERATIONS

Evolution of the translated brick vector B̄c(Λ) = Bc(Λ)− Ωc under three operations:
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original rotate reflect reverse

All associahedra Assoc have the same barycenter

The barycenter of the superposition of the vertices of Asso
c

and Assoc is the origin

THEOREM. All associahedra Assoc have vertex barycenter at the origin

. . . and the same method works for fairly balanced and generalized associahedra.



BARYCENTER

THEOREM. For
any finite Coxeter group W ,

any Coxeter element c,

any fairly-balanced point u,

the vertex barycenters of the generalized

associahedron Assouc (W ) and of the permutahedron Permu(W ) coincide.

The point u is fairly balanced if w◦(u) = −u, where w◦ is the longest element in W .



THANK  YOUTHANK  YOUTHANK  YOUTHANK  YOU


