BRICK POLYTOPES, LATTICE QUOTIENTS & HOPF ALGEBRAS

Vincent PILAUD
CNRS & École Polytechnique

MOTIVATION

COMBINATORICS

k-TWISTS

trapezoidal shape of height n and width k

k-TWISTS

(k, n)-twist = pipe dream in the trapezoidal shape of height n and width k

k-TWISTS

(k,n)-twist = pipe dream in the trapezoidal shape of height n and width k contact graph of a twist T= vertices are pipes of T and arcs are elbows of T

1-TWISTS AND TRIANGULATIONS

Correspondence

elbow in row i and column j \longleftrightarrow (1,n)-twist T \longleftrightarrow pth relevant pipe of T \longleftrightarrow contact graph of T \longleftrightarrow elbow flips in T

 $\begin{array}{ll} \longleftrightarrow & \text{diagonal } [i,j] \text{ of the } (n+2)\text{-gon} \\ \longleftrightarrow & \text{triangulation } \mathbf{T}^{\star} \text{ of the } (n+2)\text{-gon} \\ \longleftrightarrow & p\text{th triangle of } \mathbf{T}^{\star} \\ \longleftrightarrow & \text{dual binary tree of } \mathbf{T}^{\star} \\ \longleftrightarrow & \text{diagonal flips in } \mathbf{T}^{\star} \end{array}$

Woo. Catalan numbers and Schubert Polynomials for $w=1(n+1)\dots 2$. Unpub 2004 P. – Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012

1-TWISTS AND TRIANGULATIONS

Correspondence

elbow in row i and column $j \longleftrightarrow \text{diagonal}$ (1,n)-twist $T \longleftrightarrow \text{triangulation}$ pth relevant pipe of $T \longleftrightarrow p$ th contact graph of $T \longleftrightarrow \text{dual}$ elbow flips in $T \longleftrightarrow \text{diagonal}$

Woo. Catalan numbers and Schubert Polynomials for $w=1(n+1)\dots 2$. Unpub 2004 P. – Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012

k-TWISTS AND k-TRIANGULATIONS

Correspondence

elbow in row i and column $j \longleftrightarrow \text{diagonal } [i,j]$ of the (n+2k)-gon (k,n)-twist $T \longleftrightarrow k$ -triangulation T^* of the (n+2k)-gon pth relevant pipe of $T \longleftrightarrow p$ th k-star of T^* contact graph of $T \longleftrightarrow \text{dual graph of } T^*$ elbow flips in $T \longleftrightarrow \text{diagonal flips in } T^*$

NUMEROLOGY

THM. The (k, n)-twists are counted by $\det(C_{n+2k-i-j})_{i,j\in[k]}$, where $C_m = \frac{1}{m+1}\binom{2m}{m}$.

Jonsson. Generalized triangulations and diagonal-free subsets of stack polyominoes. 2005 P.-Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012 Stump. A new perspective on k-triangulations. 2011

QU. What is the number of acyclic (k, n)-twists?

$k \backslash n$	1	2	3	4	5	6	7	8	9	10
0	1	1	1	1	1	1	1	1	1	1
1		2	5	14	42	132	429	1430	4862	16796
2		•	6	22	92	420	2042	10404	54954	298648
3		•	•	24	114	612	3600	22680	150732	1045440
4		•	•	•	120	696	4512	31920	242160	1942800
5		•	•	•	•	720	4920	37200	305280	2680800
6		•	•	•	•	•	5040	39600	341280	3175200
7		•	•	•	•	•	•	40320	357840	3457440
8		•	•	•	•	•	•	•	362880	3588480
9		•	•	•	•	•	•	•	•	3628800

Input: a permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-twist $ins^k(\tau)$

Input: a permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-twist $ins^k(\tau)$

Input: a permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-twist $ins^k(\tau)$

Input: a permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-twist $ins^k(\tau)$

Input: a permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-twist $ins^k(\tau)$

Input: a permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-twist $ins^k(\tau)$

Input: a permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-twist $ins^k(\tau)$

Exm: Insertion of $\tau = 31542$

THM. ins^k is a surjection from permutations of [n] to acyclic (k, n)-twists. fiber of a (k, n)-twist $T = \text{linear extensions of its contact graph } T^{\#}$.

Exm: insertion in binary search trees

k-TWIST CONGRUENCE

DEF. k-twist congruence = equivalence relation \equiv^k on \mathfrak{S}_n defined as the transitive closure of the rewriting rule

$$UacV_1b_1V_2b_2\cdots V_kb_kW \equiv^k UcaV_1b_1V_2b_2\cdots V_kb_kW$$
 if $a < b_i < c$ for all $i \in [k]$.

PROP. For any $\tau, \tau' \in \mathfrak{S}_n$, we have $\tau \equiv^k \tau' \iff \operatorname{ins}^k(\tau) = \operatorname{ins}^k(\tau')$.

LATTICE CONGRUENCES

DEF. Order congruence = equivalence relation \equiv on a poset P such that:

- (i) Every equivalence class under \equiv is an interval of P.
- (ii) The projection $\pi_{\downarrow}: P \to P$ (resp. $\pi^{\uparrow}: P \to P$), which maps an element of P to the minimal (resp. maximal) element of its equivalence class, is order preserving.

poset quotient = $X \le Y$ in $P/\equiv \iff \exists x \in X, y \in Y$ such that $x \le y$ in P.

If moreover P is a lattice, \equiv is automatically a lattice congruence, compatible with meets and joins: $x \equiv x'$ and $y \equiv y' \Rightarrow x \land y \equiv x' \land y'$ and $x \lor y \equiv x' \lor y'$.

lattice quotient $= X \wedge Y$ and $X \vee Y$ are the congruence classes of $x \wedge y$ and $x \vee y$ for arbitrary representatives $x \in X$ and $y \in Y$.

THM. The k-twist congruence is a lattice quotient of the weak order.

INCREASING FLIP LATTICE

flip in a k-twist = exchange an elbow with the unique crossing between its two pipes increasing flip = the elbow is southwest of the crossing increasing flip order = transitive closure of the increasing flip graph

INCREASING FLIP LATTICE

INCREASING FLIP LATTICE

flip in a k-twist = exchange an elbow with the unique crossing between its two pipes increasing flip = the elbow is southwest of the crossing increasing flip order = transitive closure of the increasing flip graph

PROP. The increasing flip order on acyclic k-twists is isomorphic to:

- the quotient lattice of the weak order by the k-twist congruence \equiv^k ,
- the sublattice of the weak order induced by the permutations of \mathfrak{S}_n avoiding the pattern $1(k+2)-(\sigma_1+1)-\cdots-(\sigma_k+1)$ for all $\sigma\in\mathfrak{S}_k$.

k-RECOILS

 $\mathbf{G}^k(n) = \text{graph with vertex set } \left[n \right] \text{ and edge set } \left\{ \{i,j\} \in [n]^2 \; \middle| \; i < j \leq i+k \right\}$

number of acyclic orientations of
$$\mathbf{G}^k(n) = \begin{cases} n! & \text{if } n \leq k \\ k! \, (k+1)^{n-k} & \text{if } n \geq k \end{cases}$$

k-recoils scheme of $\tau \in \mathfrak{S}_n = \text{acyclic orientation } \operatorname{rec}^k(\tau)$ of $G^k(n)$ with edge $i \to j$ for all $i, j \in [n]$ such that $|i - j| \le k$ and $\tau^{-1}(i) < \tau^{-1}(j)$

k-RECOILS

k-recoil congruence = equivalence relation \approx^k on \mathfrak{S}_n defined as the transitive closure of the rewriting rule $UijV \approx^k UjiV$ if i + k < j.

PROP. For any $\tau, \tau' \in \mathfrak{S}_n$, we have $\tau \approx^k \tau' \iff \operatorname{rec}^k(\tau) = \operatorname{rec}^k(\tau')$.

Novelli, Reutenauer, Thibon. Generalized descent patterns in permutations and associated Hopf Algebras. 2011

THM. The k-recoil congruence is a lattice quotient of the weak order.

k-CANOPY

The maps ins^k , can^k , and rec^k define a commutative diagram of lattice homomorphisms:

ALGEBRA

SHUFFLE AND CONVOLUTION

For $n, n' \in \mathbb{N}$, consider the set of perms of $\mathfrak{S}_{n+n'}$ with at most one descent, at position n:

$$\mathfrak{S}^{(n,n')} := \{ \tau \in \mathfrak{S}_{n+n'} \mid \tau(1) < \dots < \tau(n) \text{ and } \tau(n+1) < \dots < \tau(n+n') \}$$

For $\tau \in \mathfrak{S}_n$ and $\tau' \in \mathfrak{S}_{n'}$, define shifted concatenation $\tau \bar{\tau}' = [\tau(1), \ldots, \tau(n), \tau'(1) + n, \ldots, \tau'(n') + n] \in \mathfrak{S}_{n+n'}$ shifted shuffle product $\tau \, \bar{\sqcup} \, \tau' = \left\{ (\tau \bar{\tau}') \circ \pi^{-1} \; \middle| \; \pi \in \mathfrak{S}^{(n,n')} \right\} \subset \mathfrak{S}_{n+n'}$ convolution product $\tau \star \tau' = \left\{ \pi \circ (\tau \bar{\tau}') \; \middle| \; \pi \in \mathfrak{S}^{(n,n')} \right\} \subset \mathfrak{S}_{n+n'}$

Exm: $12 \coprod 231 = \{12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312\}$ $12 \star 231 = \{12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231\}$

MALVENUTO & REUTENAUER'S HOPF ALGEBRA ON PERMUTATIONS

DEF. Combinatorial Hopf Algebra = combinatorial vector space \mathcal{B} endowed with

$$\mathsf{product}\,\cdot:\mathcal{B}\otimes\mathcal{B}\to\mathcal{B}$$

 $\mathsf{coproduct} \ \triangle : \mathcal{B} \to \mathcal{B} \otimes \mathcal{B}$

which are "compatible", ie.

Malvenuto-Reutenauer algebra = Hopf algebra FQSym with basis $(\mathbb{F}_{\tau})_{\tau \in \mathfrak{S}}$ and where

$$\mathbb{F}_{ au} \cdot \mathbb{F}_{ au'} = \sum_{\sigma \in au oxdots au'} \mathbb{F}_{\sigma} \qquad ext{and} \qquad riangle \mathbb{F}_{\sigma} = \sum_{\sigma \in au \star au'} \mathbb{F}_{ au} \otimes \mathbb{F}_{ au'}$$

Malvenuto-Reutenauer. Duality between quasi-symmetric functions and the Solomon descent algebra. 1995

HOPF SUBALGEBRA

k-Twist algebra = vector subspace Twist^k of FQSym generated by

$$\mathbb{P}_{\mathbf{T}} \coloneqq \sum_{\substack{\tau \in \mathfrak{S} \\ \mathsf{ins}^k(\tau) = \mathbf{T}}} \mathbb{F}_{\tau} = \sum_{\tau \in \mathcal{L}(\mathbf{T}^\#)} \mathbb{F}_{\tau},$$

for all acyclic k-twists T.

Exm:

$$\mathbb{P}_{12345} = \sum_{\tau \in \mathfrak{S}_{5}} \mathbb{F}_{\tau} \quad \mathbb{P}_{12345} = \mathbb{F}_{13542} + \mathbb{F}_{15342} \\ + \mathbb{F}_{31542} + \mathbb{F}_{51342} \\ + \mathbb{F}_{35142} + \mathbb{F}_{53412} \\ + \mathbb{F}_{35412} + \mathbb{F}_{53412}$$

THEO. Twist k is a subalgebra of FQSym

Loday-Ronco. *Hopf algebra of the planar binary trees.* 1998 Hivert-Novelli-Thibon. *The algebra of binary search trees.* 2005

GAME: Explain the product and coproduct directly on the k-twists...

PRODUCT

$$\begin{array}{c} \mathbb{P}_{1233} \cdot \mathbb{P}_{13} = (\mathbb{F}_{1423} + \mathbb{F}_{4123}) \cdot \mathbb{F}_{21} \\ = \begin{pmatrix} \mathbb{F}_{142365} \\ + \mathbb{F}_{142365} \\ + \mathbb{F}_{412365} \\ + \mathbb{F}_{41235} \\ + \mathbb{F}_{416235} \\ + \mathbb{F}_{416235} \\ + \mathbb{F}_{41235} \\ + \mathbb{F}_{$$

PROP. For $T \in \mathcal{AT}^k(n)$ and $T' \in \mathcal{AT}^k(n')$ acyclic k-twists, $\mathbb{P}_T \cdot \mathbb{P}_{T'} = \sum_S \mathbb{P}_S$, where S runs over the interval between $T \setminus T'$ and T / T' in the (k, n + n')-twist lattice.

GEOMETRY

PERMUTAHEDRON

 $1\overline{2}43$

BRICK POLYTOPE

brick vector of a (k, n)-twist $T = \text{vector } \mathbf{b}(T) \in \mathbb{R}^n$ with $\mathbf{b}(T)_i = \text{number of boxes below the } i\text{th pipe of } T$

Brick polytope

 $\mathsf{Brick}^k(n) = \mathrm{conv} \left\{ \mathbf{b}(\mathrm{T}) \mid \mathrm{T}(k,n) \text{-twist} \right\}$

 $\mathsf{Vertices} \longleftrightarrow \mathsf{acyclic}\ (k,n)\text{-twists}$

Facets $\longleftrightarrow 0/1$ -seqs with no

subseqs $10^{\ell}1$

for $\ell \geq k$

connections to

- Loday associahedron
- incidence cones of binary trees
- Tamari lattice

BRICK POLYTOPE

BRICK POLYTOPE

ZONOTOPE

- matroids and oriented matroids
- hyperplane arrangements

ZONOTOPE

- matroids and oriented matroids
- hyperplane arrangements

ZONOTOPE

• hyperplane arrangements

Permutahedron $Perm^k(n)$

NORMAL CONES

For a poset \triangleleft , define $C^{\diamond}(\triangleleft) = \{ \mathbf{x} \in \mathbb{H} \mid x_i \leq x_j \text{ for all } i \triangleleft j \text{ in } T \}$.

PROP. The cones form complete simplicial fans:

 $\left\{ \mathrm{C}^{\diamond}(\tau) \mid \tau \in \mathfrak{S}_{n} \right\} = \text{braid fan} = \text{normal fan of the permutahedron } \mathrm{Perm}^{k}(n),$ $\left\{ \mathrm{C}^{\diamond}(\mathrm{T}) \mid \mathrm{T} \in \mathcal{AT}^{k}(n) \right\} = \text{brick fan} = \text{normal fan of the brick polytope } \mathrm{Brick}^{k}(n),$ $\left\{ \mathrm{C}^{\diamond}(\mathrm{O}) \mid \mathrm{O} \in \mathcal{AO}^{k}(n) \right\} = \text{boolean fan} = \text{normal fan of the zonotope } \mathrm{Zono}^{k}(n).$

PROP. The insertion map $\operatorname{ins}^k:\mathfrak{S}_n\to\mathcal{AT}^k(n)$, the k-canopy $\operatorname{can}^k:\mathcal{AT}^k(n)\to\mathcal{AO}^k(n)$ and the k-recoil map $\operatorname{rec}^k:\mathfrak{S}_n\to\mathcal{AO}^k(n)$ are characterized by:

$$T = \mathsf{ins}^k(\tau) \iff C(T) \subseteq C(\tau) \iff C^\diamond(T) \supseteq C^\diamond(\tau),$$

$$O = \mathsf{can}^k(T) \iff C(O) \subseteq C(T) \iff C^\diamond(O) \supseteq C^\diamond(T),$$

$$O = \mathsf{rec}^k(\tau) \iff C(O) \subseteq C(\tau) \iff C^\diamond(O) \supseteq C^\diamond(\tau).$$

LINEAR ORIENTATION

Oriented in the direction $\sum_{i \in [n]} (n+1-2i) \mathbf{e}_i$, their graphs are Hasse diagrams of lattices:

weak order on \mathfrak{S}_n

increasing flip lattice on acyclic (k, n)-twists

boolean lattice on acyclic orientations of $\mathbf{G}^k(n)$

LINEAR ORIENTATION

Oriented in the direction $\sum (n+1-2i) e_i$, their graphs are Hasse diagrams of lattices:

weak order on \mathfrak{S}_n

increasing flip lattice

boolean lattice on acyclic (k, n)-twists on acyclic orientations of $G^k(n)$

LINEAR ORIENTATION

Oriented in the direction $\sum_{i \in [n]} (n+1-2i) \mathbf{e}_i$, their graphs are Hasse diagrams of lattices:

THREE EXTENSIONS

 $k \in \mathbb{N}$ and $\varepsilon \in \pm^n$, define a shape $\mathsf{Sh}^k_\varepsilon$ formed by four monotone lattices paths:

- (i) enter path: from $(|\varepsilon|_+,0)$ to $(0,|\varepsilon|_-)$ with pth step north if $\varepsilon_p=-$ and west if $\varepsilon_p=+$,
- (ii) exit path: from $(|\varepsilon|_+ + k, n+k)$ to $(n+k, |\varepsilon|_- + k)$ with pth step east if $\varepsilon_p = -$ and south if $\varepsilon_p = +$,
- (iii) accordion paths: the path $(NE)^{|\varepsilon|_++k}$ from $(0,|\varepsilon|_-)$ to $(|\varepsilon|_++k,n+k)$ and the path $(EN)^{|\varepsilon|_-+k}$ from $(|\varepsilon|_+,0)$ to $(n+k,|\varepsilon|_-+k)$.

Cambrian (k, ε) -twist = pipe dream in $\mathsf{Sh}^k_\varepsilon$ contact graph of a twist T= vertices are pipes of T and arcs are elbows of T

Input: a signed permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic Cambrian (k, ε) -twist $\operatorname{ins}^k(\tau)$

Input: a signed permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Input: a signed permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic Cambrian (k,ε) -twist $\operatorname{ins}^k(\tau)$

Input: a signed permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic Cambrian (k, ε) -twist $\operatorname{ins}^k(\tau)$

Input: a signed permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Input: a signed permutation $\tau = \tau_1 \cdots \tau_n$

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic Cambrian (k,ε) -twist $\operatorname{ins}^k(\tau)$

TUPLIZATION

 $\mathcal{E} = [\varepsilon_1, \dots, \varepsilon_\ell]$ an ℓ -tuple of signatures (k, \mathcal{E}) -twist tuple = an ℓ -tuple $[T_1, \dots, T_\ell]$ where

- T_i is a (k, ε_i) -twist
- ullet the union of the contact graphs $T_1^\# \cup \cdots \cup T_\ell^\#$ is acyclic

TUPLIZATION

hyperpipe = union of pipes whose common elbows are changed to crossings (k,n)-hypertwist = collection of hyperpipes obtained from a (k,n)-twist T by merging subsets of pipes inducing connected subgraphs of $T^{\#}$

Input: an ordered partition $\lambda = \lambda_1 \cdots \lambda_n$

Algo: Insert hyperpipes one by one (from right to left) as northwest as possible

Input: an ordered partition $\lambda = \lambda_1 \cdots \lambda_n$

Algo: Insert hyperpipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-hypertwist $\operatorname{ins}^k(\lambda)$

Input: an ordered partition $\lambda = \lambda_1 \cdots \lambda_n$

Algo: Insert hyperpipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-hypertwist $\operatorname{ins}^k(\lambda)$

Input: an ordered partition $\lambda = \lambda_1 \cdots \lambda_n$

Algo: Insert hyperpipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-hypertwist $\operatorname{ins}^k(\lambda)$

THANK YOU