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ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free
sets of internal diagonals of a convex n-gon, ordered by reverse inclusion.
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VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free

sets of internal diagonals of a convex n-gon, ordered by reverse inclusion.

Lee ('89), Gel'fand-Kapranov-Zelevinski ('94), Billera-Filliman-Sturmfels ('90), ..., Ceballos-Santos-Ziegler ('11)
Loday ('04), Hohlweg-Lange ('07), Hohlweg-Lange-Thomas ('12), P.-Santos ('12), P.-Stump ('127)



LODAY'S ASSOCIAHEDRON

Loday's associahedron = conv {L(T') | T triangulation of the (n + 3)-gon} , where

L(T) = (U(T,j) - T<ij))je[n+1]

k

((T,j)=j—min{i € (0,5 —2||ij € T} r(T,j)=max{k €[j+2,n+2||jkeT}—j

Loday, Realization of the Stasheff polytope ('04)

Can also replace this (n + 3)-gon by others:
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Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)




HOHLWEG & LANGE'S ASSOCIAHEDRA

Loday, Realization of the Stasheff polytope ('04)
Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)



HOHLWEG & LANGE'S ASSOCIAHEDRA

Loday, Realization of the Stasheff polytope ('04)
Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)
Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('117)



PERMUTAHEDRON
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ASSOCIAHEDRA FROM THE PERMUTAHEDRON

Associahedron from permutahedron = remove facets not containing “singletons”.

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)



BARYCENTERS

THEOREM. All Hohlweg & Lange’s associahedra have the origin for vertex barycenter.

Hohlweg-Lortie-Raymond, The center of gravity of the associahedron and of the permutahedron are the same ('07)



BARYCENTERS

THEOREM. All Hohlweg & Lange’s associahedra have the origin for vertex barycenter.

We give an alternative proof of this result, which extends in two directions:

1. Fairly balanced associahedra:




FINITE COXETER GROUPS




GENERALIZED ASSOCIAHEDRA

Chapoton-Fomin-Zelevinsky, Polytopal realizations of generalized associahedra ('02

Hohlweg-Lange-Thomas, Permutahedra and generalized associahedra ('11



OUR RESULT

THEOREM. For

any finite Coxeter group W,
any Coxeter element c,
any fairly-balanced point u,

the vertex barycenters of the generalized

associahedron Asso. (W) and of the permutahedron Perm"(W) coincide.

The point « is fairly balanced if w.(u) = —u, where w, is the longest element in .
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PRIMITIVE SORTING NETWORKS

network AN/ = n horizontal levels and m vertical commutators

bricks of N/ = bounded cells



PSEUDOLINE ARRANGEMENTS ON A NETWORK

pseudoline = abscissa-monotone path

crossing = II contact = ‘

pseudoline arrangement (with contacts) = n pseudolines supported by N which have
pairwise exactly one crossing, possibly some contacts, and no other intersection



CONTACT GRAPH OF A PSEUDOLINE ARRANGEMENT

contact graph A" of a pseudoline arrangement A =

e a node for each pseudoline of A, and

e an arc for each contact of A oriented from top to bottom

R



FLIPS

flip = exchange an arbitrary contact with the corresponding crossing

Combinatorial and geometric properties of the graph of flips G(N)?

'04

Knutson-Miller, Subword complexes in Coxeter groups ('0
'12
1

P.-Pocchiola, Multitriangulations, pseudotriangulations and sorting networks

(

(

P.-Santos, The brick polytope of a sorting network ('12

1

P.-Stump, Brick polytopes of spherical subword complexes: a new approach to generalized associahedra ('12+
1

)
)
)
Ceballos-Labbé-Stump, Subword complexes, cluster complexes, and generalized multi-associahedra ('127)
)
)

P.-Stump, EL-labelings and canonical spanning trees for subword complexes ('12+



MINIMAL SORTING NETWORKS

bubble sort insertion sort even-odd sort

Knuth, The art of Computer Programming, Vol. 3 Sorting and Searching ('97)



POINT SETS & MINIMAL SORTING NETWORKS
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POINT SETS & MINIMAL SORTING NETWORKS




POINT SETS & MINIMAL SORTING NETWORKS




POINT SETS & MINIMAL SORTING NETWORKS
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POINT SETS & MINIMAL SORTING NETWORKS
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POINT SETS & MINIMAL SORTING NETWORKS

n points in R2 =— minimal primitive sorting network with n levels
p P g

point <— pseudoline
edge <— crossing
boundary edge <— external crossing




POINT SETS & MINIMAL SORTING NETWORKS

n points in R? = minimal primitive sorting network with n levels

not all minimal primitive sorting networks correspond to points sets of R?
— realizability problems




POINT SETS & MINIMAL SORTING NETWORKS

Goodmann-Pollack, On the combinatorial classification of nondegenerate configurations in the plane
Knuth, Axioms and Hulls
Bjorner-Las Vergnas-Sturmfels-White-Ziegler, Oriented Matroids

Bokowski, Computational oriented matroids



TRIANGULATIONS & ALTERNATING SORTING NETWORKS
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TRIANGULATIONS & ALTERNATING SORTING NETWORKS

____________________________

triangulation of the n-gon <— pseudoline arrangement
triangle +— pseudoline
edge <—> contact point
common bisector <— crossing point
dual binary tree «+— contact graph



FLIPS

____________________________

____________________________

----------------------------

____________________________
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BRICK POLYTOPE

A pseudoline arrangement supported by ' ——  brick vector b(A) € R”
b(A); = number of bricks of A/ below the jth pseudoline of A

Brick polytope B(N') = conv {b(A) | A pseudoline arrangement supported by N}
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BRICK POLYTOPE

A pseudoline arrangement supported by ' ——  brick vector b(A) € R”
b(A); = number of bricks of A/ below the jth pseudoline of A

O O OO0 =

Brick polytope B(N') = conv {b(A) | A pseudoline arrangement supported by N}




BRICK POLYTOPE

A pseudoline arrangement supported by ' ——  brick vector b(A) € R”
b(A); = number of bricks of A/ below the jth pseudoline of A

O O OO0 H— O

Brick polytope B(N') = conv {b(A) | A pseudoline arrangement supported by N}




BRICK POLYTOPE

X, = network with two levels and m commutators

graph of flips G(X,,,) = complete graph K,

brick polytope B(A,,) = conv { (T__f) i [m]} - Kmo_ 1) ’ <m0— 1)]
AT 10T T




BRICK POLYTOPE

X, = network with two levels and m commutators

graph of flips G(X,,,) = complete graph K,

brick polytope B(A,,) = conv { (?_‘f) i [m]} - Kmo_ 1) ’ <m0— 1)]
AT 10T T

The brick vector b(A) is a vertex of B(N) <= the contact graph A¥ is acyclic
The graph of the brick polytope B(N) is a subgraph of the flip graph G(N)

The graph of the brick polytope B(N') coincides with the graph of flips G(N)
< the contact graphs of the pseudoline arrangements supported by N are forests




ALTERNATING NETWORKS & ASSOCIAHEDRA

triangulation of the n-gon <+— pseudoline arrangement
triangle <— pseudoline
edge <— contact point
common bisector <—> crossing point
dual binary tree «+— contact graph

The brick polytope is an associahedron.




ALTERNATING NETWORKS & ASSOCIAHEDRA

for z € {a,b}"*, define a reduced alternating network N, and a polygon P,

5 5 5
4 I_a 4 I_a 4
3 a 3 a 3
2 a 2 b 2
1 1 1
9 3 4 2 3
]
1 ¢ d @ 5 1 5 1

Pseudoline arrangements on A! <— triangulations of the polygon P,.




ALTERNATING NETWORKS & ASSOCIAHEDRA

For any word x € {a,b}" 2, the brick polytope B, = B(N}) is an associahedron.

U\//f\ < /%;%%%
W\\® P ®/\ &

Up to a translation €2, the brick polytope B, coincides with the associahedron Asso,
of Hohlweg and Lange.

P.-Santos, The brick polytope of a sorting network ('12)
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THREE OPERATIONS

Evolution of the brick vector by-(A) under three operations:

O SO 00 = O
= ot g O

original rotate reflect

1. Rotate: byo(A°) — by (A) € w; +R(er — e)
2. Reflect: b, (A") = #{bricks of N'} .1 — (b (A))™
3. Reverse: by—(A7) = (by(A))

_ O N = O

reverse

S = O N



THREE OPERATIONS

Evolution of the translated brick vector b,(A) = b,(A) — Q, under three operations:

O SO 00 = O
= ot g O
_ O DN = 00

original rotate reflect reverse

1. Rotate: b,o(A°) — b,(A) € R(eg — e;)
2. Reflect: b_; (A1) = —(b,(A))~
3. Reverse: b,— (A7) = (b,(A))™

S = O N



THREE OPERATIONS

Evolution of the translated brick vector b,(A) = b,(A) — Q, under three operations:

O SO 00 = O
= ot g O
_ O DN = 00

original rotate reflect reverse

1. Rotate: b,o(A°) — b,(A) € R(eg — e;)

S = O N

All associahedra Asso, have the same barycenter




THREE OPERATIONS

Evolution of the translated brick vector b,(A) = b,(A) — Q, under three operations:

O SO 00 = O
_ Ot J O =

original rotate reflect reverse

2. Reflect: b (A1) = —(b,(A))~
3. Reverse: b,— (A7) = (b,(A))™

The barycenter of the superposition of the vertices of Asso_; and Asso,— is the origin

S = O N



THREE OPERATIONS

Evolution of the translated brick vector b,(A) = b,(A) — €, under three operations:

6 1 I_ 8
1 § I-I— 4
8 7 I- 2 -
6 5) 9 —|-
2 1 4
original rotate reflect reverse

All associahedra Asso, have the same barycenter

The barycenter of the superposition of the vertices of Asso ; and Asso,— is the origin

THEOREM. All associahedra Asso, have vertex barycenter at the origin

... and the same method works for fairly balanced and generalized associahedra.

S = O N



THANK YOU



