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ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free

sets of internal diagonals of a convex n-gon, ordered by reverse inclusion.



VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free

sets of internal diagonals of a convex n-gon, ordered by reverse inclusion.

Lee (’89), Gel’fand-Kapranov-Zelevinski (’94), Billera-Filliman-Sturmfels (’90), . . . , Ceballos-Santos-Ziegler (’11)

Loday (’04), Hohlweg-Lange (’07), Hohlweg-Lange-Thomas (’12), P.-Santos (’12), P.-Stump (’12+)



LODAY’S ASSOCIAHEDRON

Loday’s associahedron = conv {L(T ) | T triangulation of the (n + 3)-gon} , where

L(T ) =
(
`(T, j) · r(T, j)

)
j∈[n+1]

j

i

k

`(T, j) = j−min {i ∈ [0, j − 2] | ij ∈ T} r(T, j) = max {k ∈ [j + 2, n + 2] | jk ∈ T}−j

Loday, Realization of the Stasheff polytope (’04)

Can also replace this (n + 3)-gon by others:

5

432

1 a a a 5

432

1 b b b5

4

32

1 a a b 5

4

3

2

1 a b a

Hohlweg-Lange, Realizations of the associahedron and cyclohedron (’07)



HOHLWEG & LANGE’S ASSOCIAHEDRA

Loday, Realization of the Stasheff polytope (’04)

Hohlweg-Lange, Realizations of the associahedron and cyclohedron (’07)



HOHLWEG & LANGE’S ASSOCIAHEDRA

Loday, Realization of the Stasheff polytope (’04)

Hohlweg-Lange, Realizations of the associahedron and cyclohedron (’07)

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron (’11+)



PERMUTAHEDRON
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ASSOCIAHEDRA FROM THE PERMUTAHEDRON

Associahedron from permutahedron = remove facets not containing “singletons”.
Hohlweg-Lange, Realizations of the associahedron and cyclohedron (’07)



BARYCENTERS

THEOREM. All Hohlweg & Lange’s associahedra have the origin for vertex barycenter.

Hohlweg-Lortie-Raymond, The center of gravity of the associahedron and of the permutahedron are the same (’07)



BARYCENTERS

THEOREM. All Hohlweg & Lange’s associahedra have the origin for vertex barycenter.

We give an alternative proof of this result, which extends in two directions:

1. Fairly balanced associahedra:

2. Generalized associahedra:



FINITE COXETER GROUPS



GENERALIZED ASSOCIAHEDRA

Chapoton-Fomin-Zelevinsky, Polytopal realizations of generalized associahedra (’02)

Hohlweg-Lange-Thomas, Permutahedra and generalized associahedra (’11)



OUR RESULT

THEOREM. For
any finite Coxeter group W ,

any Coxeter element c,

any fairly-balanced point u,

the vertex barycenters of the generalized

associahedron Assouc (W ) and of the permutahedron Permu(W ) coincide.

The point u is fairly balanced if w◦(u) = −u, where w◦ is the longest element in W .
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SORTING NETWORKS



PRIMITIVE SORTING NETWORKS

network N = n horizontal levels and m vertical commutators

bricks of N = bounded cells



PSEUDOLINE ARRANGEMENTS ON A NETWORK

pseudoline = abscissa-monotone path

crossing = contact =

pseudoline arrangement (with contacts) = n pseudolines supported by N which have

pairwise exactly one crossing, possibly some contacts, and no other intersection



CONTACT GRAPH OF A PSEUDOLINE ARRANGEMENT

contact graph Λ# of a pseudoline arrangement Λ =

• a node for each pseudoline of Λ, and

• an arc for each contact of Λ oriented from top to bottom



FLIPS

flip = exchange an arbitrary contact with the corresponding crossing

Combinatorial and geometric properties of the graph of flips G(N )?

Knutson-Miller, Subword complexes in Coxeter groups (’04)

P.-Pocchiola, Multitriangulations, pseudotriangulations and sorting networks (’12)

P.-Santos, The brick polytope of a sorting network (’12)

Ceballos-Labbé-Stump, Subword complexes, cluster complexes, and generalized multi-associahedra (’12+)

P.-Stump, Brick polytopes of spherical subword complexes: a new approach to generalized associahedra (’12+)

P.-Stump, EL-labelings and canonical spanning trees for subword complexes (’12+)



MINIMAL SORTING NETWORKS

bubble sort insertion sort even-odd sort

Knuth, The art of Computer Programming, Vol. 3 Sorting and Searching (’97)



POINT SETS & MINIMAL SORTING NETWORKS



POINT SETS & MINIMAL SORTING NETWORKS



POINT SETS & MINIMAL SORTING NETWORKS
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POINT SETS & MINIMAL SORTING NETWORKS



POINT SETS & MINIMAL SORTING NETWORKS



POINT SETS & MINIMAL SORTING NETWORKS

n points in R2 =⇒ minimal primitive sorting network with n levels

point ←→ pseudoline

edge ←→ crossing

boundary edge ←→ external crossing



POINT SETS & MINIMAL SORTING NETWORKS

n points in R2 =⇒ minimal primitive sorting network with n levels

not all minimal primitive sorting networks correspond to points sets of R2

=⇒ realizability problems



POINT SETS & MINIMAL SORTING NETWORKS

Goodmann-Pollack, On the combinatorial classification of nondegenerate configurations in the plane (’80)

Knuth, Axioms and Hulls (’92)

Björner-Las Vergnas-Sturmfels-White-Ziegler, Oriented Matroids (’99)

Bokowski, Computational oriented matroids (’06)



TRIANGULATIONS & ALTERNATING SORTING NETWORKS
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TRIANGULATIONS & ALTERNATING SORTING NETWORKS
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TRIANGULATIONS & ALTERNATING SORTING NETWORKS



TRIANGULATIONS & ALTERNATING SORTING NETWORKS

triangulation of the n-gon ←→ pseudoline arrangement

triangle ←→ pseudoline

edge ←→ contact point

common bisector ←→ crossing point

dual binary tree ←→ contact graph



FLIPS
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BRICK POLYTOPE



BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector b(Λ) ∈ Rn

b(Λ)j = number of bricks of N below the jth pseudoline of Λ

Brick polytope B(N ) = conv {b(Λ) | Λ pseudoline arrangement supported by N}



BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector b(Λ) ∈ Rn

b(Λ)j = number of bricks of N below the jth pseudoline of Λ

2

Brick polytope B(N ) = conv {b(Λ) | Λ pseudoline arrangement supported by N}



BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector b(Λ) ∈ Rn

b(Λ)j = number of bricks of N below the jth pseudoline of Λ

6
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Brick polytope B(N ) = conv {b(Λ) | Λ pseudoline arrangement supported by N}



BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector b(Λ) ∈ Rn

b(Λ)j = number of bricks of N below the jth pseudoline of Λ
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Brick polytope B(N ) = conv {b(Λ) | Λ pseudoline arrangement supported by N}



BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector b(Λ) ∈ Rn

b(Λ)j = number of bricks of N below the jth pseudoline of Λ
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Brick polytope B(N ) = conv {b(Λ) | Λ pseudoline arrangement supported by N}



BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector b(Λ) ∈ Rn

b(Λ)j = number of bricks of N below the jth pseudoline of Λ

6
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Brick polytope B(N ) = conv {b(Λ) | Λ pseudoline arrangement supported by N}



BRICK POLYTOPE

Xm = network with two levels and m commutators

graph of flips G(Xm) = complete graph Km

brick polytope B(Xm) = conv

{(
m− i

i− 1

) ∣∣∣∣ i ∈ [m]

}
=

[(
m− 1

0

)
,

(
0

m− 1

)]



BRICK POLYTOPE

Xm = network with two levels and m commutators

graph of flips G(Xm) = complete graph Km

brick polytope B(Xm) = conv

{(
m− i

i− 1

) ∣∣∣∣ i ∈ [m]

}
=

[(
m− 1

0

)
,

(
0

m− 1

)]

The brick vector b(Λ) is a vertex of B(N ) ⇐⇒ the contact graph Λ# is acyclic

The graph of the brick polytope B(N ) is a subgraph of the flip graph G(N )

The graph of the brick polytope B(N ) coincides with the graph of flips G(N )

⇐⇒ the contact graphs of the pseudoline arrangements supported by N are forests



ALTERNATING NETWORKS & ASSOCIAHEDRA

triangulation of the n-gon ←→ pseudoline arrangement

triangle ←→ pseudoline

edge ←→ contact point

common bisector ←→ crossing point

dual binary tree ←→ contact graph

The brick polytope is an associahedron.



ALTERNATING NETWORKS & ASSOCIAHEDRA

for x ∈ {a, b}n−2, define a reduced alternating network Nx and a polygon Px
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Pseudoline arrangements on N 1
x ←→ triangulations of the polygon Px.



ALTERNATING NETWORKS & ASSOCIAHEDRA

For any word x ∈ {a, b}n−2, the brick polytope Bx = B(N 1
x ) is an associahedron.

Up to a translation Ωx, the brick polytope Bx coincides with the associahedron Assox
of Hohlweg and Lange.

P.-Santos, The brick polytope of a sorting network (’12)
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THREE OPERATIONS

Evolution of the brick vector bN (Λ) under three operations:
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original rotate reflect reverse

1. Rotate: bN	(Λ	)− bN (Λ) ∈ ωi + R(ei+1 − ei)

2. Reflect: bN (Λ ) = #{bricks of N} . 11− (bN (Λ))

3. Reverse: bN (Λ ) = (bN (Λ))



THREE OPERATIONS

Evolution of the translated brick vector b̄x(Λ) = bx(Λ)− Ωx under three operations:
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1. Rotate: b̄x	(Λ	)− b̄x(Λ) ∈ R(ei+1 − ei)

2. Reflect: b̄
x
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3. Reverse: b̄x (Λ ) = (b̄x(Λ))



THREE OPERATIONS

Evolution of the translated brick vector b̄x(Λ) = bx(Λ)− Ωx under three operations:
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original rotate reflect reverse

1. Rotate: b̄x	(Λ	)− b̄x(Λ) ∈ R(ei+1 − ei)

All associahedra Assox have the same barycenter



THREE OPERATIONS

Evolution of the translated brick vector b̄x(Λ) = bx(Λ)− Ωx under three operations:
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The barycenter of the superposition of the vertices of Asso
x

and Assox is the origin



THREE OPERATIONS

Evolution of the translated brick vector b̄x(Λ) = bx(Λ)− Ωx under three operations:
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original rotate reflect reverse

All associahedra Assox have the same barycenter

The barycenter of the superposition of the vertices of Asso
x

and Assox is the origin

THEOREM. All associahedra Assox have vertex barycenter at the origin

. . . and the same method works for fairly balanced and generalized associahedra.



THANK YOU


