

Vincent PILAUD (CNRS \& LIX, École Polytechnique)
Christian STUMP (Universität Hannover)

ASSOCIAHEDRON

- \& -

RELATED STRUCTURES

## ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex $n$-gon, ordered by reverse inclusion.


## VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex $n$-gon, ordered by reverse inclusion.


Lee ('89), Gel'fand-Kapranov-Zelevinski ('94), Billera-Filliman-Sturmfels ('90), ..., Ceballos-Santos-Ziegler ('11) Loday ('04), Hohlweg-Lange ('07), Hohlweg-Lange-Thomas ('12), P.-Santos ('12), P.-Stump ('12+)

## LODAY'S ASSOCIAHEDRON

Loday's associahedron $=\operatorname{conv}\{L(T) \mid T$ triangulation of the $(n+3)$-gon $\}$, where

$$
L(T)=(\ell(T, j) \cdot r(T, j))_{j \in[n+1]}
$$



Can also replace this $(n+3)$-gon by others:


HOHLWEG \& LANGE'S ASSOCIAHEDRA


Loday, Realization of the Stasheff polytope ('04)
Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)

## HOHLWEG \& LANGE'S ASSOCIAHEDRA



Loday, Realization of the Stasheff polytope ('04)
Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07) Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11+)

## PERMUTAHEDRON



## ASSOCIAHEDRA FROM THE PERMUTAHEDRON



Associahedron from permutahedron $=$ remove facets not containing "singletons".
Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)

## BARYCENTERS



THEOREM. All Hohlweg \& Lange's associahedra have the origin for vertex barycenter.
Hohlweg-Lortie-Raymond, The center of gravity of the associahedron and of the permutahedron are the same ('07)

## BARYCENTERS

THEOREM. All Hohlweg \& Lange's associahedra have the origin for vertex barycenter.
We give an alternative proof of this result, which extends in two directions:

1. Fairly balanced associahedra:

2. Generalized associahedra:


FINITE COXETER GROUPS


## GENERALIZED ASSOCIAHEDRA



## OUR RESULT

THEOREM. For $|$| any finite Coxeter group $W$, |
| :--- |
| any Coxeter element $c$, |
| any fairly-balanced point $u$, | the vertex barycenters of the generalized associahedron $\operatorname{Asso}_{c}^{u}(W)$ and of the permutahedron $\operatorname{Perm}{ }^{u}(W)$ coincide.



The point $u$ is fairly balanced if $w_{0}(u)=-u$, where $w_{0}$ is the longest element in $W$.

ASSOCIAHEDRON

- \& -

SORTING NETWORKS

## PRIMITIVE SORTING NETWORKS


network $\mathcal{N}=n$ horizontal levels and $m$ vertical commutators
bricks of $\mathcal{N}=$ bounded cells

## PSEUDOLINE ARRANGEMENTS ON A NETWORK


pseudoline $=$ abscissa-monotone path
$\square$ contact $=$

pseudoline arrangement (with contacts) $=n$ pseudolines supported by $\mathcal{N}$ which have pairwise exactly one crossing, possibly some contacts, and no other intersection

## CONTACT GRAPH OF A PSEUDOLINE ARRANGEMENT

contact graph $\Lambda^{\#}$ of a pseudoline arrangement $\Lambda=$

- a node for each pseudoline of $\Lambda$, and
- an arc for each contact of $\Lambda$ oriented from top to bottom



## FLIPS

flip $=$ exchange an arbitrary contact with the corresponding crossing


Combinatorial and geometric properties of the graph of flips $G(\mathcal{N})$ ?

Knutson-Miller, Subword complexes in Coxeter groups ('04)
P.-Pocchiola, Multitriangulations, pseudotriangulations and sorting networks ('12)
P.-Santos, The brick polytope of a sorting network ('12)

Ceballos-Labbé-Stump, Subword complexes, cluster complexes, and generalized multi-associahedra ('12+)
P.-Stump, Brick polytopes of spherical subword complexes: a new approach to generalized associahedra ('12+)
P.-Stump, EL-labelings and canonical spanning trees for subword complexes (' $12^{+}$)

## MINIMAL SORTING NETWORKS



Knuth, The art of Computer Programming, Vol. 3 Sorting and Searching ('97)

## POINT SETS \& MINIMAL SORTING NETWORKS

## POINT SETS \& MINIMAL SORTING NETWORKS



## POINT SETS \& MINIMAL SORTING NETWORKS



## POINT SETS \& MINIMAL SORTING NETWORKS



## POINT SETS \& MINIMAL SORTING NETWORKS



## POINT SETS \& MINIMAL SORTING NETWORKS



## POINT SETS \& MINIMAL SORTING NETWORKS



## POINT SETS \& MINIMAL SORTING NETWORKS



## POINT SETS \& MINIMAL SORTING NETWORKS



## POINT SETS \& MINIMAL SORTING NETWORKS


$n$ points in $\mathbb{R}^{2} \Longrightarrow$ minimal primitive sorting network with $n$ levels

$$
\begin{aligned}
\text { point } & \longleftrightarrow \text { pseudoline } \\
\text { edge } & \longleftrightarrow \text { crossing } \\
\text { boundary edge } & \longleftrightarrow \text { external crossing }
\end{aligned}
$$

## POINT SETS \& MINIMAL SORTING NETWORKS


$n$ points in $\mathbb{R}^{2} \Longrightarrow$ minimal primitive sorting network with $n$ levels
not all minimal primitive sorting networks correspond to points sets of $\mathbb{R}^{2}$ $\Longrightarrow$ realizability problems

## POINT SETS \& MINIMAL SORTING NETWORKS



Goodmann-Pollack, On the combinatorial classification of nondegenerate configurations in the plane ('80)
Knuth, Axioms and Hulls ('92)
Björner-Las Vergnas-Sturmfels-White-Ziegler, Oriented Matroids ('99)
Bokowski, Computational oriented matroids ('06)

## TRIANGULATIONS \& ALTERNATING SORTING NETWORKS




## TRIANGULATIONS \& ALTERNATING SORTING NETWORKS



## TRIANGULATIONS \& ALTERNATING SORTING NETWORKS



## TRIANGULATIONS \& ALTERNATING SORTING NETWORKS



## TRIANGULATIONS \& ALTERNATING SORTING NETWORKS



TRIANGULATIONS \& ALTERNATING SORTING NETWORKS


TRIANGULATIONS \& ALTERNATING SORTING NETWORKS


TRIANGULATIONS \& ALTERNATING SORTING NETWORKS



triangulation of the $n$-gon
$\longleftrightarrow$ pseudoline arrangement triangle $\longleftrightarrow$ pseudoline
edge $\longleftrightarrow$ contact point
common bisector $\longleftrightarrow$ crossing point dual binary tree $\longleftrightarrow$ contact graph

FLIPS


## ASSOCIAHEDRON <br> - \& BRICK POLYTOPE

## BRICK POLYTOPE

$\Lambda$ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $b(\Lambda) \in \mathbb{R}^{n}$ $b(\Lambda)_{j}=$ number of bricks of $\mathcal{N}$ below the $j$ th pseudoline of $\Lambda$


Brick polytope $\mathcal{B}(\mathcal{N})=\operatorname{conv}\{b(\Lambda) \mid \Lambda$ pseudoline arrangement supported by $\mathcal{N}\}$

## BRICK POLYTOPE

$\Lambda$ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $b(\Lambda) \in \mathbb{R}^{n}$ $b(\Lambda)_{j}=$ number of bricks of $\mathcal{N}$ below the $j$ th pseudoline of $\Lambda$


Brick polytope $\mathcal{B}(\mathcal{N})=\operatorname{conv}\{b(\Lambda) \mid \Lambda$ pseudoline arrangement supported by $\mathcal{N}\}$

## BRICK POLYTOPE

$\Lambda$ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $b(\Lambda) \in \mathbb{R}^{n}$ $b(\Lambda)_{j}=$ number of bricks of $\mathcal{N}$ below the $j$ th pseudoline of $\Lambda$


Brick polytope $\mathcal{B}(\mathcal{N})=\operatorname{conv}\{b(\Lambda) \mid \Lambda$ pseudoline arrangement supported by $\mathcal{N}\}$

## BRICK POLYTOPE

$\Lambda$ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $b(\Lambda) \in \mathbb{R}^{n}$ $b(\Lambda)_{j}=$ number of bricks of $\mathcal{N}$ below the $j$ th pseudoline of $\Lambda$


Brick polytope $\mathcal{B}(\mathcal{N})=\operatorname{conv}\{b(\Lambda) \mid \Lambda$ pseudoline arrangement supported by $\mathcal{N}\}$

## BRICK POLYTOPE

$\Lambda$ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $b(\Lambda) \in \mathbb{R}^{n}$ $b(\Lambda)_{j}=$ number of bricks of $\mathcal{N}$ below the $j$ th pseudoline of $\Lambda$


Brick polytope $\mathcal{B}(\mathcal{N})=\operatorname{conv}\{b(\Lambda) \mid \Lambda$ pseudoline arrangement supported by $\mathcal{N}\}$

## BRICK POLYTOPE

$\Lambda$ pseudoline arrangement supported by $\mathcal{N} \longmapsto$ brick vector $b(\Lambda) \in \mathbb{R}^{n}$ $b(\Lambda)_{j}=$ number of bricks of $\mathcal{N}$ below the $j$ th pseudoline of $\Lambda$


Brick polytope $\mathcal{B}(\mathcal{N})=\operatorname{conv}\{b(\Lambda) \mid \Lambda$ pseudoline arrangement supported by $\mathcal{N}\}$

## BRICK POLYTOPE

$\mathcal{X}_{m}=$ network with two levels and $m$ commutators graph of flips $G\left(\mathcal{X}_{m}\right)=$ complete graph $K_{m}$ brick polytope $\mathcal{B}\left(\mathcal{X}_{m}\right)=\operatorname{conv}\left\{\left.\binom{m-i}{i-1} \right\rvert\, i \in[m]\right\}=\left[\binom{m-1}{0},\binom{0}{m-1}\right]$


## BRICK POLYTOPE

$\mathcal{X}_{m}=$ network with two levels and $m$ commutators graph of flips $G\left(\mathcal{X}_{m}\right)=$ complete graph $K_{m}$ brick polytope $\mathcal{B}\left(\mathcal{X}_{m}\right)=\operatorname{conv}\left\{\left.\binom{m-i}{i-1} \right\rvert\, i \in[m]\right\}=\left[\binom{m-1}{0},\binom{0}{m-1}\right]$


The brick vector $b(\Lambda)$ is a vertex of $\mathcal{B}(\mathcal{N}) \Longleftrightarrow$ the contact graph $\Lambda^{\#}$ is acyclic The graph of the brick polytope $\mathcal{B}(\mathcal{N})$ is a subgraph of the flip graph $G(\mathcal{N})$

The graph of the brick polytope $\mathcal{B}(\mathcal{N})$ coincides with the graph of flips $G(\mathcal{N})$ $\Longleftrightarrow$ the contact graphs of the pseudoline arrangements supported by $\mathcal{N}$ are forests

## ALTERNATING NETWORKS \& ASSOCIAHEDRA


triangulation of the $n$-gon
$\longleftrightarrow$ pseudoline arrangement triangle $\longleftrightarrow$ pseudoline
edge $\longleftrightarrow$ contact point
common bisector $\longleftrightarrow$ crossing point dual binary tree $\longleftrightarrow$ contact graph

The brick polytope is an associahedron.

## ALTERNATING NETWORKS \& ASSOCIAHEDRA

for $x \in\{a, b\}^{n-2}$, define a reduced alternating network $\mathcal{N}_{x}$ and a polygon $\mathcal{P}_{x}$


Pseudoline arrangements on $\mathcal{N}_{x}^{1} \longleftrightarrow$ triangulations of the polygon $\mathcal{P}_{x}$.

## ALTERNATING NETWORKS \& ASSOCIAHEDRA

For any word $x \in\{a, b\}^{n-2}$, the brick polytope $\mathcal{B}_{x}=\mathcal{B}\left(\mathcal{N}_{x}^{1}\right)$ is an associahedron.


Up to a translation $\Omega_{x}$, the brick polytope $\mathcal{B}_{x}$ coincides with the associahedron Asso $_{x}$ of Hohlweg and Lange.

ASSOCIAHEDRON

- \& BARYCENTER


## THREE OPERATIONS

Evolution of the brick vector $b_{\mathcal{N}}(\Lambda)$ under three operations:


1. Rotate: $b_{\mathcal{N} \bigcirc}\left(\Lambda^{\circlearrowleft}\right)-b_{\mathcal{N}}(\Lambda) \in \omega_{i}+\mathbb{R}\left(e_{i+1}-e_{i}\right)$
2. Reflect: $b_{\mathcal{N} \downarrow}\left(\Lambda^{\downarrow}\right)=\#\{$ bricks of $\mathcal{N}\} \cdot \mathbb{1}-\left(b_{\mathcal{N}}(\Lambda)\right) \mapsto$
3. Reverse: $b_{\mathcal{N}} \hookleftarrow(\Lambda \hookleftarrow)=\left(b_{\mathcal{N}}(\Lambda)\right)$ )

## THREE OPERATIONS

Evolution of the translated brick vector $\bar{b}_{x}(\Lambda)=b_{x}(\Lambda)-\Omega_{x}$ under three operations:


1. Rotate: $\bar{b}_{x^{\circlearrowleft}}\left(\Lambda^{\circlearrowleft}\right)-\bar{b}_{x}(\Lambda) \in \mathbb{R}\left(e_{i+1}-e_{i}\right)$
2. Reflect: $\bar{b}_{x \downarrow}\left(\Lambda^{\downarrow}\right)=-\left(\bar{b}_{x}(\Lambda)\right) \bullet$
3. Reverse: $\bar{b}_{x \hookleftarrow}(\Lambda \hookleftarrow)=\left(\bar{b}_{x}(\Lambda)\right) \hookleftarrow$

## THREE OPERATIONS

Evolution of the translated brick vector $\bar{b}_{x}(\Lambda)=b_{x}(\Lambda)-\Omega_{x}$ under three operations:


1. Rotate: $\bar{b}_{x \circlearrowleft}\left(\Lambda^{\circlearrowleft}\right)-\bar{b}_{x}(\Lambda) \in \mathbb{R}\left(e_{i+1}-e_{i}\right)$

All associahedra Asso $_{x}$ have the same barycenter

## THREE OPERATIONS

Evolution of the translated brick vector $\bar{b}_{x}(\Lambda)=b_{x}(\Lambda)-\Omega_{x}$ under three operations:

2. Reflect: $\left.\bar{b}_{x} \downarrow \Lambda^{\downarrow}\right)=-\left(\bar{b}_{x}(\Lambda)\right) \hookrightarrow$
3. Reverse: $\bar{b}_{x} \mapsto\left(\Lambda^{\bullet}\right)=\left(\bar{b}_{x}(\Lambda)\right) \downarrow$

The barycenter of the superposition of the vertices of $\mathrm{Asso}_{x \downarrow}$ and $\mathrm{Asso}_{x} \hookleftarrow$ is the origin

## THREE OPERATIONS

Evolution of the translated brick vector $\bar{b}_{x}(\Lambda)=b_{x}(\Lambda)-\Omega_{x}$ under three operations:


All associahedra Asso ${ }_{x}$ have the same barycenter
The barycenter of the superposition of the vertices of Asso $_{x!}$ and Asso ${ }_{x} \checkmark$ is the origin

THEOREM. All associahedra Asso $_{x}$ have vertex barycenter at the origin
... and the same method works for fairly balanced and generalized associahedra.

THANK YOU

