

Vincent PILAUD (CNRS & LIX, École Polytechnique) Christian STUMP (Universität Hannover) ASSOCIAHEDRON — & — RELATED STRUCTURES

ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex n-gon, ordered by reverse inclusion.

VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex n-gon, ordered by reverse inclusion.

Lee ('89), Gel'fand-Kapranov-Zelevinski ('94), Billera-Filliman-Sturmfels ('90), ..., Ceballos-Santos-Ziegler ('11) Loday ('04), Hohlweg-Lange ('07), Hohlweg-Lange-Thomas ('12), P.-Santos ('12), P.-Stump ('12⁺)

LODAY'S ASSOCIAHEDRON

Loday's associahedron = $conv \{L(T) \mid T \text{ triangulation of the } (n+3)\text{-gon}\}$, where

$$L(T) = \left(\ell(T, j) \cdot r(T, j)\right)_{j \in [n+1]}$$

Loday, Realization of the Stasheff polytope ('04)

Can also replace this (n+3)-gon by others:

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)

HOHLWEG & LANGE'S ASSOCIAHEDRA

Loday, *Realization of the Stasheff polytope* ('04) Hohlweg-Lange, *Realizations of the associahedron and cyclohedron* ('07)

- Loday, *Realization of the Stasheff polytope* ('04)
- Hohlweg-Lange, *Realizations of the associahedron and cyclohedron* ('07)
- Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11+)

PERMUTAHEDRON

ASSOCIAHEDRA FROM THE PERMUTAHEDRON

Associahedron from permutahedron = remove facets not containing "singletons".

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)

BARYCENTERS

THEOREM. All Hohlweg & Lange's associahedra have the origin for vertex barycenter.

Hohlweg-Lortie-Raymond, The center of gravity of the associahedron and of the permutahedron are the same ('07)

BARYCENTERS

THEOREM. All Hohlweg & Lange's associahedra have the origin for vertex barycenter.

We give an alternative proof of this result, which extends in two directions:

1. Fairly balanced associahedra:

FINITE COXETER GROUPS

GENERALIZED ASSOCIAHEDRA

Chapoton-Fomin-Zelevinsky, *Polytopal realizations of generalized associahedra* ('02) Hohlweg-Lange-Thomas, *Permutahedra and generalized associahedra* ('11)

OUR RESULT

THEOREM. For any finite Coxeter group W, any Coxeter element c, the vertex barycenters of the generalized any fairly-balanced point u, associahedron $\operatorname{Asso}_{c}^{u}(W)$ and of the permutahedron $\operatorname{Perm}^{u}(W)$ coincide.

The point u is fairly balanced if $w_{\circ}(u) = -u$, where w_{\circ} is the longest element in W.

ASSOCIAHEDRON — & — SORTING NETWORKS

network $\mathcal{N} = n$ horizontal levels and m vertical commutators bricks of $\mathcal{N} =$ bounded cells

PSEUDOLINE ARRANGEMENTS ON A NETWORK

pseudoline arrangement (with contacts) = n pseudolines supported by \mathcal{N} which have pairwise exactly one crossing, possibly some contacts, and no other intersection

CONTACT GRAPH OF A PSEUDOLINE ARRANGEMENT

contact graph $\Lambda^{\#}$ of a pseudoline arrangement $\Lambda =$

- \bullet a node for each pseudoline of $\Lambda,$ and
- \bullet an arc for each contact of Λ oriented from top to bottom

FLIPS

flip = exchange an arbitrary contact with the corresponding crossing

Combinatorial and geometric properties of the graph of flips $G(\mathcal{N})$?

- Knutson-Miller, Subword complexes in Coxeter groups ('04)
- P.-Pocchiola, Multitriangulations, pseudotriangulations and sorting networks ('12)
 - P.-Santos, The brick polytope of a sorting network ('12)
- Ceballos-Labbé-Stump, Subword complexes, cluster complexes, and generalized multi-associahedra ('12⁺)
- P.-Stump, Brick polytopes of spherical subword complexes: a new approach to generalized associahedra ('12⁺)
 - P.-Stump, *EL-labelings and canonical spanning trees for subword complexes* ('12⁺)

MINIMAL SORTING NETWORKS

Knuth, The art of Computer Programming, Vol. 3 Sorting and Searching ('97)

n points in $\mathbb{R}^2 \implies$ minimal primitive sorting network with n levels

 $\begin{array}{rcl} \mbox{point} & \longleftrightarrow & \mbox{pseudoline} \\ \mbox{edge} & \longleftrightarrow & \mbox{crossing} \\ \mbox{boundary edge} & \longleftrightarrow & \mbox{external crossing} \end{array}$

n points in $\mathbb{R}^2 \implies$ minimal primitive sorting network with n levels

not all minimal primitive sorting networks correspond to points sets of \mathbb{R}^2 \implies realizability problems

Goodmann-Pollack, On the combinatorial classification of nondegenerate configurations in the plane ('80)

- Knuth, Axioms and Hulls ('92)
- Björner-Las Vergnas-Sturmfels-White-Ziegler, Oriented Matroids ('99)
 - Bokowski, Computational oriented matroids ('06)

- triangle \longleftrightarrow pseudoline
 - $\mathsf{edge} \; \longleftrightarrow \; \mathsf{contact} \; \mathsf{point}$
- common bisector \longleftrightarrow crossing point
 - dual binary tree \longleftrightarrow contact graph

FLIPS

ASSOCIAHEDRON — & — BRICK POLYTOPE

 $\begin{array}{ll} \Lambda \text{ pseudoline arrangement supported by } \mathcal{N} & \longmapsto & \mathsf{brick vector } b(\Lambda) \in \mathbb{R}^n \\ & b(\Lambda)_j = \mathsf{number of bricks of } \mathcal{N} \text{ below the } j \mathsf{th pseudoline of } \Lambda \end{array}$

 $\begin{array}{lll} \Lambda \text{ pseudoline arrangement supported by } \mathcal{N} & \longmapsto & \mathsf{brick vector } b(\Lambda) \in \mathbb{R}^n \\ & b(\Lambda)_j = \mathsf{number of bricks of } \mathcal{N} \text{ below the } j \mathsf{th pseudoline of } \Lambda \end{array}$

 Λ pseudoline arrangement supported by $\mathcal{N} \mapsto \text{brick vector } b(\Lambda) \in \mathbb{R}^n$ $b(\Lambda)_j = \text{number of bricks of } \mathcal{N} \text{ below the } j \text{th pseudoline of } \Lambda$

 Λ pseudoline arrangement supported by $\mathcal{N} \mapsto \text{brick vector } b(\Lambda) \in \mathbb{R}^n$ $b(\Lambda)_j = \text{number of bricks of } \mathcal{N} \text{ below the } j \text{th pseudoline of } \Lambda$

 Λ pseudoline arrangement supported by $\mathcal{N} \mapsto \text{brick vector } b(\Lambda) \in \mathbb{R}^n$ $b(\Lambda)_j = \text{number of bricks of } \mathcal{N} \text{ below the } j \text{th pseudoline of } \Lambda$

 Λ pseudoline arrangement supported by $\mathcal{N} \mapsto \text{brick vector } b(\Lambda) \in \mathbb{R}^n$ $b(\Lambda)_j = \text{number of bricks of } \mathcal{N} \text{ below the } j \text{th pseudoline of } \Lambda$

 \mathcal{X}_m = network with two levels and m commutators

graph of flips $G(\mathcal{X}_m) = \text{complete graph } K_m$

brick polytope
$$\mathcal{B}(\mathcal{X}_m) = \operatorname{conv}\left\{ \begin{pmatrix} m-i\\ i-1 \end{pmatrix} \middle| i \in [m] \right\} = \left[\begin{pmatrix} m-1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ m-1 \end{pmatrix} \right]$$

 \mathcal{X}_m = network with two levels and m commutators

graph of flips $G(\mathcal{X}_m) = \text{complete graph } K_m$

brick polytope
$$\mathcal{B}(\mathcal{X}_m) = \operatorname{conv}\left\{ \begin{pmatrix} m-i\\ i-1 \end{pmatrix} \middle| i \in [m] \right\} = \left[\begin{pmatrix} m-1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ m-1 \end{pmatrix} \right]$$

The brick vector $b(\Lambda)$ is a vertex of $\mathcal{B}(\mathcal{N}) \iff$ the contact graph $\Lambda^{\#}$ is acyclic. The graph of the brick polytope $\mathcal{B}(\mathcal{N})$ is a subgraph of the flip graph $G(\mathcal{N})$

The graph of the brick polytope $\mathcal{B}(\mathcal{N})$ coincides with the graph of flips $G(\mathcal{N})$ \iff the contact graphs of the pseudoline arrangements supported by \mathcal{N} are forests

ALTERNATING NETWORKS & ASSOCIAHEDRA

The brick polytope is an associahedron.

ALTERNATING NETWORKS & ASSOCIAHEDRA

for $x \in \{a, b\}^{n-2}$, define a reduced alternating network \mathcal{N}_x and a polygon \mathcal{P}_x

Pseudoline arrangements on $\mathcal{N}_x^1 \longleftrightarrow$ triangulations of the polygon \mathcal{P}_x .

ALTERNATING NETWORKS & ASSOCIAHEDRA

For any word $x \in \{a, b\}^{n-2}$, the brick polytope $\mathcal{B}_x = \mathcal{B}(\mathcal{N}_x^1)$ is an associahedron.

Up to a translation Ω_x , the brick polytope \mathcal{B}_x coincides with the associahedron $Asso_x$ of Hohlweg and Lange.

ASSOCIAHEDRON — & — BARYCENTER

Evolution of the brick vector $b_{\mathcal{N}}(\Lambda)$ under three operations:

- 1. Rotate: $b_{\mathcal{N}^{\circlearrowright}}(\Lambda^{\circlearrowright}) b_{\mathcal{N}}(\Lambda) \in \omega_i + \mathbb{R}(e_{i+1} e_i)$
- 2. Reflect: $b_{\mathcal{N}^{\uparrow}}(\Lambda^{\uparrow}) = \#\{\text{bricks of }\mathcal{N}\} \cdot \mathbb{1} (b_{\mathcal{N}}(\Lambda))^{\leftarrow}$
- 3. Reverse: $b_{\mathcal{N}} \to (\Lambda^{\leftarrow}) = (b_{\mathcal{N}}(\Lambda))^{\leftarrow}$

Evolution of the translated brick vector $\overline{b}_x(\Lambda) = b_x(\Lambda) - \Omega_x$ under three operations:

- 1. Rotate: $\overline{b}_{x^{\circlearrowright}}(\Lambda^{\circlearrowright}) \overline{b}_{x}(\Lambda) \in \mathbb{R}(e_{i+1} e_{i})$
- 2. Reflect: $\bar{b}_{x^{\uparrow}}(\Lambda^{\uparrow}) = -(\bar{b}_x(\Lambda))^{\leftarrow}$
- 3. Reverse: $\overline{b}_x \hookrightarrow (\Lambda^{\leftarrow}) = (\overline{b}_x(\Lambda))^{\leftarrow}$

Evolution of the translated brick vector $\overline{b}_x(\Lambda) = b_x(\Lambda) - \Omega_x$ under three operations:

1. Rotate: $\overline{b}_{x^{\circlearrowright}}(\Lambda^{\circlearrowright}) - \overline{b}_{x}(\Lambda) \in \mathbb{R}(e_{i+1} - e_{i})$

All associahedra $Asso_x$ have the same barycenter

Evolution of the translated brick vector $\overline{b}_x(\Lambda) = b_x(\Lambda) - \Omega_x$ under three operations:

- 2. Reflect: $\overline{b}_{x^{\uparrow}}(\Lambda^{\uparrow}) = -(\overline{b}_x(\Lambda))^{\leftarrow}$
- 3. Reverse: $\overline{b}_{x} \rightarrow (\Lambda^{\leftarrow}) = (\overline{b}_{x}(\Lambda))^{\leftarrow}$

The barycenter of the superposition of the vertices of $Asso_{x^{\uparrow}}$ and $Asso_{x^{\leftrightarrow}}$ is the origin

Evolution of the translated brick vector $\overline{b}_x(\Lambda) = b_x(\Lambda) - \Omega_x$ under three operations:

All associahedra $Asso_x$ have the same barycenter

The barycenter of the superposition of the vertices of $Asso_{x\uparrow}$ and $Asso_{x\leftarrow}$ is the origin

THEOREM. All associated asso $_x$ have vertex barycenter at the origin

... and the same method works for fairly balanced and generalized associahedra.

THANK YOU