Acyclic reorientation lattices and their lattice quotients

V. PILAUD (CNRS & LIX, École Polytechnique)

Algebraic and Combinatorial Perspectives in the Mathematical Sciences Friday March 25th, 2022

PERMUTAHEDRA & ASSOCIAHEDRA

<u>lattice</u> = partially ordered set L where any $X \subseteq L$ admits a <u>meet</u> $\bigwedge X$ and a join $\bigvee X$ <u>lattice congruence</u> = equivalence relation on L compatible with meets and joins

 $\frac{\text{lattice}}{\text{lattice}} = \text{partially ordered set } L \text{ where any } X \subseteq L \text{ admits a } \underline{\text{meet}} \land X \text{ and a } \underline{\text{join}} \lor X$ $\frac{\text{lattice congruence}}{\text{lattice congruence}} = \text{equivalence relation on } L \text{ compatible with meets and joins}$

 $\underline{\text{weak order}} = \text{permutations of } \mathfrak{S}_n$ ordered by inclusion of inversion sets $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 $\frac{\text{lattice}}{\text{lattice}} = \text{partially ordered set } L \text{ where any } X \subseteq L \text{ admits a } \underline{\text{meet}} \land X \text{ and a } \underline{\text{join}} \lor X$ $\frac{\text{lattice congruence}}{\text{lattice congruence}} = \text{equivalence relation on } L \text{ compatible with meets and joins}$

 $\frac{\text{weak order}}{\text{ordered by inclusion of inversion sets}}$

 $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 \mathbb{N}

right

A B

KΠ

rotation

٨Ŋ

۸۱۸

<u>lattice</u> = partially ordered set L where any $X \subseteq L$ admits a <u>meet</u> $\bigwedge X$ and a join $\bigvee X$ <u>lattice congruence</u> = equivalence relation on L compatible with meets and joins

<u>lattice</u> = partially ordered set L where any $X \subseteq L$ admits a <u>meet</u> $\bigwedge X$ and a join $\bigvee X$ <u>lattice congruence</u> = equivalence relation on L compatible with meets and joins

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ <u>polytope</u> = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ <u>polytope</u> = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

quotient fan = $\mathbb{C}(T)$ obtained by glueing $\mathbb{C}(\sigma)$ for all σ in the same BST insertion fiber

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ <u>polytope</u> = convex hull of a finite set = intersection of finitely many affine half-space

POLYWOOD

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

HOPF ALGEBRAS: MALVENUTO-REUTENAUER AND LODAY-RONCO

 $\underline{\text{product}} = \text{linear map} \cdot : V \otimes V \to V = \text{a tool to combine two elements (glue)}$ $\underline{\text{coproduct}} = \text{linear map} \ \triangle : V \to V \otimes V = \text{a tool to decompose an element (scisors)}$ $\underline{\text{Hopf algebra}} = (V, \cdot, \triangle) \text{ such that } \triangle(a \cdot b) = \triangle(a) \cdot \triangle(b)$

Two operations on permutations:

 $\underline{\mathsf{shuffle}} \ 12 \amalg 231 = \{12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312\}$ convol. $12 \star 231 = \{12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231\}$

$$\begin{array}{ll} & \underline{\mathsf{Malvenuto-Reutenauer}} & \supseteq & \underline{\mathsf{Loday-Ronco}} \\ \text{vector space} & \langle \ \mathbb{F}_{\sigma} \ | \ \sigma \ \mathsf{permutation of any size} \rangle & \langle \ \mathbb{P}_{T} \ | \ T \ \mathsf{binary tree of any size} \rangle \\ \text{product} & & \mathbb{F}_{\rho} \cdot \mathbb{F}_{\sigma} = \sum_{\tau \in \rho \amalg \sigma} \mathbb{F}_{\tau} = \sum_{\rho \setminus \sigma \leq \tau \leq \rho / \sigma} \mathbb{F}_{\tau} & & \mathbb{P}_{R} \cdot \mathbb{P}_{S} = \sum_{R \setminus S \leq \tau \leq R / S} \mathbb{P}_{T} \\ \text{coproduct} & & \Delta(\mathbb{F}_{\tau}) = \sum_{\tau \in \rho \star \sigma} \mathbb{F}_{\rho} \otimes \mathbb{F}_{\sigma} & & \Delta(\mathbb{P}_{T}) = \sum_{\substack{R_{1} \cdots R_{k} \mid |S \ i \in [k]}} (\prod_{i \in [k]} \mathbb{P}_{R_{i}}) \otimes \mathbb{P}_{S} \end{array}$$

HOPF ALGEBRAS: MALVENUTO-REUTENAUER AND LODAY-RONCO

 $\underline{\text{product}} = \text{linear map} \cdot : V \otimes V \to V = \text{a tool to combine two elements (glue)}$ $\underline{\text{coproduct}} = \text{linear map} \ \triangle : V \to V \otimes V = \text{a tool to decompose an element (scisors)}$ $\underline{\text{Hopf algebra}} = (V, \cdot, \triangle) \text{ such that } \triangle(a \cdot b) = \triangle(a) \cdot \triangle(b)$

Two operations on permutations:

 $\underline{\mathsf{shuffle}} \ 12 \amalg 231 = \{12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312\}$ convol. $12 \star 231 = \{12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231\}$

$$\begin{array}{ll} & \underline{\mathsf{Malvenuto-Reutenauer}} & \supseteq & \underline{\mathsf{Loday-Ronco}} \\ \text{vector space} & \langle \ \mathbb{F}_{\sigma} \ | \ \sigma \ \mathsf{permutation of any size} \rangle & \langle \ \mathbb{P}_{T} \ | \ T \ \mathsf{binary tree of any size} \rangle \\ \text{product} & & \mathbb{F}_{\rho} \cdot \mathbb{F}_{\sigma} = \sum_{\tau \in \rho \amalg \sigma} \mathbb{F}_{\tau} = \sum_{\rho \setminus \sigma \leq \tau \leq \rho/\sigma} \mathbb{F}_{\tau} & & \mathbb{P}_{R} \cdot \mathbb{P}_{S} = \sum_{R \setminus S \leq \tau \leq R/S} \mathbb{P}_{T} \\ \text{coproduct} & & \Delta(\mathbb{F}_{\tau}) = \sum_{\tau \in \rho \star \sigma} \mathbb{F}_{\rho} \otimes \mathbb{F}_{\sigma} & & \Delta(\mathbb{P}_{T}) = \sum_{\substack{R_{1} \cdots R_{k} \mid |S \ i \in [k]}} (\prod_{i \in [k]} \mathbb{P}_{R_{i}}) \otimes \mathbb{P}_{S} \end{array}$$

<u>Hopf subalgebra</u> = define $\mathbb{P}_T = \sum \mathbb{F}_{\tau}$ over all permutations τ in the BST fiber of T

LATTICE THEORY OF THE WEAK ORDER

DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

lattice = poset (L, \leq) with a meet \land and a join \lor

 (L,\leq,\wedge,\vee) finite lattice is

• distributive if
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$
 for any $x, y, z \in L$

• join semidistributive if $x \lor y = x \lor z$ implies $x \lor (y \land z) = x \lor y$ for any $x, y, z \in L$

• semidistributive if both join and meet semidistributive

DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

lattice = poset (L, \leq) with a meet \land and a join \lor

 (L,\leq,\wedge,\vee) finite lattice is

• distributive if $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ for any $x, y, z \in L$

 \implies any $y \in L$ is represented as $y = \bigvee_{i \in J} j$ where $J = \{\text{join irreducibles below } y\}$

• join semidistributive if $x \lor y = x \lor z$ implies $x \lor (y \land z) = x \lor y$ for any $x, y, z \in L$

 \implies any $y \in L$ admits a canonical join representation $y = \bigvee_{x \leq y} k_{\vee}(x, y)$ where $k_{\vee}(x, y)$ is the unique minimal element of $\{z \in L \mid x \lor z = y\}$

• semidistributive if both join and meet semidistributive

join representation of $y \in L$ = subset $J \subseteq L$ such that $y = \bigvee J$. $y = \bigvee J$ irredundant if $\not\exists J' \subsetneq J$ with $y = \bigvee J'$ JR are ordered by containement of order ideals: $J \leq J' \iff \forall z \in J, \exists z' \in J', z \leq z'$ canonical join representation of y = minimal irred. join representation of y (if it exists)

 \implies "lowest way to write y as a join"

THM. Canonical join representation of $\sigma = \bigvee_{\sigma_i > \sigma_{i+1}} \lambda(\sigma, i)$.

Reading ('15)

ARCS

 $\underline{\mathsf{arc}} = (a, b, A, B) \text{ with } 1 \leq a < b \leq n \text{ and } A \sqcup B =]a, b[$

Reading ('15)

FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

 $\sigma=2537146$

draw the table of points (σ_i, i) draw all arcs $(\sigma_i, i) - (\sigma_{i+1}, i+1)$ with descents in red and ascent in green

project down the red arcs and up the green arcs allowing arcs to bend but not to cross or pass points

 $\begin{aligned} &\delta(\sigma) = \text{projected red arcs} \\ &\delta(\sigma) = \text{projected green arcs} \end{aligned}$

noncrossing arc diagrams = set \mathcal{D} of arcs st. $\forall \alpha, \beta \in \mathcal{D}$:

- $\operatorname{left}(\alpha) \neq \operatorname{left}(\beta)$ and $\operatorname{right}(\alpha) \neq \operatorname{right}(\beta)$,
- α and β are not crossing.

THM. $\sigma \to \delta(\sigma)$ and $\sigma \to \delta(\sigma)$ are bijections from permutations to noncrossing arc diagrams.

Reading ('15)

CANONICAL JOIN COMPLEX

<u>canonical join complex</u> of a join semidistributive lattice L = simplicial complex with • vertices = join irreducibles of L

• faces = canonical join representations in L

THM. canonical join complex of the weak order \leftrightarrow non-crossing complex on arcs

<u>lattice congruence</u> of L = equivalence relation \equiv which respects meets and joins $x \equiv x'$ and $y \equiv y' \Longrightarrow x \land y \equiv x' \land y'$ and $x \lor y \equiv x' \lor y'$

<u>lattice quotient</u> of L/\equiv = lattice on equivalence classes of L under \equiv where

- $\bullet \ X \leq Y \iff \exists \ x \in X, \ y \in Y, \quad x \leq y$
- $X \wedge Y =$ equiv. class of $x \wedge y$ for any $x \in X$ and $y \in Y$
- $X \lor Y =$ equiv. class of $x \lor y$ for any $x \in X$ and $y \in Y$

LATTICE QUOTIENTS AND CANONICAL JOIN REPRESENTATIONS

- each class X is an interval $[\pi_{\downarrow}(X), \pi^{\uparrow}(X)]$
- L/\equiv is isomorphic to $\pi_{\downarrow}(L)$ (as poset)
- canonical join representations in L/\equiv are canonical join representations in L that only involve join irreducibles j with $\pi_{\downarrow}(j) = j$.

THM.
$$\equiv$$
 lattice congruence of the weak order on \mathfrak{S}_n
Let \mathcal{I}_{\equiv} = arcs corresponding to join irreducibles σ with $\pi_{\downarrow}(\sigma) = \sigma$
Then

•
$$\pi_{\downarrow}(\sigma) = \sigma \iff \delta(\sigma) \subseteq \mathcal{I}_{\equiv}$$

• the map $\mathfrak{S}_n \equiv \longrightarrow \{ \text{nc arc diagrams in } \mathcal{I}_{\equiv} \}$ is a bijection. $X \longmapsto \frac{\delta(\pi_{\perp}(X))}{\delta(\pi_{\perp}(X))}$

Reading ('15)
FORCING AND ARC IDEALS

THM. $\mathcal{I}_{\equiv} = \text{arcs corresponding to join irreducibles } \sigma \text{ with } \pi_{\downarrow}(\sigma) = \sigma.$ Bijection $\mathfrak{S}_n / \equiv \longleftrightarrow \{ \text{nc arc diagrams in } \mathcal{I}_{\equiv} \}.$

THM. The following are equivalent for a set of arcs \mathcal{I} :

- there exists a lattice congruence \equiv on \mathfrak{S}_n with $\mathcal{I} = \mathcal{I}_{\equiv}$
- $\bullet \ensuremath{\mathcal{I}}$ is an upper ideal of the forcing order

Reading ('15)

ARC IDEALS

Reading ('15)

ARC IDEALS

<u>quotient fan</u> \mathcal{F}_{\equiv} = chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv

 $\underline{\text{quotientope}} = \text{polytope with normal fan } \mathcal{F}_{\equiv}$

<u>quotient fan</u> \mathcal{F}_{\equiv} = chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv

 $\underline{\text{quotientope}} = \text{polytope}$ with normal fan \mathcal{F}_{\equiv}

<u>quotient fan</u> \mathcal{F}_{\equiv} = chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv

 $\underline{\text{quotientope}} = \text{polytope}$ with normal fan \mathcal{F}_{\equiv}

Reading ('05) P.-Santos ('19) Padrol–P.–Ritter ('20⁺)

D directed acyclic graph

 \mathcal{AR}_D = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element Dmaximal element \bar{D} self-dual under reversing all arcs

cover relations = flipping a single arc

flippable arcs of $E = \underline{\text{transitive reduction}}$ of $E = E \smallsetminus \{(u, v) \in E \mid \exists \text{ directed path } u \rightsquigarrow v \text{ in } E\}$

D directed acyclic graph

 \mathcal{AR}_D = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element Dmaximal element \overline{D} self-dual under reversing all arcs cover relations = flipping a single arc

flippable arcs of $E = \underline{\text{transitive reduction}}$ of $E = E \smallsetminus \{(u, v) \in E \mid \exists \text{ directed path } u \rightsquigarrow v \text{ in } E\}$

D directed acyclic graph \mathcal{AR}_D = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. \mathcal{AR}_D lattice $\iff D$ vertebrate

lattice

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. \mathcal{AR}_D lattice $\iff D$ vertebrate

lattice

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. \mathcal{AR}_D lattice $\iff D$ vertebrate

 \boldsymbol{X} subset of arcs of \boldsymbol{D} is

- closed if all arcs of D in the transitive closure of X also belong to X
- coclosed if its complement is closed
- biclosed if it is closed and coclosed

PROP. If D vertebrate,

 $X \text{ biclosed} \iff \text{the reorientation of } X \text{ is acyclic}$

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. \mathcal{AR}_D lattice $\iff D$ vertebrate

PROP. If D vertebrate,

 $bwd(E_1 \lor \ldots \lor E_k) =$ transitive closure of $bwd(E_1) \cup \cdots \cup bwd(E_k)$ $fwd(E_1 \land \ldots \land E_k) =$ transitive closure of $fwd(E_1) \cup \cdots \cup fwd(E_k)$

DISTRIBUTIVITY & SEMIDISTRIBUTIVITY

DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

lattice = poset (L, \leq) with a meet \land and a join \lor

 (L,\leq,\wedge,\vee) finite lattice is

• distributive if $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ for any $x, y, z \in L$

 \implies any $y \in L$ is represented as $y = \bigvee_{i \in J} j$ where $J = \{\text{join irreducibles below } y\}$

• join semidistributive if $x \lor y = x \lor z$ implies $x \lor (y \land z) = x \lor y$ for any $x, y, z \in L$

 \implies any $y \in L$ admits a canonical join representation $y = \bigvee_{x \leq y} k_{\vee}(x, y)$ where $k_{\vee}(x, y)$ is the unique minimal element of $\{z \in L \mid x \lor z = y\}$

• semidistributive if both join and meet semidistributive

DISTRIBUTIVE ACYCLIC REORIENTATION POSETS

THM. \mathcal{AR}_D distributive lattice $\iff D$ forest $\iff \mathcal{AR}_D$ boolean lattice

SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =

- D <u>vertebrate</u> = transitive reduction of any induced subgraph of D is a forest
- D filled = any directed path joining the endpoints of an arc in <math>D induces a tournament

THM. \mathcal{AR}_D semidistributive lattice $\iff D$ is skeletal

D skeletal =

- D <u>vertebrate</u> = transitive reduction of any induced subgraph of D is a forest
- D filled = any directed path joining the endpoints of an arc in D induces a tournament

THM. \mathcal{AR}_D semidistributive lattice $\iff D$ is skeletal

THM. If D skeletal, the canonical join representation of an acyclic reorientation E of D is $E = \bigvee_a E_a$ where

- *a* runs over the arcs of *D* reversed in the transitive reduction of *E*
- E_a is the acyclic reorientation of Dwhere an arc is reversed iff it is the only arc reversed in E along a path in D joining the endpoints of a

ROPES

ROPES & NON-CROSSING ROPE DIAGRAMS

 $\underline{\mathsf{rope}} \text{ of } D = \mathsf{quadruple} \ \rho = (u,v,\bigtriangledown,\bigtriangleup) \ \mathsf{where}$

- $\bullet \; (u,v)$ is an arc of D
- $\bigtriangledown \sqcup \bigtriangleup$ partitions the transitive support of (u, v) minus $\{u, v\}$

ropes
$$\swarrow$$
 \swarrow \swarrow \checkmark \checkmark \checkmark \checkmark

ROPES & NON-CROSSING ROPE DIAGRAMS

 $\underline{\mathsf{rope}} \text{ of } D = \mathsf{quadruple} \ \rho = (u, v, \bigtriangledown, \bigtriangleup) \text{ where }$

- $\bullet \; (u,v)$ is an arc of D
- $\bigtriangledown \sqcup \bigtriangleup$ partitions the transitive support of (u, v) minus $\{u, v\}$

ROPES & NON-CROSSING ROPE DIAGRAMS

 $\underline{\mathsf{rope}} \text{ of } D = \mathsf{quadruple} \ \rho = (u, v, \bigtriangledown, \bigtriangleup) \text{ where }$

- $\bullet \; (u,v)$ is an arc of D
- $\bigtriangledown \sqcup \bigtriangleup$ partitions the transitive support of (u, v) minus $\{u, v\}$

 $(u,v,\bigtriangledown,\bigtriangleup)$ and $(u',v',\bigtriangledown',\bigtriangleup')$ are crossing if there are $w\neq w'$ such that

- $\bullet \; w \in (\bigtriangledown \cup \{u,v\}) \cap (\bigtriangleup' \cup \{u',v'\})$
- $\bullet \ w' \in (\bigtriangleup \cup \{u,v\}) \cap (\bigtriangledown' \cup \{u',v'\})$

NON-CROSSING ROPE DIAGRAMS & CANONICAL JOIN REPRESENTATIONS

PROP. The canonical join complex is isomorphic to the non-crossing rope complex

 $\underline{\mathsf{rope}} \text{ of } D = (u,v,\bigtriangledown,\bigtriangleup) \text{ where }$

- (u, v) is an arc of D
- $\bigtriangledown \sqcup \bigtriangleup = \mathsf{trans.\,supp.\,of}\ (u,v)$

 $(u,v,\bigtriangledown,\bigtriangleup)$ and $(u',v',\bigtriangledown',\bigtriangleup')$ are crossing if there are $w\neq w'$ such that

- $\bullet \ w \in (\bigtriangledown \cup \{u,v\}) \cap (\bigtriangleup' \cup \{u',v'\})$
- $\bullet \ w' \in (\bigtriangleup \cup \{u,v\}) \cap (\bigtriangledown' \cup \{u',v'\})$

CONGRUENCES & QUOTIENTS

COHERENT CONGRUENCES

congruence lattice of L = lattice of all lattice congruences of L ordered by refinement

SUBROPES & FORCING

THM. \mathcal{AR}_D congruence uniform lattice $\iff D$ is skeletal

PROP. congruence lattice of $\mathcal{AR}_D \simeq$ lower ideal lattice of subrope order

CORO. \equiv lattice congruence of \mathcal{AR}_D

- E minimal in its \equiv -class $\iff \delta(E) \subseteq \mathbb{I}_{\equiv}$
- quotient $\mathcal{AR}_D \equiv \simeq$ subposet of \mathcal{AR}_D induced by $\{E \in \mathcal{AR}_D \mid \delta(E) \subseteq \mathbb{I}_{\equiv}\}$

COHERENT CONGRUENCES

 $(\mho, \Omega) =$ two of arbitrary subsets of V $\mathbb{I}_{(\mho,\Omega)} =$ lower ideal of ropes $(u, v, \bigtriangledown, \bigtriangleup)$ of D such that $\bigtriangledown \subseteq \mho$ and $\bigtriangleup \subseteq \Omega$ <u>coherent congruence</u> $\equiv_{(\mho,\Omega)} =$ congruence with subrope ideal $\mathbb{I}_{(\mho,\Omega)}$

examples:

P.-Pons ('18)

• sylvester congruence = subrope ideal contains only ropes $(u, v, \bigtriangledown, \varnothing)$

COHERENT CONGRUENCES

 $(\mho, \Omega) = \mathsf{two} \mathsf{ of arbitrary subsets of } V$

 $\mathbb{I}_{(\mho,\Omega)} = \text{lower ideal of ropes } (u,v,\bigtriangledown,\bigtriangleup) \text{ of } D \text{ such that } \bigtriangledown \subseteq \mho \text{ and } \bigtriangleup \subseteq \Omega$

<u>coherent congruence</u> $\equiv_{(\mho,\Omega)}$ = congruence with subrope ideal $\mathbb{I}_{(\mho,\Omega)}$

examples:

P.-Pons ('18)

• sylvester congruence = subrope ideal contains only ropes $(u, v, \nabla, \emptyset)$

• Cambrian congruences = when $\mho \sqcup \Omega = V$

Reading ('06)

 \boldsymbol{D} directed acyclic graph

<u>graphical arrangement</u> \mathcal{H}_D = arrangement of hyperplanes $x_u = x_v$ for all arcs $(u, v) \in D$ <u>graphical zonotope</u> \mathcal{Z}_D = Minkowski sum of $[e_u, e_v]$ for all arcs $(u, v) \in D$

 $\begin{array}{cccc} \text{hyperplanes of } \mathcal{H}_D & \longleftrightarrow & \text{summands of } \mathcal{Z}_D & \longleftrightarrow & \text{arcs of } D \\ \text{regions of } \mathcal{H}_D & \longleftrightarrow & \text{vertices of } \mathcal{Z}_D & \longleftrightarrow & \text{acyclic reorientations of } D \\ \text{poset of regions of } \mathcal{H}_D & \longleftrightarrow & \text{oriented graph of } \mathcal{Z}_D & \longleftrightarrow & \text{acyclic reorientation poset of } D \end{array}$

QUOTIENT FAN

THM. A lattice congruence \equiv of \mathcal{AR}_D defines a <u>quotient fan</u> \mathcal{F}_{\equiv} where the chambers of \mathcal{F}_{\equiv} are obtained by glueing the chambers of \mathcal{H}_D corresponding to acyclic reorientations in the same equivalence class of \equiv

QUOTIENT FAN

THM. A lattice congruence \equiv of \mathcal{AR}_D defines a <u>quotient fan</u> \mathcal{F}_{\equiv} where the chambers of \mathcal{F}_{\equiv} are obtained by glueing the chambers of \mathcal{H}_D corresponding to acyclic reorientations in the same equivalence class of \equiv

QUOTIENTOPES

THM. The quotient fan \mathcal{F}_{\equiv} of any lattice congruence \equiv of \mathcal{AR}_D is the normal fan of

- a Minkowski sum of associahedra of Hohlweg Lange, and
- a Minkowski sum of shard polytopes of Padrol P. Ritter

 $\begin{array}{l} \rho \mbox{-alternating matching} = \mbox{pair} \ (M_{\bigtriangledown}, M_{\bigtriangleup}) \ \mbox{with} \ M_{\bigtriangledown} \subseteq \{u\} \cup \bigtriangledown \ \mbox{and} \ M_{\bigtriangleup} \subseteq \bigtriangleup \cup \{v\} \ \mbox{s.t.} \\ M_{\bigtriangledown} \ \mbox{and} \ M_{\bigtriangleup} \ \mbox{are alternating along the transitive reduction of} \ D \\ \mbox{shard polytope} \ \mbox{of} \ \rho = \mbox{convex hull of signed charact. vectors of} \ \rho \mbox{-alternating matchings} \end{array}$

QUOTIENTOPES

THM. The quotient fan \mathcal{F}_{\equiv} of any lattice congruence \equiv of \mathcal{AR}_D is the normal fan of

- a Minkowski sum of associahedra of Hohlweg Lange, and
- a Minkowski sum of shard polytopes of Padrol P. Ritter

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron of D are facet defining inequalities of the graphical zonotope of D

SOME OPEN PROBLEMS
SIMPLE ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to \square or \square

- \iff the Hasse diagram of the D-Tamari lattice is regular
- \iff the *D*-associahedron is a simple polytope

ISOMORPHIC CAMBRIAN ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to \sum

- \iff all Cambrian associahedra of D have the same number of vertices
- \iff all Cambrian associahedra of D have isomorphic 1-skeleta
- \iff all Cambrian associahedra of D have isomorphic face lattices

REMOVAHEDRA

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron of D are facet defining inequalities of the graphical zonotope of D

CONJ. For any $\mho, \Omega \subseteq V$, the quotient fan $\mathcal{F}_{(\mho,\Omega)}$ is the normal fan of the polytope obtained by deleting inequalities of the graphical zonotope of D

HAMILTONIAN CYCLES

Not all acyclic reorientation flip graphs admit a Hamiltonian cycle

HAMILTONIAN CYCLES

THM [SSW'93]. For D chordal, the acyclic reorientation flip graph is Hamiltonian

CONJ. When D is skeletal, all quotientopes admit a Hamiltonian cycle

 \dots checked for all quotients, for all skeletal acyclic directed graphs up to 5 vertices \dots

LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

 ${\mathcal H}$ hyperplane arrangement in ${\mathbb R}^n$

base region B = distinguished region of $\mathbb{R}^n \smallsetminus \mathcal{H}$

inversion set of a region C = set of hyperplanes of \mathcal{H} that separate B and C

poset of regions $PR(\mathcal{H}, B)$ = regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ ordered by inclusion of inversion sets

QU. For which (\mathcal{H}, B) is the poset of regions PR a lattice?

LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

 $\mathcal H$ hyperplane arrangement in $\mathbb R^n$

base region $B = \mathsf{distinguished}$ region of $\mathbb{R}^n \smallsetminus \mathcal{H}$

inversion set of a region C = set of hyperplanes of \mathcal{H} that separate B and C

poset of regions $PR(\mathcal{H}, B)$ = regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ ordered by inclusion of inversion sets

QU. For which (\mathcal{H}, B) is the poset of regions PR a lattice?

THM. The poset of regions $\mathsf{PR}(\mathcal{H},B)$

Björner–Edelman–Ziegler ('90)

- is never a lattice when B is not a simplicial region
- \bullet is always a lattice when ${\cal H}$ is a simplicial arrangement

THM. The poset of regions $PR(\mathcal{H}, B)$ is a semidistributive lattice $\iff \mathcal{H}$ is tight with respect to B

Reading ('16)

QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

 $\mathcal H$ hyperplane arrangement in $\mathbb R^n$

<u>base region</u> B = distinguished region of $\mathbb{R}^n \smallsetminus \mathcal{H}$ inversion set of a region C = set of hyperplanes of \mathcal{H} that separate B and C

poset of regions $PR(\mathcal{H}, B)$ = regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ ordered by inclusion of inversion sets

THM. If $PR(\mathcal{H}, B)$ is a lattice, and \equiv is a congruence of $PR(\mathcal{H}, B)$, the cones obtained by glueing the regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ in the same congruence class form a complete fan \mathcal{F}_{\equiv} Reading ('05)

QU. Is the quotient fan \mathcal{F}_{\equiv} always polytopal?

QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

hyperoctahedral group = isometry group of the hypercube (or of its dual cross-polytope)

THM. The quotient fan of any lattice congruence of the type B weak order is polytopal Padrol–P.–Ritter ('20⁺)

Type B quotientopes are obtained

- not as removahedra,
- not as Minkowski sum of cyclohedra,
- but as Minkowski sum of shard polytopes (but this is another story...)

Ę. \sum Ŕ ×. Ż

THANK YOU