Acyclic reorientation lattices and their lattice quotients
 V. PILAUD (CNRS \& LIX, École Polytechnique)

Algebraic and Combinatorial Perspectives in the Mathematical Sciences Friday March 25th, 2022

PERMUTAHEDRA \& ASSOCIAHEDRA

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$ lattice congruence $=$ equivalence relation on L compatible with meets and joins

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$ lattice congruence $=$ equivalence relation on L compatible with meets and joins

weak order $=$ permutations of \mathfrak{S}_{n} ordered by inclusion of inversion sets

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$ lattice congruence $=$ equivalence relation on L compatible with meets and joins

weak order $=$ permutations of \mathfrak{S}_{n} ordered by inclusion of inversion sets

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$ lattice congruence $=$ equivalence relation on L compatible with meets and joins

weak order $=$ permutations of \mathfrak{S}_{n} ordered by inclusion of inversion sets

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations
sylvester congruence $=$ equivalence classes are fibers of BST insertion

$$
=\text { rewriting rule } U a c V b W \equiv_{\text {sylv }} U c a V b W \text { with } a<b<c
$$

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$ lattice congruence $=$ equivalence relation on L compatible with meets and joins

weak order $=$ permutations of \mathfrak{S}_{n} ordered by inclusion of inversion sets

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations
sylvester congruence $=$ equivalence classes are fibers of BST insertion

$$
=\text { rewriting rule } U a c V b W \equiv_{\text {sylv }} U c a V b W \text { with } a<b<c
$$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polyhedral cone $=$ positive span of a finite set of \mathbb{R}^{n}
$=$ intersection of finitely many linear half-spaces
fan $=$ collection of polyhedral cones closed by faces and where any two cones intersect along a face

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope $=$ convex hull of a finite set of \mathbb{R}^{n}
= bounded intersection of finitely many affine half-spaces
face $=$ intersection with a supporting hyperplane face lattice $=$ all the faces with their inclusion relations

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

braid fan $=$

$$
\mathbb{C}(\sigma)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\}
$$

$$
\mathbb{C}(T)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{i} \leq x_{j} \text { if } i \rightarrow j \text { in } T\right\}
$$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space
braid fan $=$

$$
\mathbb{C}(\sigma)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\}
$$

quotient $f a n=\mathbb{C}(T)$ obtained by glueing $\mathbb{C}(\sigma)$ for all σ in the same BST insertion fiber

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

permutahedron $\operatorname{Perm}(n)$

$$
\begin{aligned}
& =\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\} \\
& =\mathbb{H} \cap \bigcap_{\varnothing \neq J \subseteq[n]} H_{J}
\end{aligned}
$$

$$
=\operatorname{conv}\left\{[\ell(T, i) \cdot r(T, i)]_{i \in[n]} \mid T \text { binary tree }\right\}
$$

$$
=\mathbb{H} \cap \bigcap_{1 \leq i<j \leq n} H_{[i, j]}
$$

where $\mathbb{H}_{J}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \left\lvert\, \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2}\right.\right\}$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

permutahedron $\operatorname{Perm}(n)$

$$
\begin{aligned}
& =\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\} \\
& =\mathbb{H} \cap \bigcap_{\not \subset \neq J \subseteq[n]} H_{J}
\end{aligned}
$$

$$
=\operatorname{conv}\left\{[\ell(T, i) \cdot r(T, i)]_{i \in[n]} \mid T \text { binary tree }\right\}
$$

$$
=\mathbb{H} \cap \bigcap_{1 \leq i<j \leq n} \mathbb{H}_{[i, j]}
$$

where $\mathbb{H}_{J}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \left\lvert\, \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2}\right.\right\}$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

permutahedron $\operatorname{Perm}(n)$

$$
\begin{aligned}
& =\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\} \\
& =\mathbb{H} \cap \bigcap_{\varnothing \neq J \subseteq \subseteq[n]} H_{J}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{conv}\left\{[\ell(T, i) \cdot r(T, i)]_{i \in[n]} \mid T \text { binary tree }\right\} \\
& =\mathbb{H} \cap \bigcap_{1 \leq i<j \leq n} \mathbb{H}_{[i, j]} \begin{array}{r}
\text { Stasheff ('63) } \\
\left.\begin{array}{r}
\text { Shnider-Sternberg ('93) } \\
\text { Loday ('04) }
\end{array}\right)
\end{array}
\end{aligned}
$$

where $\mathbb{H}_{J}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \sum_{j \in J} x_{j} \geq\left({ }_{2}^{(J \mid+1}\right)\right\}$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

permutahedron $\operatorname{Perm}(n)$
\Longrightarrow weak order on permutations

\Longrightarrow Tamari lattice on binary trees

Hasse diagram of	weak order Tamari lattice	graph of	permutahedron oriented associahedron	$12 \ldots n \rightarrow n \ldots 21$ left \rightarrow right comb

HOPF ALGEBRAS: MALVENUTO-REUTENAUER AND LODAY-RONCO

> product $=$ linear map $\cdot V \otimes V \rightarrow V=$ a tool to combine two elements (glue) coproduct $=$ linear map $\triangle: V \rightarrow V \otimes V=$ a tool to decompose an element (scisors) Hopf algebra $=(V, \cdot, \triangle)$ such that $\triangle(a \cdot b)=\triangle(a) \cdot \triangle(b)$

Two operations on permutations:
shuffle 12 Ш $231=\{12453,14253,14523,14532,41253,41523,41532,45123,45132,45312\}$ convol. $12 \star 231=\{12453,13452,14352,15342,23451,24351,25341,34251,35241,45231\}$

Malvenuto-Reutenauer \supseteq Loday-Ronco

vector space $\left\langle\mathbb{F}_{\sigma}\right| \sigma$ permutation of any size \rangle
$\left\langle\mathbb{P}_{T}\right| T$ binary tree of any size \rangle
product

$$
\mathbb{P}_{R} \cdot \mathbb{P}_{S}=\sum_{R \backslash S \leq \tau \leq R / S} \mathbb{P}_{T}
$$

coproduct

$$
\mathbb{F}_{\rho} \cdot \mathbb{F}_{\sigma}=\sum_{\tau \in \rho \amalg \sigma} \mathbb{F}_{\tau}=\sum_{\rho \backslash \sigma \leq \tau \leq \rho / \sigma} \mathbb{F}_{\tau}
$$

$$
\triangle\left(\mathbb{F}_{\tau}\right)=\sum_{\tau \in \rho \star \sigma} \mathbb{F}_{\rho} \otimes \mathbb{F}_{\sigma}
$$

$$
\triangle\left(\mathbb{P}_{T}\right)=\sum_{\substack{R_{1} \cdots R_{k} \| S S \\ \text { cut of } T}}\left(\prod_{i \in[k]} \mathbb{P}_{R_{i}}\right) \otimes \mathbb{P}_{S}
$$

HOPF ALGEBRAS: MALVENUTO-REUTENAUER AND LODAY-RONCO

```
product = linear map \cdot: V\otimesV 
coproduct = linear map }\triangle:V->V\otimesV=\mathrm{ a tool to decompose an element (scisors)
Hopf algebra }=(V,\cdot,\triangle)\mathrm{ such that }\triangle(a\cdotb)=\triangle(a)\cdot\triangle(b
```

Two operations on permutations:
shuffle 12 Ш $231=\{12453,14253,14523,14532,41253,41523,41532,45123,45132,45312\}$
convol. $12 \star 231=\{12453,13452,14352,15342,23451,24351,25341,34251,35241,45231\}$

Malvenuto-Reutenauer \supseteq Loday-Ronco

vector space $\left\langle\mathbb{F}_{\sigma}\right| \sigma$ permutation of any size \rangle
$\left\langle\mathbb{P}_{T}\right| T$ binary tree of any size \rangle
product
coproduct

$$
\mathbb{F}_{\rho} \cdot \mathbb{F}_{\sigma}=\sum_{\tau \in \rho Ш \sigma} \mathbb{F}_{\tau}=\sum_{\rho \backslash \sigma \leq \tau \leq \rho / \sigma} \mathbb{F}_{\tau}
$$

$$
\mathbb{P}_{R} \cdot \mathbb{P}_{S}=\sum_{R \backslash S \leq \tau \leq R / S} \mathbb{P}_{T}
$$

$$
\triangle\left(\mathbb{F}_{\tau}\right)=\sum_{\tau \in \rho \star \sigma} \mathbb{F}_{\rho} \otimes \mathbb{F}_{\sigma}
$$

$$
\triangle\left(\mathbb{P}_{T}\right)=\sum_{\substack{R_{1} \cdots R_{k} \| S \\ \text { cut of } T}}\left(\prod_{i \in[k]} \mathbb{P}_{R_{i}}\right) \otimes \mathbb{P}_{S}
$$

$\underline{\text { Hopf subalgebra }}=$ define $\mathbb{P}_{T}=\sum_{\tau} \mathbb{F}_{\tau}$ over all permutations τ in the BST fiber of T

LATTICE THEORY OF THE WEAK ORDER

DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

lattice $=$ poset (L, \leq) with a meet \wedge and a join \vee
(L, \leq, \wedge, \vee) finite lattice is

- distributive if $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ for any $x, y, z \in L$
- join semidistributive if $x \vee y=x \vee z$ implies $x \vee(y \wedge z)=x \vee y$ for any $x, y, z \in L$
- semidistributive if both join and meet semidistributive

DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

lattice $=$ poset (L, \leq) with a meet \wedge and a join \vee
(L, \leq, \wedge, \vee) finite lattice is

- distributive if $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ for any $x, y, z \in L$
\Longrightarrow any $y \in L$ is represented as $y=\bigvee_{j \in J} j$ where $J=\{$ join irreducibles below $y\}$
- join semidistributive if $x \vee y=x \vee z$ implies $x \vee(y \wedge z)=x \vee y$ for any $x, y, z \in L$

$$
\begin{aligned}
\Longrightarrow & \text { any } y \in L \text { admits a canonical join representation } y=\bigvee_{x \lessdot y} k_{\vee}(x, y) \\
& \text { where } k_{\vee}(x, y) \text { is the unique minimal element of }\{z \in L \mid x \vee z=y\}
\end{aligned}
$$

- semidistributive if both join and meet semidistributive

distributive
semidistributive
not semidistributive

CANONICAL JOIN REPRESENTATIONS

join representation of $y \in L=$ subset $J \subseteq L$ such that $y=\bigvee J$.
$y=\bigvee J$ irredundant if $\nexists J^{\prime} \subsetneq J$ with $y=\bigvee J^{\prime}$
$J \mathrm{R}$ are ordered by containement of order ideals: $J \leq J^{\prime} \Longleftrightarrow \forall z \in J, \exists z^{\prime} \in J^{\prime}, z \leq z^{\prime}$ canonical join representation of $y=$ minimal irred. join representation of y (if it exists)

\Longrightarrow "lowest way to write y as a join"

CANONICAL JOIN REPRESENTATIONS

σ permutation
inversions of $\sigma=$ pair $\left(\sigma_{i}, \sigma_{j}\right)$ such that $i<j$ and $\sigma_{i}>\sigma_{j}$ weak order $=$ permutations of \mathfrak{S}_{n} ordered
by inclusion of inversion sets

CANONICAL JOIN REPRESENTATIONS

σ permutation
inversions of $\sigma=\operatorname{pair}\left(\sigma_{i}, \sigma_{j}\right)$ such that $i<j$ and $\sigma_{i}>\sigma_{j}$ weak order $=$ permutations of \mathfrak{S}_{n} ordered by inclusion of inversion sets
descent of $\sigma=i$ such that $\sigma_{i}>\sigma_{i+1}$

CANONICAL JOIN REPRESENTATIONS

σ permutation
inversions of $\sigma=$ pair $\left(\sigma_{i}, \sigma_{j}\right)$ such that $i<j$ and $\sigma_{i}>\sigma_{j}$
weak order $=$ permutations of \mathfrak{S}_{n} ordered
by inclusion of inversion sets
descent of $\sigma=i$ such that $\sigma_{i}>\sigma_{i+1} \quad$ join-irreducible $\lambda(\sigma, i)$

THM. Canonical join representation of $\sigma=\bigvee_{\sigma_{i}>\sigma_{i+1}} \lambda(\sigma, i)$.

CANONICAL JOIN REPRESENTATIONS

THM. Canonical join representation of $\sigma=\bigvee_{\sigma_{i}>\sigma_{i+1}} \lambda(\sigma, i)$.

CANONICAL JOIN REPRESENTATIONS

THM. Canonical join representation of $\sigma=\bigvee_{\sigma_{i}>\sigma_{i+1}} \lambda(\sigma, i)$.

$\underline{\operatorname{arc}}=(a, b, A, B)$ with $1 \leq a<b \leq n$ and $A \sqcup B=] a, b[$
Reading ('15)

FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

$\sigma=2537146$
draw the table of points $\left(\sigma_{i}, i\right)$
draw all arcs $\left(\sigma_{i}, i\right)-\left(\sigma_{i+1}, i+1\right)$ with
descents in red and ascent in green
project down the red arcs and up the green arcs allowing arcs to bend but not to cross or pass points
$\delta(\sigma)=$ projected red arcs
$\delta(\sigma)=$ projected green arcs
noncrossing arc diagrams $=$ set \mathcal{D} of arcs st. $\forall \alpha, \beta \in \mathcal{D}$:

- $\operatorname{left}(\alpha) \neq \operatorname{left}(\beta)$ and $\operatorname{right}(\alpha) \neq \operatorname{right}(\beta)$,
- α and β are not crossing.

THM. $\quad \sigma \rightarrow \delta(\sigma)$ and $\sigma \rightarrow \delta(\sigma)$ are bijections from permutations to noncrossing arc diagrams.

CANONICAL JOIN COMPLEX

canonical join complex of a join semidistributive lattice $L=$ simplicial complex with

- vertices $=$ join irreducibles of L
- faces $=$ canonical join representations in L

THM. canonical join complex of the weak order \longleftrightarrow non-crossing complex on arcs

LATTICE CONGRUENCES

lattice congruence of $L=$ equivalence relation \equiv which respects meets and joins $x \equiv x^{\prime}$ and $y \equiv y^{\prime} \Longrightarrow x \wedge y \equiv x^{\prime} \wedge y^{\prime}$ and $x \vee y \equiv x^{\prime} \vee y^{\prime}$
lattice quotient of $L / \equiv=$ lattice on equivalence classes of L under \equiv where

- $X \leq Y \Longleftrightarrow \exists x \in X, y \in Y, \quad x \leq y$
- $X \wedge Y=$ equiv. class of $x \wedge y$ for any $x \in X$ and $y \in Y$
- $X \vee Y=$ equiv. class of $x \vee y$ for any $x \in X$ and $y \in Y$

LATTICE QUOTIENTS AND CANONICAL JOIN REPRESENTATIONS

\equiv lattice congruence on L, then

- each class X is an interval $\left[\pi_{\downarrow}(X), \pi^{\uparrow}(X)\right]$
- L / \equiv is isomorphic to $\pi_{\downarrow}(L)$ (as poset)
- canonical join representations in L / \equiv are canonical join representations in L that only involve join irreducibles j with $\pi_{\downarrow}(j)=j$.

THM. \equiv lattice congruence of the weak order on \mathfrak{S}_{n}
Let $\mathcal{I}_{\equiv}=\operatorname{arcs}$ corresponding to join irreducibles σ with $\pi_{\downarrow}(\sigma)=\sigma$
Then

- $\pi_{\downarrow}(\sigma)=\sigma \Longleftrightarrow \delta(\sigma) \subseteq \mathcal{I}_{\equiv}$.
- the map $\mathfrak{S}_{n} / \equiv \longrightarrow\left\{n c\right.$ arc diagrams in $\left.\mathcal{I}_{\equiv}\right\}$ is a bijection.

$$
X \quad \longmapsto \quad \delta\left(\pi_{\downarrow}(X)\right)
$$

FORCING AND ARC IDEALS

THM. $\mathcal{I}_{\equiv}=$ arcs corresponding to join irreducibles σ with $\pi_{\downarrow}(\sigma)=\sigma$.
Bijection $\mathfrak{S}_{n} / \equiv \longleftrightarrow\left\{\right.$ nc arc diagrams in $\left.\mathcal{I}_{\equiv}\right\}$.

THM. The following are equivalent for a set of arcs \mathcal{I} :

- there exists a lattice congruence \equiv on \mathfrak{S}_{n} with $\mathcal{I}=\mathcal{I}_{\equiv}$
- \mathcal{I} is an upper ideal of the forcing order
(a, b, A, B) forces $(c, d, C, D)=$ $c \leq a<b \leq d$ and $A \subseteq C$ and $B \subseteq D$

ARC IDEALS

arc ideal $=$ ideal of the forcing poset on arcs

essential congruences:
1, 1, 4, 47, 3322, ...
OEIS A330039
all congruences
1, 2, 7, 60, 3444, ...
OEIS A091687

ARC IDEALS

arc ideal $=$ ideal of the forcing poset on arcs

essential congruences:
1, 1, 4, 47, 3322, ...
OEIS A330039
all congruences
$1,2,7,60,3444, \ldots$
OEIS A091687

QUOTIENT FANS \& QUOTIENTOPES

quotient fan $\mathcal{F}_{\equiv}=$ chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv quotientope $=$ polytope with normal fan \mathcal{F}_{\equiv}

QUOTIENT FANS \& QUOTIENTOPES

quotient fan $\mathcal{F}_{\equiv}=$ chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv quotientope $=$ polytope with normal fan \mathcal{F}_{\equiv}

QUOTIENT FANS \& QUOTIENTOPES

quotient fan $\mathcal{F}_{\equiv}=$ chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv quotientope $=$ polytope with normal fan \mathcal{F}_{\equiv}

ACYCLIC REORIENTATION LATTICES

ACYCLIC REORIENTATION POSETS

D directed acyclic graph $\mathcal{A} \mathcal{R}_{D}=$ all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D maximal element \bar{D}
self-dual under reversing all arcs cover relations $=$ flipping a single arc
flippable arcs of $E=$ transitive reduction of E
$=E \backslash\{(u, v) \in E \mid \exists$ directed path $u \rightsquigarrow v$ in $E\}$

ACYCLIC REORIENTATION POSETS

D directed acyclic graph $\mathcal{A} \mathcal{R}_{D}=$ all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D maximal element \bar{D}
self-dual under reversing all arcs cover relations $=$ flipping a single arc
flippable arcs of $E=$ transitive reduction of E $=E \backslash\{(u, v) \in E \mid \exists$ directed path $u \rightsquigarrow v$ in $E\}$

ACYCLIC REORIENTATION POSETS

D directed acyclic graph $\mathcal{A} \mathcal{R}_{D}=$ all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

ACYCLIC REORIENTATION LATTICES

D vertebrate $=$ transitive reduction of any induced subgraph of D is a forest
THM. $\mathcal{A R}_{D}$ lattice $\Longleftrightarrow D$ vertebrate

lattice

not lattice

ACYCLIC REORIENTATION LATTICES

D vertebrate $=$ transitive reduction of any induced subgraph of D is a forest
THM. $\mathcal{A R}_{D}$ lattice $\Longleftrightarrow D$ vertebrate

lattice

not lattice

ACYCLIC REORIENTATION LATTICES

D vertebrate $=$ transitive reduction of any induced subgraph of D is a forest
THM. $\mathcal{A R}_{D}$ lattice $\Longleftrightarrow D$ vertebrate

X subset of arcs of D is

- closed if all arcs of D in the transitive closure of X also belong to X
- coclosed if its complement is closed
- biclosed if it is closed and coclosed

PROP. If D vertebrate,
X biclosed \Longleftrightarrow the reorientation of X is acyclic

ACYCLIC REORIENTATION LATTICES

D vertebrate $=$ transitive reduction of any induced subgraph of D is a forest
THM. $\mathcal{A R}_{D}$ lattice $\Longleftrightarrow D$ vertebrate

PROP. If D vertebrate,

$$
\operatorname{bwd}\left(E_{1} \vee \ldots \vee E_{k}\right)=
$$

transitive closure of $\operatorname{bwd}\left(E_{1}\right) \cup \cdots \cup \operatorname{bwd}\left(E_{k}\right)$

$$
\operatorname{fwd}\left(E_{1} \wedge \ldots \wedge E_{k}\right)=
$$

transitive closure of $\mathrm{fwd}\left(E_{1}\right) \cup \cdots \cup \mathrm{fwd}\left(E_{k}\right)$

DISTRIBUTIVITY \& SEMIDISTRIBUTIVITY

DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

lattice $=$ poset (L, \leq) with a meet \wedge and a join \vee
(L, \leq, \wedge, \vee) finite lattice is

- distributive if $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ for any $x, y, z \in L$
\Longrightarrow any $y \in L$ is represented as $y=\bigvee_{j \in J} j$ where $J=\{$ join irreducibles below $y\}$
- join semidistributive if $x \vee y=x \vee z$ implies $x \vee(y \wedge z)=x \vee y$ for any $x, y, z \in L$

$$
\begin{aligned}
\Longrightarrow & \text { any } y \in L \text { admits a canonical join representation } y=\bigvee_{x \lessdot y} k_{\vee}(x, y) \\
& \text { where } k_{\vee}(x, y) \text { is the unique minimal element of }\{z \in L \mid x \vee z=y\}
\end{aligned}
$$

- semidistributive if both join and meet semidistributive

distributive
semidistributive
not semidistributive

DISTRIBUTIVE ACYCLIC REORIENTATION POSETS

THM. $\mathcal{A} \mathcal{R}_{D}$ distributive lattice $\Longleftrightarrow D$ forest $\Longleftrightarrow \mathcal{A R}_{D}$ boolean lattice

distributive

not distributive

SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =

- D vertebrate $=$ transitive reduction of any induced subgraph of D is a forest
- D filled $=$ any directed path joining the endpoints of an arc in D induces a tournament

THM. $\mathcal{A R}_{D}$ semidistributive lattice $\Longleftrightarrow D$ is skeletal

SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal $=$

- D vertebrate $=$ transitive reduction of any induced subgraph of D is a forest
- D filled $=$ any directed path joining the endpoints of an arc in D induces a tournament

THM. $\mathcal{A R}_{D}$ semidistributive lattice $\Longleftrightarrow D$ is skeletal

THM. If D skeletal, the canonical join representation of an acyclic reorientation E of D is $E=\bigvee_{a} E_{a}$ where

- a runs over the arcs of D reversed in the transitive reduction of E
- E_{a} is the acyclic reorientation of D where an arc is reversed iff it is the only arc reversed in E along a path in D joining the endpoints of a

$$
\pm=\mathbb{Q} \quad \mathbb{Q}=\mathbb{Q}
$$

ROPES

ROPES \& NON-CROSSING ROPE DIAGRAMS

rope of $D=$ quadruple $\rho=(u, v, \nabla, \triangle)$ where

- (u, v) is an arc of D
- $\nabla \sqcup \triangle$ partitions the transitive support of (u, v) minus $\{u, v\}$

ROPES \& NON-CROSSING ROPE DIAGRAMS

rope of $D=$ quadruple $\rho=(u, v, \nabla, \triangle)$ where

- (u, v) is an arc of D
- $\nabla \sqcup \triangle$ partitions the transitive support of (u, v) minus $\{u, v\}$

THM. join irreducibles of $\mathcal{A R}_{D} \quad \longleftrightarrow \quad$ ropes of D

ROPES \& NON-CROSSING ROPE DIAGRAMS

rope of $D=$ quadruple $\rho=(u, v, \nabla, \triangle)$ where

- (u, v) is an arc of D
- $\nabla \sqcup \triangle$ partitions the transitive support of (u, v) minus $\{u, v\}$
ropes

join irreducibles

THM. join irreducibles of $\mathcal{A R}_{D} \quad \longleftrightarrow \quad$ ropes of D canonical join representations of $\mathcal{A} \mathcal{R}_{D} \longleftrightarrow$ non-crossing rope diagrams of $\mathcal{A} \mathcal{R}_{D}$
$(u, v, \nabla, \triangle)$ and $\left(u^{\prime}, v^{\prime}, \nabla^{\prime}, \triangle^{\prime}\right)$ are crossing if there are $w \neq w^{\prime}$ such that

- $w \in(\nabla \cup\{u, v\}) \cap\left(\triangle^{\prime} \cup\left\{u^{\prime}, v^{\prime}\right\}\right)$
- $w^{\prime} \in(\triangle \cup\{u, v\}) \cap\left(\nabla^{\prime} \cup\left\{u^{\prime}, v^{\prime}\right\}\right)$

PROP. The canonical join complex is isomorphic to the non-crossing rope complex

rope of $D=(u, v, \nabla, \triangle)$ where

- (u, v) is an arc of D
- $\nabla \sqcup \triangle=$ trans. supp. of (u, v)
$(u, v, \nabla, \triangle)$ and $\left(u^{\prime}, v^{\prime}, \nabla^{\prime}, \triangle^{\prime}\right)$ are crossing if there are $w \neq w^{\prime}$ such that
- $w \in(\nabla \cup\{u, v\}) \cap\left(\triangle^{\prime} \cup\left\{u^{\prime}, v^{\prime}\right\}\right)$
- $w^{\prime} \in(\triangle \cup\{u, v\}) \cap\left(\nabla^{\prime} \cup\left\{u^{\prime}, v^{\prime}\right\}\right)$

CONGRUENCES \& QUOTIENTS

COHERENT CONGRUENCES

lattice congruence of $L=$ equivalence relation \equiv which respects meets and joins

$$
x \equiv x^{\prime} \text { and } y \equiv y^{\prime} \Longrightarrow x \wedge y \equiv x^{\prime} \wedge y^{\prime} \text { and } x \vee y \equiv x^{\prime} \vee y^{\prime}
$$

lattice quotient $L / \equiv=$ lattice structure on the equivalence classes of \equiv

congruence lattice of $L=$ lattice of all lattice congruences of L ordered by refinement

SUBROPES \& FORCING

THM. $\mathcal{A R}_{D}$ congruence uniform lattice $\Longleftrightarrow D$ is skeletal
$(u, v, \nabla, \triangle)$ subrope of $\left(u^{\prime}, v^{\prime}, \nabla^{\prime}, \triangle^{\prime}\right)=u, v \in\left\{u^{\prime}, v^{\prime}\right\} \cup \nabla^{\prime} \cup \triangle^{\prime}$ and $\nabla \subseteq \nabla^{\prime}$ and $\triangle \subseteq \triangle^{\prime}$

PROP. congruence lattice of $\mathcal{A} \mathcal{R}_{D} \simeq$ lower ideal lattice of subrope order

CORO. \equiv lattice congruence of $\mathcal{A} \mathcal{R}_{D}$

- E minimal in its \equiv-class $\Longleftrightarrow \delta(E) \subseteq \mathbb{I}_{\equiv}$
- quotient $\mathcal{A R}_{D} / \equiv \simeq$ subposet of $\mathcal{A} \mathcal{R}_{D}$ induced by $\left\{E \in \mathcal{A} \mathcal{R}_{D} \mid \delta(E) \subseteq \mathbb{I}_{\equiv}\right\}$

COHERENT CONGRUENCES

$(\mho, \Omega)=$ two of arbitrary subsets of V
$\mathbb{I}_{(\mho, \Omega)}=$ lower ideal of ropes $(u, v, \nabla, \triangle)$ of D such that $\nabla \subseteq \mho$ and $\triangle \subseteq \Omega$ coherent congruence $\equiv(\mho, \Omega)=$ congruence with subrope ideal $\mathbb{I}_{(\mho, \Omega)}$

examples:

- sylvester congruence $=$ subrope ideal contains only ropes $(u, v, \nabla, \varnothing)$

COHERENT CONGRUENCES

$(\mho, \Omega)=$ two of arbitrary subsets of V
$\mathbb{I}_{(\mho, \Omega)}=$ lower ideal of ropes $(u, v, \nabla, \triangle)$ of D such that $\nabla \subseteq \mho$ and $\triangle \subseteq \Omega$ coherent congruence $\equiv(\tau, \Omega)=$ congruence with subrope ideal $\mathbb{I}_{(\tau, \Omega)}$
examples:

- sylvester congruence $=$ subrope ideal contains only ropes $(u, v, \nabla, \varnothing)$
- Cambrian congruences $=$ when $\mho \sqcup \Omega=V$

QUOTIENT FANS \& QUOTIENTOPES

GRAPHICAL ARRANGEMENT \& GRAPHICAL ZONOTOPE

D directed acyclic graph graphical arrangement $\mathcal{H}_{D}=$ arrangement of hyperplanes $x_{u}=x_{v}$ for all arcs $(u, v) \in D$ graphical zonotope $\mathcal{Z}_{D}=$ Minkowski sum of $\left[\boldsymbol{e}_{u}, \boldsymbol{e}_{v}\right]$ for all arcs $(u, v) \in D$

hyperplanes of $\mathcal{H}_{D} \quad \longleftrightarrow$ summands of $\mathcal{Z}_{D} \quad \longleftrightarrow \quad$ arcs of D regions of $\mathcal{H}_{D} \quad \longleftrightarrow \quad$ vertices of $\mathcal{Z}_{D} \quad \longleftrightarrow \quad$ acyclic reorientations of D poset of regions of $\mathcal{H}_{D} \longleftrightarrow$ oriented graph of $\mathcal{Z}_{D} \longleftrightarrow$ acyclic reorientation poset of D

QUOTIENT FAN

THM. A lattice congruence \equiv of $\mathcal{A} \mathcal{R}_{D}$ defines a quotient fan \mathcal{F}_{\equiv} where the chambers of \mathcal{F}_{\equiv} are obtained by glueing the chambers of \mathcal{H}_{D} corresponding to acyclic reorientations in the same equivalence class of \equiv

QUOTIENT FAN

THM. A lattice congruence \equiv of $\mathcal{A} \mathcal{R}_{D}$ defines a quotient fan \mathcal{F}_{\equiv} where the chambers of \mathcal{F}_{\equiv} are obtained by glueing the chambers of \mathcal{H}_{D} corresponding to acyclic reorientations in the same equivalence class of \equiv

QUOTIENTOPES

THM. The quotient fan \mathcal{F}_{\equiv} of any lattice congruence \equiv of $\mathcal{A} \mathcal{R}_{D}$ is the normal fan of

- a Minkowski sum of associahedra of Hohlweg - Lange, and
- a Minkowski sum of shard polytopes of Padrol - P. - Ritter

ρ-alternating matching $=$ pair $\left(M_{\nabla}, M_{\triangle}\right)$ with $M_{\nabla} \subseteq\{u\} \cup \nabla$ and $M_{\triangle} \subseteq \triangle \cup\{v\}$ s.t. M_{∇} and M_{\triangle} are alternating along the transitive reduction of D shard polytope of $\rho=$ convex hull of signed charact. vectors of ρ-alternating matchings

QUOTIENTOPES

THM. The quotient fan \mathcal{F}_{\equiv} of any lattice congruence \equiv of $\mathcal{A} \mathcal{R}_{D}$ is the normal fan of

- a Minkowski sum of associahedra of Hohlweg - Lange, and
- a Minkowski sum of shard polytopes of Padrol - P. - Ritter

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron of D are facet defining inequalities of the graphical zonotope of D

SOME OPEN PROBLEMS

SIMPLE ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to or
\Longleftrightarrow the Hasse diagram of the D-Tamari lattice is regular
\Longleftrightarrow the D-associahedron is a simple polytope

ISOMORPHIC CAMBRIAN ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to
\Longleftrightarrow all Cambrian associahedra of D have the same number of vertices
\Longleftrightarrow all Cambrian associahedra of D have isomorphic 1-skeleta
\Longleftrightarrow all Cambrian associahedra of D have isomorphic face lattices

REMOVAHEDRA

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron of D are facet defining inequalities of the graphical zonotope of D

CONJ. For any $\mho, \Omega \subseteq V$, the quotient fan $\mathcal{F}_{(\mho, \Omega)}$ is the normal fan of the polytope obtained by deleting inequalities of the graphical zonotope of D

Not all acyclic reorientation flip graphs admit a Hamiltonian cycle

HAMILTONIAN CYCLES

THM [SSW '93]. For D chordal, the acyclic reorientation flip graph is Hamiltonian

CONJ. When D is skeletal, all quotientopes admit a Hamiltonian cycle

... checked for all quotients, for all skeletal acyclic directed graphs up to 5 vertices ...

LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

\mathcal{H} hyperplane arrangement in \mathbb{R}^{n}
base region $B=$ distinguished region of $\mathbb{R}^{n} \backslash \mathcal{H}$
inversion set of a region $C=$ set of hyperplanes of \mathcal{H} that separate B and C poset of regions $\operatorname{PR}(\mathcal{H}, B)=$ regions of $\mathbb{R}^{n} \backslash \mathcal{H}$ ordered by inclusion of inversion sets

QU. For which (\mathcal{H}, B) is the poset of regions PR a lattice?

LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

\mathcal{H} hyperplane arrangement in \mathbb{R}^{n}
base region $B=$ distinguished region of $\mathbb{R}^{n} \backslash \mathcal{H}$
inversion set of a region $C=$ set of hyperplanes of \mathcal{H} that separate B and C poset of regions $\operatorname{PR}(\mathcal{H}, B)=$ regions of $\mathbb{R}^{n} \backslash \mathcal{H}$ ordered by inclusion of inversion sets

QU. For which (\mathcal{H}, B) is the poset of regions PR a lattice?

THM. The poset of regions $\operatorname{PR}(\mathcal{H}, B)$
Björner-Edelman-Ziegler ('90)

- is never a lattice when B is not a simplicial region
- is always a lattice when \mathcal{H} is a simplicial arrangement

THM. The poset of regions $\operatorname{PR}(\mathcal{H}, B)$ is a semidistributive lattice $\Longleftrightarrow \mathcal{H}$ is tight with respect to B

QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

\mathcal{H} hyperplane arrangement in \mathbb{R}^{n}
base region $B=$ distinguished region of $\mathbb{R}^{n} \backslash \mathcal{H}$
inversion set of a region $C=$ set of hyperplanes of \mathcal{H} that separate B and C poset of regions $\operatorname{PR}(\mathcal{H}, B)=$ regions of $\mathbb{R}^{n} \backslash \mathcal{H}$ ordered by inclusion of inversion sets

THM. If $\operatorname{PR}(\mathcal{H}, B)$ is a lattice, and \equiv is a congruence of $\operatorname{PR}(\mathcal{H}, B)$, the cones obtained by glueing the regions of $\mathbb{R}^{n} \backslash \mathcal{H}$ in the same congruence class form a complete fan \mathcal{F}_{\equiv}

QU. Is the quotient fan $\mathcal{F} \equiv$ always polytopal?

QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

hyperoctahedral group $=$ isometry group of the hypercube (or of its dual cross-polytope)

THM. The quotient fan of any lattice congruence of the type B weak order is polytopal

Type B quotientopes are obtained

- not as removahedra,
- not as Minkowski sum of cyclohedra,
- but as Minkowski sum of shard polytopes (but this is another story...)

THANK YOU

