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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polyhedral cone = positive span of a finite set of Rn

= intersection of finitely many linear half-spaces

fan = collection of polyhedral cones closed by faces

and where any two cones intersect along a face



POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of Rn

= bounded intersection of finitely many affine half-spaces

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations



POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

face F of polytope P

normal cone of F = positive span of the outer normal vectors of the facets containing F

normal fan of P = { normal cone of F | F face of P }
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fan = collection of polyhedral cones closed by faces and intersecting along faces

polytope = convex hull of a finite set = intersection of finitely many affine half-space
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C(T ) = {x ∈ Rn | xi ≤ xj if i→ j in T}

quotient fan = C(T ) obtained by glueing C(σ) for all σ in the same BST insertion fiber
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan = collection of polyhedral cones closed by faces and intersecting along faces

polytope = convex hull of a finite set = intersection of finitely many affine half-space
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permutahedron Perm(n) associahedron Asso(n)

=⇒ weak order on permutations =⇒ Tamari lattice on binary trees

Hasse diagram of weak order

Tamari lattice

= graph of permutahedron

associahedron

oriented 12 . . . n→ n . . . 21

left → right comb



HOPF ALGEBRAS: MALVENUTO–REUTENAUER AND LODAY–RONCO

product = linear map · : V ⊗ V → V = a tool to combine two elements (glue)

coproduct = linear map 4 : V → V ⊗ V = a tool to decompose an element (scisors)

Hopf algebra = (V, ·,4) such that 4(a · b) = 4(a) · 4(b)

Two operations on permutations:

shuffle 12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}
convol. 12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}

Malvenuto–Reutenauer ⊇ Loday–Ronco

vector space 〈 Fσ | σ permutation of any size 〉 〈 PT | T binary tree of any size 〉

product Fρ · Fσ =
∑

τ∈ρ �̄σ

Fτ =
∑

ρ\σ≤τ≤ρ/σ
Fτ PR · PS =

∑
R\S≤τ≤R/S

PT

coproduct 4(Fτ) =
∑
τ∈ρ?σ

Fρ ⊗ Fσ 4(PT ) =
∑

R1···Rk||S
cut of T

(
∏
i∈[k]

PRi)⊗ PS



HOPF ALGEBRAS: MALVENUTO–REUTENAUER AND LODAY–RONCO

product = linear map · : V ⊗ V → V = a tool to combine two elements (glue)

coproduct = linear map 4 : V → V ⊗ V = a tool to decompose an element (scisors)

Hopf algebra = (V, ·,4) such that 4(a · b) = 4(a) · 4(b)

Two operations on permutations:

shuffle 12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}
convol. 12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}

Malvenuto–Reutenauer ⊇ Loday–Ronco

vector space 〈 Fσ | σ permutation of any size 〉 〈 PT | T binary tree of any size 〉

product Fρ · Fσ =
∑

τ∈ρ �̄σ

Fτ =
∑

ρ\σ≤τ≤ρ/σ
Fτ PR · PS =

∑
R\S≤τ≤R/S

PT

coproduct 4(Fτ) =
∑
τ∈ρ?σ

Fρ ⊗ Fσ 4(PT ) =
∑

R1···Rk||S
cut of T

(
∏
i∈[k]

PRi)⊗ PS

Hopf subalgebra = define PT =
∑
τ

Fτ over all permutations τ in the BST fiber of T



LATTICE THEORY OF THE WEAK ORDER



DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

lattice = poset (L,≤) with a meet ∧ and a join ∨

(L,≤,∧,∨) finite lattice is

• distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for any x, y, z ∈ L

• join semidistributive if x ∨ y = x ∨ z implies x ∨ (y ∧ z) = x ∨ y for any x, y, z ∈ L

• semidistributive if both join and meet semidistributive

x y
X Y

x y
x y z

distributive semidistributive not semidistributive
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lattice = poset (L,≤) with a meet ∧ and a join ∨

(L,≤,∧,∨) finite lattice is

• distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for any x, y, z ∈ L

=⇒ any y ∈ L is represented as y =
∨
j∈J j where J = {join irreducibles below y}

• join semidistributive if x ∨ y = x ∨ z implies x ∨ (y ∧ z) = x ∨ y for any x, y, z ∈ L

=⇒ any y ∈ L admits a canonical join representation y =
∨
xly k∨(x, y)

where k∨(x, y) is the unique minimal element of {z ∈ L | x ∨ z = y}

• semidistributive if both join and meet semidistributive
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distributive semidistributive not semidistributive



CANONICAL JOIN REPRESENTATIONS

join representation of y ∈ L = subset J ⊆ L such that y =
∨
J .

y =
∨
J irredundant if 6 ∃ J ′ ( J with y =

∨
J ′

JR are ordered by containement of order ideals: J ≤ J ′ ⇐⇒ ∀ z ∈ J, ∃ z′ ∈ J ′, z ≤ z′

canonical join representation of y = minimal irred. join representation of y (if it exists)

=⇒“lowest way to write y as a join”
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inversions of σ = pair (σi, σj) such that i < j and σi > σj
weak order = permutations of Sn ordered

by inclusion of inversion sets
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CANONICAL JOIN REPRESENTATIONS

σ permutation

inversions of σ = pair (σi, σj) such that i < j and σi > σj
weak order = permutations of Sn ordered

by inclusion of inversion sets

descent of σ = i such that σi > σi+1

σ =
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CANONICAL JOIN REPRESENTATIONS

σ permutation

inversions of σ = pair (σi, σj) such that i < j and σi > σj
weak order = permutations of Sn ordered

by inclusion of inversion sets

descent of σ = i such that σi > σi+1 join-irreducible λ(σ, i)

σ = −→ λ(σ, i) =

THM. Canonical join representation of σ =
∨
σi>σi+1

λ(σ, i). Reading (’15)
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ARCS

σ = λ(σ, i) =

α(σ, i) = a
b

A
B

arc = (a, b, A,B) with 1 ≤ a < b ≤ n and A tB = ]a, b[

Reading (’15)



FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

σ = 2537146

draw the table of points (σi, i)

draw all arcs (σi, i) — (σi+1, i + 1) with

descents in red and ascent in green

project down the red arcs and up the green arcs

allowing arcs to bend but not to cross or pass points

δ(σ) = projected red arcs

δ(σ) = projected green arcs

noncrossing arc diagrams = set D of arcs st. ∀α, β ∈ D:

• left(α) 6= left(β) and right(α) 6= right(β),

• α and β are not crossing.

THM. σ → δ(σ) and σ → δ(σ) are bijections from

permutations to noncrossing arc diagrams.

Reading (’15)
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2
3
4
5
6
7

76421 3 5



CANONICAL JOIN COMPLEX

canonical join complex of a join semidistributive lattice L = simplicial complex with

• vertices = join irreducibles of L

• faces = canonical join representations in L

THM. canonical join complex of the weak order ←→ non-crossing complex on arcs

Reading (’15)



LATTICE CONGRUENCES

lattice congruence of L = equivalence relation ≡ which respects meets and joins

x ≡ x′ and y ≡ y′ =⇒ x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′

lattice quotient of L/≡ = lattice on equivalence classes of L under ≡ where

• X ≤ Y ⇐⇒ ∃ x ∈ X, y ∈ Y, x ≤ y

• X ∧ Y = equiv. class of x ∧ y for any x ∈ X and y ∈ Y
• X ∨ Y = equiv. class of x ∨ y for any x ∈ X and y ∈ Y

polygons stars

circles

crosses



LATTICE QUOTIENTS AND CANONICAL JOIN REPRESENTATIONS

≡ lattice congruence on L, then

• each class X is an interval [π↓(X), π↑(X)]

• L/≡ is isomorphic to π↓(L) (as poset)

• canonical join representations in L/≡ are

canonical join representations in L that only

involve join irreducibles j with π↓(j) = j.

4321

4231 43123421

34123241 2431 4213 4132

1234

1324 12432134

21432314 3124 1342 1423

3142 2413 4123 14323214 2341

THM. ≡ lattice congruence of the weak order on Sn

Let I≡ = arcs corresponding to join irreducibles σ with π↓(σ) = σ

Then

• π↓(σ) = σ ⇐⇒ δ(σ) ⊆ I≡.

• the map Sn/≡ −→ {nc arc diagrams in I≡}
X 7−→ δ(π↓(X))

is a bijection.

Reading (’15)



FORCING AND ARC IDEALS

THM. I≡ = arcs corresponding to join irreducibles σ with π↓(σ) = σ.

Bijection Sn/≡ ←→ {nc arc diagrams in I≡}.

THM. The following are equivalent for a set of arcs I:

• there exists a lattice congruence ≡ on Sn with I = I≡
• I is an upper ideal of the forcing order

(a, b, A,B) forces (c, d, C,D) =

c ≤ a < b ≤ d and A ⊆ C and B ⊆ D

ac d
b

Reading (’15)



ARC IDEALS

arc ideal = ideal of the forcing poset on arcs

essential congruences:

1, 1, 4, 47, 3322, ...

OEIS A330039

all congruences

1, 2, 7, 60, 3444, ...

OEIS A091687
Reading (’15)



ARC IDEALS

arc ideal = ideal of the forcing poset on arcs

essential congruences:

1, 1, 4, 47, 3322, ...

OEIS A330039

all congruences

1, 2, 7, 60, 3444, ...

OEIS A091687
Reading (’15)



QUOTIENT FANS & QUOTIENTOPES

quotient fan F≡ = chambers are obtained by

glueing the chambers of the permutations σ

in the same congruence class of ≡

quotientope = polytope with normal fan F≡

Reading (’05)

P.–Santos (’19)

Padrol–P.–Ritter (’20+)
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QUOTIENT FANS & QUOTIENTOPES

quotient fan F≡ = chambers are obtained by

glueing the chambers of the permutations σ

in the same congruence class of ≡

quotientope = polytope with normal fan F≡

Reading (’05)
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ACYCLIC REORIENTATION LATTICES



ACYCLIC REORIENTATION POSETS

D directed acyclic graph

ARD = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D

maximal element D̄

self-dual under reversing all arcs

cover relations = flipping a single arc

flippable arcs of E = transitive reduction of E

= E r {(u, v) ∈ E | ∃ directed path u v in E}



ACYCLIC REORIENTATION POSETS

D directed acyclic graph

ARD = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D

maximal element D̄

self-dual under reversing all arcs

cover relations = flipping a single arc

flippable arcs of E = transitive reduction of E

= E r {(u, v) ∈ E | ∃ directed path u v in E}



ACYCLIC REORIENTATION POSETS

D directed acyclic graph

ARD = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

D forest D tournament

boolean lattice weak order



ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. ARD lattice ⇐⇒ D vertebrate

lattice not lattice
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ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. ARD lattice ⇐⇒ D vertebrate

X subset of arcs of D is

• closed if all arcs of D in the transitive closure

of X also belong to X

• coclosed if its complement is closed

• biclosed if it is closed and coclosed

PROP. If D vertebrate,

X biclosed ⇐⇒ the reorientation of X is acyclic



ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. ARD lattice ⇐⇒ D vertebrate

PROP. If D vertebrate,

bwd(E1 ∨ . . . ∨ Ek) =

transitive closure of bwd(E1) ∪ · · · ∪ bwd(Ek)

fwd(E1 ∧ . . . ∧ Ek) =

transitive closure of fwd(E1) ∪ · · · ∪ fwd(Ek)

∨ = ∧ =



DISTRIBUTIVITY & SEMIDISTRIBUTIVITY



DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

lattice = poset (L,≤) with a meet ∧ and a join ∨

(L,≤,∧,∨) finite lattice is

• distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for any x, y, z ∈ L

=⇒ any y ∈ L is represented as y =
∨
j∈J j where J = {join irreducibles below y}

• join semidistributive if x ∨ y = x ∨ z implies x ∨ (y ∧ z) = x ∨ y for any x, y, z ∈ L

=⇒ any y ∈ L admits a canonical join representation y =
∨
xly k∨(x, y)

where k∨(x, y) is the unique minimal element of {z ∈ L | x ∨ z = y}

• semidistributive if both join and meet semidistributive

x y
X Y

x y
x y z

distributive semidistributive not semidistributive



DISTRIBUTIVE ACYCLIC REORIENTATION POSETS

THM. ARD distributive lattice ⇐⇒ D forest ⇐⇒ ARD boolean lattice

distributive not distributive



SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =

• D vertebrate = transitive reduction of any induced subgraph of D is a forest

• D filled = any directed path joining the endpoints of an arc in D induces a tournament

THM. ARD semidistributive lattice ⇐⇒ D is skeletal

semidistributive non semidistributive



SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =

• D vertebrate = transitive reduction of any induced subgraph of D is a forest

• D filled = any directed path joining the endpoints of an arc in D induces a tournament

THM. ARD semidistributive lattice ⇐⇒ D is skeletal

THM. If D skeletal, the canonical join

representation of an acyclic reorienta-

tion E of D is E =
∨
aEa where

• a runs over the arcs of D reversed

in the transitive reduction of E

• Ea is the acyclic reorientation of D

where an arc is reversed iff it is the

only arc reversed in E along a path

in D joining the endpoints of a

= ∨ = ∨



ROPES



ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple ρ = (u, v,5,4) where

• (u, v) is an arc of D

• 5t4 partitions the transitive support of (u, v) minus {u, v}

ropes



ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple ρ = (u, v,5,4) where

• (u, v) is an arc of D

• 5t4 partitions the transitive support of (u, v) minus {u, v}

ropes

join irreducibles

THM. join irreducibles of ARD ←→ ropes of D



ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple ρ = (u, v,5,4) where

• (u, v) is an arc of D

• 5t4 partitions the transitive support of (u, v) minus {u, v}

ropes

join irreducibles

THM. join irreducibles of ARD ←→ ropes of D

canonical join representations of ARD ←→ non-crossing rope diagrams of ARD

(u, v,5,4) and (u′, v′,5′,4′) are crossing if there are w 6= w′ such that

• w ∈ (5∪ {u, v}) ∩ (4′ ∪ {u′, v′})
• w′ ∈ (4∪ {u, v}) ∩ (5′ ∪ {u′, v′})



NON-CROSSING ROPE DIAGRAMS & CANONICAL JOIN REPRESENTATIONS

PROP. The canonical join complex is isomorphic to the non-crossing rope complex

rope of D = (u, v,5,4) where

• (u, v) is an arc of D

• 5t4 = trans. supp. of (u, v)

(u, v,5,4) and (u′, v′,5′,4′) are crossing if

there are w 6= w′ such that

• w ∈ (5∪ {u, v}) ∩ (4′ ∪ {u′, v′})
• w′ ∈ (4∪ {u, v}) ∩ (5′ ∪ {u′, v′})



CONGRUENCES & QUOTIENTS



COHERENT CONGRUENCES

lattice congruence of L = equivalence relation ≡ which respects meets and joins

x ≡ x′ and y ≡ y′ =⇒ x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′

lattice quotient L/≡ = lattice structure on the equivalence classes of ≡

congruence lattice of L = lattice of all lattice congruences of L ordered by refinement



SUBROPES & FORCING

THM. ARD congruence uniform lattice ⇐⇒ D is skeletal

(u, v,5,4) subrope of (u′, v′,5′,4′) = u, v ∈ {u′, v′} ∪ 5′ ∪4′ and 5 ⊆ 5′ and 4 ⊆ 4′

PROP. congruence lattice of ARD ' lower ideal lattice of subrope order

CORO. ≡ lattice congruence of ARD

• E minimal in its ≡-class ⇐⇒ δ(E) ⊆ I≡
• quotient ARD/≡ ' subposet of ARD induced by {E ∈ ARD | δ(E) ⊆ I≡}



COHERENT CONGRUENCES

(f,Ω) = two of arbitrary subsets of V

I(f,Ω) = lower ideal of ropes (u, v,5,4) of D such that 5 ⊆ f and 4 ⊆ Ω

coherent congruence ≡(f,Ω) = congruence with subrope ideal I(f,Ω)

P.–Pons (’18)examples:

• sylvester congruence = subrope ideal contains only ropes (u, v,5,∅)



COHERENT CONGRUENCES

(f,Ω) = two of arbitrary subsets of V

I(f,Ω) = lower ideal of ropes (u, v,5,4) of D such that 5 ⊆ f and 4 ⊆ Ω

coherent congruence ≡(f,Ω) = congruence with subrope ideal I(f,Ω)

P.–Pons (’18)examples:

• sylvester congruence = subrope ideal contains only ropes (u, v,5,∅)

• Cambrian congruences = when f t Ω = V

Reading (’06)



QUOTIENT FANS & QUOTIENTOPES



GRAPHICAL ARRANGEMENT & GRAPHICAL ZONOTOPE

D directed acyclic graph

graphical arrangement HD = arrangement of hyperplanes xu = xv for all arcs (u, v) ∈ D
graphical zonotope ZD = Minkowski sum of [eu, ev] for all arcs (u, v) ∈ D

hyperplanes of HD ←→ summands of ZD ←→ arcs of D

regions of HD ←→ vertices of ZD ←→ acyclic reorientations of D

poset of regions of HD ←→ oriented graph of ZD ←→ acyclic reorientation poset of D



QUOTIENT FAN

THM. A lattice congruence ≡ of ARD defines a quotient fan F≡ where the chambers

of F≡ are obtained by glueing the chambers of HD corresponding to acyclic reorienta-

tions in the same equivalence class of ≡



QUOTIENT FAN

THM. A lattice congruence ≡ of ARD defines a quotient fan F≡ where the chambers

of F≡ are obtained by glueing the chambers of HD corresponding to acyclic reorienta-

tions in the same equivalence class of ≡



QUOTIENTOPES

THM. The quotient fan F≡ of any lattice congruence ≡ of ARD is the normal fan of

• a Minkowski sum of associahedra of Hohlweg – Lange, and

• a Minkowski sum of shard polytopes of Padrol – P. – Ritter

ρ-alternating matching = pair (M5,M4) with M5 ⊆ {u} ∪ 5 and M4 ⊆ 4∪ {v} s.t.

M5 and M4 are alternating along the transitive reduction of D
shard polytope of ρ = convex hull of signed charact. vectors of ρ-alternating matchings



QUOTIENTOPES

THM. The quotient fan F≡ of any lattice congruence ≡ of ARD is the normal fan of

• a Minkowski sum of associahedra of Hohlweg – Lange, and

• a Minkowski sum of shard polytopes of Padrol – P. – Ritter

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron

of D are facet defining inequalities of the graphical zonotope of D



SOME OPEN PROBLEMS



SIMPLE ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to or

⇐⇒ the Hasse diagram of the D-Tamari lattice is regular

⇐⇒ the D-associahedron is a simple polytope

regular non regular



ISOMORPHIC CAMBRIAN ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to

⇐⇒ all Cambrian associahedra of D have the same number of vertices

⇐⇒ all Cambrian associahedra of D have isomorphic 1-skeleta

⇐⇒ all Cambrian associahedra of D have isomorphic face lattices



REMOVAHEDRA

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron

of D are facet defining inequalities of the graphical zonotope of D

CONJ. For any f,Ω ⊆ V , the quotient fan F(f,Ω) is the normal fan of the polytope

obtained by deleting inequalities of the graphical zonotope of D



HAMILTONIAN CYCLES

Not all acyclic reorientation flip graphs admit a Hamiltonian cycle



HAMILTONIAN CYCLES

THM [SSW ’93]. For D chordal, the acyclic reorientation flip graph is Hamiltonian

CONJ. When D is skeletal, all quotientopes admit a Hamiltonian cycle

... checked for all quotients, for all skeletal acyclic directed graphs up to 5 vertices ...



LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in Rn

base region B = distinguished region of Rn rH
inversion set of a region C = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of Rn rH ordered by inclusion of inversion sets

QU. For which (H, B) is the poset of regions PR a lattice?



LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in Rn

base region B = distinguished region of Rn rH
inversion set of a region C = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of Rn rH ordered by inclusion of inversion sets

QU. For which (H, B) is the poset of regions PR a lattice?

THM. The poset of regions PR(H, B) Björner–Edelman–Ziegler (’90)

• is never a lattice when B is not a simplicial region

• is always a lattice when H is a simplicial arrangement

THM. The poset of regions PR(H, B) is a semidistributive lattice

⇐⇒ H is tight with respect to B Reading (’16)



QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in Rn

base region B = distinguished region of Rn rH
inversion set of a region C = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of Rn rH ordered by inclusion of inversion sets

THM. If PR(H, B) is a lattice, and ≡ is a congruence of PR(H, B), the cones obtained

by glueing the regions of RnrH in the same congruence class form a complete fan F≡
Reading (’05)

QU. Is the quotient fan F≡ always polytopal?



QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

hyperoctahedral group = isometry group of the hypercube (or of its dual cross-polytope)

THM. The quotient fan of any lattice congruence of the type B weak order is polytopal

Padrol–P.–Ritter (’20+)

Type B quotientopes are obtained

• not as removahedra,

• not as Minkowski sum of cyclohedra,

• but as Minkowski sum of shard polytopes (but this is another story...)



THANK YOU


