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lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
lattice congruence = equivalence relation on L compatible with meets and joins
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LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
lattice congruence = equivalence relation on L compatible with meets and joins

4321

3421 4231 4312

3241 2431 3412 4213 4132

3214]  [2341]  [3142[ |24 4123 432
2314]  [3124]  [2143 1423
2134 1243
1234
weak order = permutations of G, Tamari lattice = binary trees on |n]
ordered by inclusion of inversion sets ordered by paths of right rotations

sylvester congruence = equivalence classes are fibers of BST insertion
= rewriting rule UacVbW =g, UcaVOW with a < b < ¢




POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan = collection of polyhedral cones closed by faces and intersecting along faces
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polyhedral cone = positive span of a finite set of R"

= intersection of finitely many linear half-space

fan = collection of polyhedral cones closed by faces "' £ .a“»"
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of R”
= bounded intersection of finitely many affine half-spaces

face = intersection with a supporting hyperplane ///‘\\\

face lattice — all the faces with their inclusion relations /?‘,éi,’/""‘\“?&‘\
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

face I of polytope IP
normal cone of I' = positive span of the outer normal vectors of the facets containing It
normal fan of P = { normal cone of I' | I’ face of P }
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fan = collection of polyhedral cones closed by faces and intersecting along faces
polytope = convex hull of a finite set = intersection of finitely many affine half-space
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quotient fan = C(T') obtained by glueing C(o) for all o in the same BST insertion fiber




POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan = collection of polyhedral cones closed by faces and intersecting along faces
polytope = convex hull of a finite set = intersection of finitely many affine half-space
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fan = collection of polyhedral cones closed by faces and intersecting along faces
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan = collection of polyhedral cones closed by faces and intersecting along faces
polytope = convex hull of a finite set = intersection of finitely many affine half-space
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan = collection of polyhedral cones closed by faces and intersecting along faces

polytope = convex hull of a finite set = intersection of finitely many affine half-space
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permutahedron Perm(n) associahedron Assso(n) A/X
—> weak order on permutations — Tamari lattice on binary trees

12...n—=>n...21
left — right comb

Hasse diagram of | weak order = graph of | permutahedron oriented

Tamari lattice associahedron




HOPF ALGEBRAS: MALVENUTO-REUTENAUER AND LODAY-RONCO

product = linear map - : V. ® V' — V = a tool to combine two elements (glue)
coproduct = linear map A : V — V ® V = a tool to decompose an element (scisors)

Hopf algebra = (V) -, AA) such that A(a - b) = A(a) - 2A(b)

Two operations on permutations:
shuffle 12 111231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}

convol. 12 x 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}

Malvenuto—Reutenauer D Loday—Ronco

vector space ( IF, | o permutation of any size) (P | T binary tree of any size)

product F, F,= > F.= > F, Pp - Pg = > Pr
TEpWo p\o<7t<p/o R\S<T<R/S
coproduct AF.)= > F,oF, APr)y= > (][] Pgr)®Pg
TEP*O Ry Ri||S i€[k]

cut of T
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product = linear map - : V. ® V' — V = a tool to combine two elements (glue)
coproduct = linear map A : V — V ® V = a tool to decompose an element (scisors)

Hopf algebra = (V) -, AA) such that A(a - b) = A(a) - 2A(b)

Two operations on permutations:
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vector space ( IF, | o permutation of any size) (P | T binary tree of any size)

product F, F,= > F.= > F, Pr-Ps= > Pr
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coproduct AF.)= > F,oF, APr)y= > (][] Pgr)®Pg
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Hopf subalgebra = define Py = > " IF, over all permutations 7 in the BST fiber of T




LATTICE THEORY OF THE WEAK ORDER




DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

lattice = poset (L, <) with a meet A and a join V

(L, <, A, V) finite lattice is

o distributive if zV (y A z) = (x Vy) A (zV 2) for any z,y, 2 € L

e join semidistributive if x Vy =2V z implies x V (y A z) =z Vy forany z,y,z € L

e semidistributive if both join and meet semidistributive

distributive semidistributive not semidistributive
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lattice = poset (L, <) with a meet A and a join V

(L, <, A, V) finite lattice is

o distributive if zV (y A z) = (x Vy) A (zV 2) for any z,y, 2 € L

— any y € Lisrepresented as y = \/jer where J = {join irreducibles below y}

e join semidistributive if x Vy =2V z implies x V (y A z) =x Vy for any z,y,z € L

— any y € L admits a canonical join representation y = \/x<y ky(x,y)

where ky(x,y) is the unique minimal element of {z € L | 2V 2 =y}

e semidistributive if both join and meet semidistributive

distributive semidistributive not semidistributive



CANONICAL JOIN REPRESENTATIONS

join representation of y € L = subset J C L such that y =/ J.
y =\ J irredundant if AJ C J with y =\/J’

JR are ordered by containement of order ideals: J < J' < Vze J dZeJ, <7

canonical join representation of y = minimal irred. join representation of y (if it exists)

—> “lowest way to write y as a join”



CANONICAL JOIN REPRESENTATIONS

o permutation
inversions of o = pair (0, 0;) such that i < 5 and o, > o

weak order = permutations of &,, ordered 1391

by inclusion of inversion sets /l\
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CANONICAL JOIN REPRESENTATIONS

o permutation
inversions of o = pair (0, 0;) such that i < 5 and o, > o

weak order = permutations of &,, ordered 1391

by inclusion of inversion sets /l\
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CANONICAL JOIN REPRESENTATIONS

o permutation

inversions of o = pair (0, 0;) such that i < 5 and o, > o

weak order = permutations of &,, ordered

by inclusion of inversion sets

descent of o = 7 such that o; > 0,4

join-irreducible \(o, 1)
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THM. Canonical join representation of o = \/ No, ). Reading ('15)

0;>0i+1




CANONICAL JOIN REPRESENTATIONS

THM. Canonical join representation of o = \/ Ao, ). Reading ('15)
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CANONICAL JOIN REPRESENTATIONS

THM. Canonical join representation of o = \/ Ao, ).

0;>05+1

Reading ('15)
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ARCS

arc = (a,b,A,B) with 1 <a<b<nand ALUB =]a,b|

Reading ('15)



FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

o = 2537146

draw the table of points (o, 7)
draw all arcs (0;,7) — (0;11,7 + 1) with
descents in red and ascent in green

project down the red arcs and up the green arcs
allowing arcs to bend but not to cross or pass points

0(o) = projected red arcs
0(o) = projected green arcs

noncrossing arc diagrams = set D of arcs st. Vo, 3 € D:

o left(a) # left(3) and right(a) # right(8),

e o and [ are not crossing.

THM. o — d(o) and o — d(o) are bijections from
permutations to noncrossing arc diagrams.
Reading ('15)
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CANONICAL JOIN COMPLEX

canonical join complex of a join semidistributive lattice L = simplicial complex with

e vertices = join irreducibles of L
e faces = canonical join representations in L

THM. canonical join complex of the weak order «— non-crossing complex on arcs

Reading ('15)



LATTICE CONGRUENCES

lattice congruence of L = equivalence relation = which respects meets and joins

r=2'andy=y = axAy=2'ANy andxVvy=2' Vv

lattice quotient of L /= = lattice on equivalence classes of L under = where

e X <Y «<— dzxeX,yeY, zxz<y
e X \NY =equiv. classof Ay foranyz € X andy €Y
e XVY =equiv. classof tVy foranyz € X andy €Y

circles
/.\

polygons stars

\x/ crosses




LATTICE QUOTIENTS AND CANONICAL JOIN REPRESENTATIONS

= lattice congruence on L, then

e each class X is an interval |7 (X), 7T(X)]
e /= is isomorphic to 7 (L) (as poset)
e canonical join representations in L/= are

canonical join representations in L that only

involve join irreducibles j with 7 (j) = j.

THM. = lattice congruence of the weak order on G,,
Let Z- = arcs corresponding to join irreducibles o with 7 (0) = o
Then
oeTm(0) =0 <= (o) C1-.
e the map G,,/= — {nc arc diagrams in Z_} is a bijection.
X 3(m, (X))

Reading ('15)




FORCING AND ARC IDEALS

THM. Z- = arcs corresponding to join irreducibles o with 7 (0) = 0.
Bijection G,,/= <— {nc arc diagrams in Z_}.

THM. The following are equivalent for a set of arcs Z:
e there exists a lattice congruence = on G,, with 7 = 7_

e 7 is an upper ideal of the forcing order

(a,b, A, B) forces (c¢,d,C, D) = W

< b<dand AC d BCD
c<a<b<dan C C an C m. ‘U
]

ERRCAREIR,

Reading ('15)



ARC IDEALS

arc ideal = ideal of the forcing poset on arcs
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ARC IDEALS

arc ideal = ideal of the forcing poset on arcs
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QUOTIENT FANS & QUOTIENTOPES

quotient fan F- = chambers are obtained by

glueing the chambers of the permutations o \
in the same congruence class of = ....

AT I

quotientope = polytope with normal fan = ‘M’
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QUOTIENT FANS & QUOTIENTOPES

quotient fan F- = chambers are obtained by

glueing the chambers of the permutations o
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QUOTIENT FANS & QUOTIENTOPES

quotient fan F- = chambers are obtained by

glueing the chambers of the permutations o .‘

in the same congruence class of =
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ACYCLIC REORIENTATION LATTICES




ACYCLIC REORIENTATION POSETS

D directed acyclic graph
AR p = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D

/ )/ )// | maximal element D

self-dual under reversing all arcs

cover relations = flipping a single arc

//( /( / flippable arcs of £ = transitive reduction of E
| 1 = F ~ {(u,v) € E | 3 directed path v ~» v in E}




ACYCLIC REORIENTATION POSETS

D directed acyclic graph
AR p = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

Ej ,Ej minimal element D
)/ )/ maximal element D

~ ~
E} B E self-dual under reversing all arcs
D D cover relations = flipping a single arc

/( flippable arcs of I/ = transitive reduction of £
E] = F ~ {(u,v) € E'| 3 directed path u ~ v in E}

/
3



ACYCLIC REORIENTATION POSETS

D directed acyclic graph
AR p = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

D forest D tournament

boolean lattice weak order



ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate

lattice not lattice



ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate

lattice not lattice




ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate

I~ \ 9 X subset of arcs of D is

e closed if all arcs of D in the transitive closure
of X also belong to X
e coclosed if its complement is closed

e biclosed if it is closed and coclosed

~ ~
/XA X7

PROP. If D vertebrate,
X biclosed <= the reorientation of X is acyclic




ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate

, / \\ , PROP. If D vertebrate,
L )/ )/ ) bwd(Ey V...V Ey)
/ ) / transitive closure of bwd(FEy) U --- U bwd(E})

de(El JANPAN Ek> —
transitive closure of fwd(FEy) U --- U fwd(FEy)

Z Z
N N
N2
N A
AN AN
/ / Z Z Z Z Z Z
N N N N N N
Z
Vv ¥ N2 _
~ \/ A A /\ A N
N N A <




DISTRIBUTIVITY & SEMIDISTRIBUTIVITY




DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

lattice = poset (L, <) with a meet A and a join V

(L, <, A, V) finite lattice is

o distributive if zV (y A z) = (x Vy) A (zV 2) for any z,y, 2 € L

— any y € Lisrepresented as y = \/jer where J = {join irreducibles below y}

e join semidistributive if x Vy =2V z implies x V (y A z) =x Vy for any z,y,z € L

— any y € L admits a canonical join representation y = \/x<y ky(x,y)

where ky(x,y) is the unique minimal element of {z € L | 2V 2 =y}

e semidistributive if both join and meet semidistributive

distributive semidistributive not semidistributive



DISTRIBUTIVE ACYCLIC REORIENTATION POSETS

THM. ARp distributive lattice <= D forest <= AR p boolean lattice

NS
HOH O 8 8 s
i?ﬁ;KL &fwiﬁimi%
N/ N

distributive not distributive




SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =
e D vertebrate = transitive reduction of any induced subgraph of D is a forest

e D filled = any directed path joining the endpoints of an arc in D induces a tournament

THM. AR p semidistributive lattice <= D is skeletal

semidistributive ﬁg 1.1 non semidistributive




SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =
e D vertebrate = transitive reduction of any induced subgraph of D is a forest
e D filled = any directed path joining the endpoints of an arc in D induces a tournament

THM. AR p semidistributive lattice <= D is skeletal

& THM. If D skeletal, the canonical join
representation of an acyclic reorienta-
tion £ of D is E =\/ E, where

e a runs over the arcs of D reversed
'3 in the transitive reduction of E

e [/, is the acyclic reorientation of D
& where an arc is reversed iff it is the
only arc reversed in E along a path
in D joining the endpoints of a

A N-RvE M-8R




ROPES




ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple p = (u, v, 7, AA) where
e (u,v) is an arc of D
e </ LU A\ partitions the transitive support of (u,v) minus {u,v}

ropes & \ A E WV g




ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple p = (u, v, 7, AA) where
e (u,v) is an arc of D
e </ LU A\ partitions the transitive support of (u,v) minus {u,v}
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join irreducibles

THM. join irreducibles of AR — ropes of D




ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple p = (u, v, 7, AA) where
e (u,v) is an arc of D
e </ LU A\ partitions the transitive support of (u,v) minus {u,v}
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THM. join irreducibles of AR > ropes of D
canonical join representations of AR <— non-crossing rope diagrams of AR

(u, 0,7, 48) and (u',v, 7', V') are crossing if there are w # w’ such that
ew e (VU {u,v})N (A U, v'Y})
o w' € (AU {u,v})N (V' U{u,v'})



NON-CROSSING ROPE DIAGRAMS & CANONICAL JOIN REPRESENTATIONS

PROP. The canonical join complex is isomorphic to the non-crossing rope complex

/EFT\ /EE\
;EQT
N

AN
—&

TRy -
& (u,v,%7, ) and (u, o', 5/, /") are crossing if
rope of D = (u,v,57, /) where there are w £ w' such that
e (u,v) is an arc of D o w e (7 U{u,v}) N (A U{u, v'})
e </ LU /A = trans. supp. of (u,v) o w € (AU{u,v})N(y U{u,v'})




CONGRUENCES & QUOTIENTS




COHERENT CONGRUENCES

lattice congruence of L = equivalence relation = which respects meets and joins

r=x'andy=y = zxAy=2' ANy andaVvVy=2"Vyy

lattice quotient L /= = lattice structure on the equivalence classes of =
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congruence lattice of L = lattice of all lattice congruences of L ordered by refinement

/

A
X

X
AN

N\

U 4

X/

K

X
/

%y

% g
X

V4

%
| 4 ) 2 ) 2 14

%4 54

4
\

%
N\




SUBROPES & FORCING

THM. ARp congruence uniform lattice <= D is skeletal

(u, v, %7, A\) subrope of (v, v, /', A') =u,v € {u/, v} U UA and 5y C 7/ and A C A’

PROP. congruence lattice of AR ~ lower ideal lattice of subrope order

CORO. = lattice congruence of AR p
e £ minimal in its =-class <— §(F) C I=
e quotient ARp/= =~ subposet of ARp induced by {F € ARp | §(F) C 1=}




COHERENT CONGRUENCES

(0,2) = two of arbitrary subsets of V
[(5,0) = lower ideal of ropes (u,v, s/, A) of D such that 7 C U and A C )
coherent congruence =5 o) = congruence with subrope ideal L5 o)

_ P.—Pons ('18)
examples:

e sylvester congruence = subrope ideal contains only ropes (u, v, 7, 9)
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COHERENT CONGRUENCES

(0,2) = two of arbitrary subsets of V
[(;5.0) = lower ideal of ropes (u,v,57,A) of D such that 57 € G and A C Q

coherent congruence =5 o) = congruence with subrope ideal L5 o)

_ P.—Pons ('18)
examples:

e sylvester congruence = subrope ideal contains only ropes (u, v, 7, 9)
e Cambrian congruences = when O L =V

Reading ('06)
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GRAPHICAL ARRANGEMENT & GRAPHICAL ZONOTOPE

D directed acyclic graph
graphical arrangement Hp = arrangement of hyperplanes z, = x, for all arcs (u,v) € D

graphical zonotope Zp = Minkowski sum of |e,, e,] for all arcs (u,v) € D

hyperplanes of Hp +— summands of Zp, <«— arcs of D
regions of Hp I vertices of Zp +— acyclic reorientations of D
poset of regions of Hp <— oriented graph of Zp <+— acyclic reorientation poset of D



QUOTIENT FAN

THM. A lattice congruence = of AR defines a quotient fan F— where the chambers

of F_ are obtained by glueing the chambers of # , corresponding to acyclic reorienta-
tions in the same equivalence class of =
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QUOTIENT FAN

THM. A lattice congruence = of AR defines a quotient fan F— where the chambers

of F_ are obtained by glueing the chambers of # , corresponding to acyclic reorienta-
tions in the same equivalence class of =

s B

£ N

A -

N/ /

A i
/

=i

tA—iA
N
A %
7\ AN

&
Y

A=A




QUOTIENTOPES

THM. The quotient fan F= of any lattice congruence = of AR is the normal fan of
e a Minkowski sum of associahedra of Hohlweg — Lange, and
e a Minkowski sum of shard polytopes of Padrol — P. — Ritter

S

p-alternating matching = pair (M, Ma) with Mo, C {u} Uy and Ma C AU {v} s.t.
M, and M are alternating along the transitive reduction of D
shard polytope of p = convex hull of signed charact. vectors of p-alternating matchings




QUOTIENTOPES

THM. The quotient fan F= of any lattice congruence = of AR is the normal fan of
e a Minkowski sum of associahedra of Hohlweg — Lange, and
e a Minkowski sum of shard polytopes of Padrol — P. — Ritter

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron
of D are facet defining inequalities of the graphical zonotope of D




SOME OPEN PROBLEMS




SIMPLE ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to & or E§
<= the Hasse diagram of the D-Tamari lattice is regular
<= the D-associahedron is a simple polytope
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ISOMORPHIC CAMBRIAN ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to Eg
<— all Cambrian associahedra of D have the same number of vertices
<= all Cambrian associahedra of D have isomorphic 1-skeleta
<— all Cambrian associahedra of D have isomorphic face lattices

L




REMOVAHEDRA

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron
of D are facet defining inequalities of the graphical zonotope of D

CONJ. For any O, ) C V, the quotient fan F(;5 ¢y is the normal fan of the polytope
obtained by deleting inequalities of the graphical zonotope of D




HAMILTONIAN CYCLES

Not all acyclic reorientation flip graphs admit a Hamiltonian cycle
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HAMILTONIAN CYCLES

THM [SSW'93]. For D chordal, the acyclic reorientation flip graph is Hamiltonian

g

CONJ. When D is skeletal, all quotientopes admit a Hamiltonian cycle

.. checked for all quotients, for all skeletal acyclic directed graphs up to 5 vertices ...




LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in R”

base region B = distinguished region of R" \. H

inversion set of a region C' = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of R" \. ‘H ordered by inclusion of inversion sets

QU. For which (H, B) is the poset of regions PR a lattice?




LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in R”

base region B = distinguished region of R" \\. H

inversion set of a region C' = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of R" \. H ordered by inclusion of inversion sets

QU. For which (#H, B) is the poset of regions PR a lattice?

THM. The poset of regions PR(H, B) Bjérner-Edelman—Ziegler (*90)
e is never a lattice when B is not a simplicial region
e is always a lattice when 7 is a simplicial arrangement

THM. The poset of regions PR(?, B) is a semidistributive lattice
<= H is tight with respect to B Reading ('16)




QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in R”

base region B = distinguished region of R" \\. H

inversion set of a region C' = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of R" \. H ordered by inclusion of inversion sets

THM. If PR(H, B) is a lattice, and = is a congruence of PR(H, B), the cones obtained
by glueing the regions of R ~\. H in the same congruence class form a complete fan F—

Reading ('05)

QU. Is the quotient fan F= always polytopal?




QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

hyperoctahedral group = isometry group of the hypercube (or of its dual cross-polytope)

THM. The quotient fan of any lattice congruence of the type B weak order is polytopal
Padrol-P.—Ritter ('207)

Type B quotientopes are obtained
e not as removahedra,
e not as Minkowski sum of cyclohedra,
e but as Minkowski sum of shard polytopes (but this is another story...)




THANK YOU



