Acyclic reorientation lattices and their lattice quotients
 V. PILAUD (CNRS \& LIX, École Polytechnique)

Philippe Flajolet Seminar
Thursday November 24th, 2022

PERMUTAHEDRA \& ASSOCIAHEDRA

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

weak order $=$ permutations of $[n]$ ordered by paths of simple transpositions

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

weak order $=$ permutations of $[n]$ ordered by paths of simple transpositions

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

weak order $=$ permutations of $[n]$ ordered by paths of simple transpositions

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations
sylvester congruence $=$ equivalence classes are sets of linear extensions of binary trees $=$ equivalence classes are fibers of BST insertion $=$ rewriting rule $U a c V b W \equiv_{\text {sylv }} U c a V b W$ with $a<b<c$

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

weak order $=$ permutations of $[n]$ ordered by paths of simple transpositions

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations
sylvester congruence $=$ equivalence classes are sets of linear extensions of binary trees $=$ equivalence classes are fibers of BST insertion $=$ rewriting rule $U a c V b W \equiv_{\text {sylv }} U c a V b W$ with $a<b<c$

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

weak order $=$ permutations of $[n]$ ordered by paths of simple transpositions

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations
lattice congruence $=$ equivalence relation \equiv which respects meets and joins

$$
x \equiv x^{\prime} \text { and } y \equiv y^{\prime} \Longrightarrow x \wedge y \equiv x^{\prime} \wedge y^{\prime} \text { and } x \vee y \equiv x^{\prime} \vee y^{\prime}
$$

quotient lattice $=$ lattice on classes with $X \leq Y \Longleftrightarrow \exists x \in X, y \in Y, x \leq y$

FANS: BRAID FAN AND SYLVESTER FAN

polyhedral cone $=$ positive span of a finite set of vectors
$=$ intersection of a finite set of linear half-spaces fan $=$ collection of polyhedral cones closed by faces and where any two cones intersect along a face

FANS: BRAID FAN AND SYLVESTER FAN

$\underline{f a n}=$ collection of polyhedral cones closed by faces and intersecting along faces

braid fan $=$

$$
\mathbb{C}(\sigma)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\}
$$

$$
\mathbb{C}(T)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{i} \leq x_{j} \text { if } i \rightarrow j \text { in } T\right\}
$$

$\underline{f a n}=$ collection of polyhedral cones closed by faces and intersecting along faces

braid fan $=$

$$
\mathbb{C}(\sigma)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\}
$$

$$
\mathbb{C}(T)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{i} \leq x_{j} \text { if } i \rightarrow j \text { in } T\right\}
$$

FANS: BRAID FAN AND SYLVESTER FAN

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces

braid fan $=$

$$
\mathbb{C}(\sigma)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\}
$$

$\mathbb{C}(T)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{i} \leq x_{j}\right.$ if $i \rightarrow j$ in $\left.T\right\}$
quotient fan $=\mathbb{C}(T)$ is obtained by glueing $\mathbb{C}(\sigma)$ for all linear extensions σ of T

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope $=$ convex hull of a finite set of points
$=$ bounded intersection of a finite set of affine half-spaces face $=$ intersection with a supporting hyperplane face lattice $=$ all the faces with their inclusion relations

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope $=$ convex hull of a finite set of points
$=$ bounded intersection of a finite set of affine half-spaces

permutahedron $\operatorname{Perm}(n)$

$$
\begin{aligned}
& =\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\} \\
& =\mathbb{H} \cap \bigcap_{\varnothing \neq J \subseteq[n]} H_{J}
\end{aligned}
$$

$$
=\operatorname{conv}\left\{[\ell(T, i) \cdot r(T, i)]_{i \in[n]} \mid T \text { binary tree }\right\}
$$

$$
=\mathbb{H} \cap \bigcap_{1 \leq i<j \leq n} \mathbb{H}_{[i, j]}
$$

where $\mathbb{H}_{J}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \left\lvert\, \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2}\right.\right\}$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope $=$ convex hull of a finite set of points
$=$ bounded intersection of a finite set of affine half-spaces

permutahedron $\operatorname{Perm}(n)$

$$
\begin{aligned}
& =\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\} \\
& =\mathbb{H} \cap \bigcap_{\varnothing \neq J \subseteq[n]} \mathbb{H}_{J}
\end{aligned}
$$

where $\mathbb{H}_{J}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \left\lvert\, \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2}\right.\right\}$

$=\operatorname{conv}\left\{[\ell(T, i) \cdot r(T, i)]_{i \in[n]} \mid T\right.$ binary tree $\}$
$=\mathbb{H} \cap \bigcap_{1 \leq i<j \leq n} \mathbb{H}_{[i, j]}$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope $=$ convex hull of a finite set of points
$=$ bounded intersection of a finite set of affine half-spaces

permutahedron $\operatorname{Perm}(n)$

$$
\begin{aligned}
& =\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\} \\
& =\mathbb{H} \cap \bigcap_{\varnothing \neq J \subseteq[n]} H_{J}
\end{aligned}
$$

$$
=\operatorname{conv}\left\{[\ell(T, i) \cdot r(T, i)]_{i \in[n]} \mid T \text { binary tree }\right\}
$$

$$
=\mathbb{H} \cap \bigcap_{1 \leq i<j \leq n} \mathbb{H}_{[i, j]}
$$

where $\mathbb{H}_{J}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \left\lvert\, \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2}\right.\right\}$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

LATTICES - FANS - POLYTOPES

permutahedron $\operatorname{Perm}(n)$
\Longrightarrow braid fan
associahedron Asso(n)
\Longrightarrow Sylvester fan

face \mathbb{F} of polytope \mathbb{P} normal cone of $\mathbb{F}=$ positive span of the outer normal vectors of the facets containing \mathbb{F} normal fan of $\mathbb{P}=\{$ normal cone of $\mathbb{F} \mid \mathbb{F}$ face of $\mathbb{P}\}$

LATTICES - FANS - POLYTOPES

permutahedron $\operatorname{Perm}(n)$
\Longrightarrow braid fan
\Longrightarrow weak order on permutations

associahedron Asso(n)
\Longrightarrow Sylvester fan
\Longrightarrow Tamari lattice on binary trees

LATTICE THEORY OF THE WEAK ORDER

INVERSION SETS

weak order $=$ permutations of $[n]$ ordered by paths of simple transpositions

INVERSION SETS

weak order $=$ permutations of $[n]$ ordered by paths of simple transpositions permutations of $[n]$ ordered by inclusion of inversion sets inversion of $\sigma=$ pair $\left(\sigma_{i}, \sigma_{j}\right)$ such that $i<j$ and $\sigma_{i}>\sigma_{j}$

PROP. inversion sets $=$ transitive and cotransitive subsets of $\{(b, a) \mid 1 \leq a<b \leq n\}$ $\operatorname{inv}\left(\sigma_{1} \vee \ldots \vee \sigma_{k}\right)=\operatorname{transitive~closure~of~} \operatorname{inv}\left(\sigma_{1}\right) \cup \cdots \cup \operatorname{inv}\left(\sigma_{k}\right)$ $\operatorname{ninv}\left(\sigma_{1} \wedge \ldots \wedge \sigma_{k}\right)=$ transitive closure of $\operatorname{ninv}\left(\sigma_{1}\right) \cup \cdots \cup \operatorname{ninv}\left(\sigma_{k}\right)$

CANONICAL JOIN REPRESENTATIONS

join representation of $y \in L=$ subset $J \subseteq L$ such that $y=\bigvee J$
$y=\bigvee J$ irredundant if $\nexists J^{\prime} \subsetneq J$ with $y=\bigvee J^{\prime}$ ordered by containement of order ideals: $J \leq J^{\prime} \Longleftrightarrow \forall z \in J, \exists z^{\prime} \in J^{\prime}, z \leq z^{\prime}$ canonical join representation of $y=$ minimal irredundant join representation of y $=$ lowest way to write y as a join

\Longrightarrow a canonical join representation is an antichain of join irreducible elements of L

DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

(L, \leq, \wedge, \vee) finite lattice is

- distributive if $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ for any $x, y, z \in L$
- join semidistributive if $x \vee y=x \vee z$ implies $x \vee(y \wedge z)=x \vee y$ for any $x, y, z \in L$
- semidistributive if both join and meet semidistributive

DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

(L, \leq, \wedge, \vee) finite lattice is

- distributive if $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ for any $x, y, z \in L$
\Longrightarrow canonical join representations $=$ antichains of join irreducibles
$\Longrightarrow L \simeq$ inclusion poset of lower ideals of $J I(L)$
- join semidistributive if $x \vee y=x \vee z$ implies $x \vee(y \wedge z)=x \vee y$ for any $x, y, z \in L$
\Longrightarrow any $y \in L$ admits the canonical join representation $y=\bigvee_{x \lessdot y} k_{\vee}(x, y)$ where $k_{\vee}(x, y)$ is the unique minimal element of $\{z \in L \mid x \vee z=y\}$
- semidistributive if both join and meet semidistributive

distributive
semidistributive
not semidistributive

FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

draw all points $\left(\sigma_{i}, i\right)$ and all segments from $\left(\sigma_{i}, i\right)$ to $\left(\sigma_{i+1}, i+1\right)$ with $\sigma_{i}>\sigma_{i+1}$ and project down to an horizontal line allowing arcs to bend but not to cross or pass points
arc $=x$-monotone curve joining two points and wiggling around the horizontal axis (up to deformations)
compatible arcs $=$

- left $(\alpha) \neq \operatorname{left}\left(\alpha^{\prime}\right)$ and $\operatorname{right}(\alpha) \neq \operatorname{right}\left(\alpha^{\prime}\right)$,
- α and α^{\prime} are not crossing.
permutation $\sigma=2537146$

noncrossing arc diagram $\delta(\sigma)$
noncrossing arc diagrams $=$ set of pairwise compatible arcs
THM. δ is a bijection from permutations to noncrossing arc diagrams

FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

draw all points $\left(\sigma_{i}, i\right)$ and all segments from $\left(\sigma_{i}, i\right)$ to $\left(\sigma_{i+1}, i+1\right)$ with $\sigma_{i}>\sigma_{i+1}$ and project down to an horizontal line allowing arcs to bend but not to cross or pass points
arc $=x$-monotone curve joining two points and wiggling around the horizontal axis (up to deformations)
\Longleftrightarrow quadruple (a, b, A, B) with $a<b$ and $] a, b[=A \sqcup B$
compatible arcs $=$

- left $(\alpha) \neq \operatorname{left}\left(\alpha^{\prime}\right)$ and $\operatorname{right}(\alpha) \neq \operatorname{right}\left(\alpha^{\prime}\right)$,
- α and α^{\prime} are not crossing.

$$
\Longleftrightarrow \alpha=(a, b, A, B) \text { and } \alpha^{\prime}=\left(a^{\prime}, b^{\prime}, A^{\prime}, B^{\prime}\right)
$$

such that there is no $x \neq x^{\prime}$ with
permutation $\sigma=5327164$

noncrossing arc diagram $\delta(\sigma)$

$$
x \in(A \cup\{a, b\}) \cap\left(B^{\prime} \cup\left\{a^{\prime}, b^{\prime}\right\}\right) \text { and } x^{\prime} \in(B \cup\{a, b\}) \cap\left(A^{\prime} \cup\left\{a^{\prime}, b^{\prime}\right\}\right)
$$

noncrossing arc diagrams $=$ set of pairwise compatible arcs

WEAK ORDER ON NONCROSSING ARC DIAGRAMS

CANONICAL JOIN REPRESENTATIONS AND NONCROSSING ARC DIAGRAMS

THM. $\sigma=\bigvee_{\alpha \in \delta(\sigma)} \delta^{-1}(\{\alpha\})$ is the canonical join representation

LATTICE CONGRUENCES AND LATTICE QUOTIENTS

lattice congruence of $L=$ equivalence relation \equiv which respects meets and joins

$$
x \equiv x^{\prime} \text { and } y \equiv y^{\prime} \Longrightarrow x \wedge y \equiv x^{\prime} \wedge y^{\prime} \text { and } x \vee y \equiv x^{\prime} \vee y^{\prime}
$$

lattice quotient of $L / \equiv=$ lattice on equivalence classes of L under \equiv where

- $X \leq Y \Longleftrightarrow \exists x \in X, y \in Y, \quad x \leq y$
- $X \wedge Y=$ equiv. class of $x \wedge y$ for any $x \in X$ and $y \in Y$
- $X \vee Y=$ equiv. class of $x \vee y$ for any $x \in X$ and $y \in Y$

LATTICE QUOTIENTS AND CANONICAL JOIN REPRESENTATIONS

\equiv lattice congruence on L, then

- each class X is an interval $\left[\pi_{\downarrow}(X), \pi^{\uparrow}(X)\right]$
- L / \equiv is isomorphic (as poset) to the restriction of L to the elements x with $\pi_{\downarrow}(x)=x$
- $\pi_{\downarrow}(x)=x$ if and only if $\pi_{\downarrow}(j)=j$ for all canonical joinands j of x
- canonical join representations in L / \equiv are canonical join representations in L that only involve join irreducibles j with $\pi_{\downarrow}(j)=j$

LATTICE QUOTIENTS OF THE WEAK ORDER

THM. \equiv lattice congruence of the weak order on \mathfrak{S}_{n} $\mathcal{A}_{\equiv}=$ arcs corresponding to join irreducibles σ with $\pi_{\downarrow}(\sigma)=\sigma$ $\mathfrak{S}_{n} / \equiv \simeq$ subposet induced by noncrossing arc diagrams with all arcs in \mathcal{A}_{\equiv}

SUBARC ORDER

THM. \equiv lattice congruence of the weak order on \mathfrak{S}_{n}
$\mathcal{A}_{\equiv}=$ arcs corresponding to join irreducibles σ with $\pi_{\downarrow}(\sigma)=\sigma$
$\mathfrak{S}_{n} / \equiv \simeq$ subposet induced by noncrossing arc diagrams with all arcs in \mathcal{A}_{\equiv}

THM. The following are equivalent for a set of arcs \mathcal{A} :

- there exists a lattice congruence \equiv on \mathfrak{S}_{n} with $\mathcal{A}=\mathcal{A}_{\equiv}$
- \mathcal{A} is a lower ideal of the subarc order

SUBARC ORDER

THM. \equiv lattice congruence of the weak order on \mathfrak{S}_{n}
$\mathcal{A}_{\equiv}=$ arcs corresponding to join irreducibles σ with $\pi_{\downarrow}(\sigma)=\sigma$
$\mathfrak{S}_{n} / \equiv \simeq$ subposet induced by noncrossing arc diagrams with all arcs in \mathcal{A}_{\equiv}

THM. The following are equivalent for a set of arcs \mathcal{A} :

- there exists a lattice congruence \equiv on \mathfrak{S}_{n} with $\mathcal{A}=\mathcal{A}_{\equiv}$
- \mathcal{A} is a lower ideal of the subarc order

(a, b, A, B) subarc of $(c, d, C, D) \Longleftrightarrow$ $c<a<b<d$ and $A \subseteq C$ and $B \subseteq D$

ARC IDEALS

arc ideal $=$ lower ideal of the subarc order

essential congruences:
1, 1, 4, 47, 3322, ...
OEIS A330039
all congruences
1, 2, 7, 60, 3444, ...
OEIS A091687

ARC IDEALS

arc ideal $=$ lower ideal of the subarc order

essential congruences:
1, 1, 4, 47, 3322, ...
OEIS A330039
all congruences
1, 2, 7, 60, 3444, ...
OEIS A091687

QUOTIENT FANS \& QUOTIENTOPES

quotient fan $\mathcal{F}_{\equiv}=$ chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv
quotientope $=$ polytope with normal fan \mathcal{F}_{\equiv}

Reading ('05)
P.-Santos ('19)

Padrol-P.-Ritter ('20+)

QUOTIENT FANS \& QUOTIENTOPES

quotient fan $\mathcal{F}_{\equiv}=$ chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv
quotientope $=$ polytope with normal fan \mathcal{F}_{\equiv}

Reading ('05)
P.-Santos ('19)

QUOTIENT FANS \& QUOTIENTOPES

quotient fan $\mathcal{F}_{\equiv}=$ chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv

```
quotientope = polytope with normal fan }\mp@subsup{\mathcal{F}}{\equiv}{
```


ACYCLIC REORIENTATION LATTICES

ACYCLIC REORIENTATION POSETS

D directed acyclic graph $\mathcal{A} \mathcal{R}_{D}=$ all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D maximal element \bar{D}
self-dual under reversing all arcs cover relations $=$ flipping a single arc
flippable arcs of $E=$ transitive reduction of E
$=E \backslash\{(u, v) \in E \mid \exists$ directed path $u \rightsquigarrow v$ in $E\}$

ACYCLIC REORIENTATION POSETS

D directed acyclic graph $\mathcal{A} \mathcal{R}_{D}=$ all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D maximal element \bar{D}
self-dual under reversing all arcs cover relations $=$ flipping a single arc
flippable arcs of $E=$ transitive reduction of E $=E \backslash\{(u, v) \in E \mid \exists$ directed path $u \rightsquigarrow v$ in $E\}$

ACYCLIC REORIENTATION POSETS

D directed acyclic graph $\mathcal{A} \mathcal{R}_{D}=$ all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

ACYCLIC REORIENTATION LATTICES

D vertebrate $=$ transitive reduction of any induced subgraph of D is a forest
THM. $\mathcal{A R}_{D}$ lattice $\Longleftrightarrow D$ vertebrate

lattice

not lattice

ACYCLIC REORIENTATION LATTICES

D vertebrate $=$ transitive reduction of any induced subgraph of D is a forest
THM. $\mathcal{A R}_{D}$ lattice $\Longleftrightarrow D$ vertebrate

lattice

not lattice

ACYCLIC REORIENTATION LATTICES

D vertebrate $=$ transitive reduction of any induced subgraph of D is a forest
THM. $\mathcal{A R}_{D}$ lattice $\Longleftrightarrow D$ vertebrate

X subset of arcs of D is

- closed if all arcs of D in the transitive closure of X also belong to X
- coclosed if its complement is closed
- biclosed if it is closed and coclosed

PROP. If D vertebrate,
X biclosed \Longleftrightarrow the reorientation of X is acyclic

ACYCLIC REORIENTATION LATTICES

D vertebrate $=$ transitive reduction of any induced subgraph of D is a forest
THM. $\mathcal{A R}_{D}$ lattice $\Longleftrightarrow D$ vertebrate

PROP. If D vertebrate,

$$
\operatorname{bwd}\left(E_{1} \vee \ldots \vee E_{k}\right)=
$$

transitive closure of $\operatorname{bwd}\left(E_{1}\right) \cup \cdots \cup \operatorname{bwd}\left(E_{k}\right)$

$$
\operatorname{fwd}\left(E_{1} \wedge \ldots \wedge E_{k}\right)=
$$

transitive closure of $\mathrm{fwd}\left(E_{1}\right) \cup \cdots \cup \mathrm{fwd}\left(E_{k}\right)$

DISTRIBUTIVITY \& SEMIDISTRIBUTIVITY

DISTRIBUTIVE ACYCLIC REORIENTATION POSETS

THM. $\mathcal{A} \mathcal{R}_{D}$ distributive lattice $\Longleftrightarrow D$ forest $\Longleftrightarrow \mathcal{A R}_{D}$ boolean lattice

distributive

not distributive

SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =

- D vertebrate $=$ transitive reduction of any induced subgraph of D is a forest
- D filled $=$ any directed path joining the endpoints of an arc in D induces a tournament

THM. $\mathcal{A R}_{D}$ semidistributive lattice $\Longleftrightarrow D$ is skeletal

ROPES \& NON-CROSSING ROPE DIAGRAMS

ROPES \& NON-CROSSING ROPE DIAGRAMS

rope of $D=$ quadruple $\rho=(u, v, \nabla, \triangle)$ where

- (u, v) is an arc of D
- $\nabla \sqcup \triangle$ partitions the transitive support of (u, v) minus $\{u, v\}$

ROPES \& NON-CROSSING ROPE DIAGRAMS

rope of $D=$ quadruple $\rho=(u, v, \nabla, \triangle)$ where

- (u, v) is an arc of D
- $\nabla \sqcup \triangle$ partitions the transitive support of (u, v) minus $\{u, v\}$

THM. join irreducibles of $\mathcal{A R}_{D} \quad \longleftrightarrow \quad$ ropes of D

ROPES \& NON-CROSSING ROPE DIAGRAMS

rope of $D=$ quadruple $\rho=(u, v, \nabla, \triangle)$ where

- (u, v) is an arc of D
- $\nabla \sqcup \triangle$ partitions the transitive support of (u, v) minus $\{u, v\}$ ropes

join irreducibles

THM. join irreducibles of $\mathcal{A R}_{D} \quad \longleftrightarrow \quad$ ropes of D canonical join representations of $\mathcal{A} \mathcal{R}_{D} \longleftrightarrow$ non-crossing rope diagrams of $\mathcal{A} \mathcal{R}_{D}$
$(u, v, \nabla, \triangle)$ and $\left(u^{\prime}, v^{\prime}, \nabla^{\prime}, \triangle^{\prime}\right)$ are crossing if there are $w \neq w^{\prime}$ such that $w \in(\nabla \cup\{u, v\}) \cap\left(\triangle^{\prime} \cup\left\{u^{\prime}, v^{\prime}\right\}\right)$ and $w^{\prime} \in(\triangle \cup\{u, v\}) \cap\left(\nabla^{\prime} \cup\left\{u^{\prime}, v^{\prime}\right\}\right)$

CONGRUENCES \& QUOTIENTS

SUBROPES ORDER

$(u, v, \nabla, \triangle)$ subrope of $\left(u^{\prime}, v^{\prime}, \nabla^{\prime}, \Delta^{\prime}\right)$ if $u, v \in\left\{u^{\prime}, v^{\prime}\right\} \cup \nabla^{\prime} \cup \triangle^{\prime}$ and $\nabla \subseteq \nabla^{\prime}$ and $\triangle \subseteq \triangle^{\prime}$

PROP. congruence lattice of $\mathcal{A} \mathcal{R}_{D} \simeq$ lower ideal lattice of subrope order

CORO. \equiv lattice congruence of $\mathcal{A} \mathcal{R}_{D}$

- E minimal in its \equiv-class $\Longleftrightarrow \delta(E) \subseteq \mathcal{R}_{\equiv}$
- quotient $\mathcal{A} \mathcal{R}_{D} / \equiv \simeq$ subposet of $\mathcal{A} \mathcal{R}_{D}$ induced by $\left\{E \in \mathcal{A} \mathcal{R}_{D} \mid \delta(E) \subseteq \mathcal{R}_{\equiv}\right\}$

COHERENT CONGRUENCES

$(\mho, \Omega)=$ two of arbitrary subsets of V
$\mathcal{R}_{(\mho, \Omega)}=$ lower ideal of ropes $(u, v, \nabla, \triangle)$ of D such that $\nabla \subseteq \mho$ and $\triangle \subseteq \Omega$
coherent congruence $\equiv(\mho, \Omega)=$ congruence with subrope ideal $\mathcal{R}_{(\mho, \Omega)}$

examples:

- sylvester congruence $=$ subrope ideal contains only ropes $(u, v, \nabla, \varnothing)$

COHERENT CONGRUENCES

$(\mho, \Omega)=$ two of arbitrary subsets of V
$\mathcal{R}_{(\mho, \Omega)}=$ lower ideal of ropes $(u, v, \nabla, \triangle)$ of D such that $\nabla \subseteq \mho$ and $\triangle \subseteq \Omega$ coherent congruence $\equiv(\mho, \Omega)=$ congruence with subrope ideal $\mathcal{R}_{(\mho, \Omega)}$
examples:

- sylvester congruence $=$ subrope ideal contains only ropes $(u, v, \nabla, \varnothing)$
- Cambrian congruences $=$ when $\mho \sqcup \Omega=V$

QUOTIENT FANS \& QUOTIENTOPES

GRAPHICAL ARRANGEMENT \& GRAPHICAL ZONOTOPE

D directed acyclic graph graphical arrangement $\mathcal{H}_{D}=$ arrangement of hyperplanes $x_{u}=x_{v}$ for all arcs $(u, v) \in D$ graphical zonotope $\mathcal{Z}_{D}=$ Minkowski sum of $\left[\boldsymbol{e}_{u}, \boldsymbol{e}_{v}\right]$ for all arcs $(u, v) \in D$

hyperplanes of $\mathcal{H}_{D} \quad \longleftrightarrow$ summands of $\mathcal{Z}_{D} \quad \longleftrightarrow \quad$ arcs of D regions of $\mathcal{H}_{D} \quad \longleftrightarrow \quad$ vertices of $\mathcal{Z}_{D} \quad \longleftrightarrow \quad$ acyclic reorientations of D poset of regions of $\mathcal{H}_{D} \longleftrightarrow$ oriented graph of $\mathcal{Z}_{D} \longleftrightarrow$ acyclic reorientation poset of D

QUOTIENT FAN

THM. A lattice congruence \equiv of $\mathcal{A} \mathcal{R}_{D}$ defines a quotient fan \mathcal{F}_{\equiv} where the chambers of \mathcal{F}_{\equiv} are obtained by glueing the chambers of \mathcal{H}_{D} corresponding to acyclic reorientations in the same equivalence class of \equiv

QUOTIENT FAN

THM. A lattice congruence \equiv of $\mathcal{A} \mathcal{R}_{D}$ defines a quotient fan \mathcal{F}_{\equiv} where the chambers of \mathcal{F}_{\equiv} are obtained by glueing the chambers of \mathcal{H}_{D} corresponding to acyclic reorientations in the same equivalence class of \equiv

QUOTIENTOPES

THM. The quotient fan \mathcal{F}_{\equiv} of any lattice congruence \equiv of $\mathcal{A} \mathcal{R}_{D}$ is the normal fan of

- a Minkowski sum of associahedra of Hohlweg - Lange, and
- a Minkowski sum of shard polytopes of Padrol - P. - Ritter

ρ-alternating matching $=$ pair $\left(M_{\nabla}, M_{\triangle}\right)$ with $M_{\nabla} \subseteq\{u\} \cup \nabla$ and $M_{\triangle} \subseteq \triangle \cup\{v\}$ s.t. M_{∇} and M_{\triangle} are alternating along the transitive reduction of D shard polytope of $\rho=$ convex hull of signed charact. vectors of ρ-alternating matchings

QUOTIENTOPES

THM. The quotient fan \mathcal{F}_{\equiv} of any lattice congruence \equiv of $\mathcal{A} \mathcal{R}_{D}$ is the normal fan of

- a Minkowski sum of associahedra of Hohlweg - Lange, and
- a Minkowski sum of shard polytopes of Padrol - P. - Ritter

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron of D are facet defining inequalities of the graphical zonotope of D

SOME OPEN PROBLEMS

SIMPLE ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to or
\Longleftrightarrow the Hasse diagram of the D-Tamari lattice is regular
\Longleftrightarrow the D-associahedron is a simple polytope

ISOMORPHIC CAMBRIAN ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to
\Longleftrightarrow all Cambrian associahedra of D have the same number of vertices
\Longleftrightarrow all Cambrian associahedra of D have isomorphic 1-skeleta
\Longleftrightarrow all Cambrian associahedra of D have isomorphic face lattices

REMOVAHEDRA

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron of D are facet defining inequalities of the graphical zonotope of D

CONJ. For any $\mho, \Omega \subseteq V$, the quotient fan $\mathcal{F}_{(\mho, \Omega)}$ is the normal fan of the polytope obtained by deleting inequalities of the graphical zonotope of D

Not all acyclic reorientation flip graphs admit a Hamiltonian cycle

HAMILTONIAN CYCLES

THM [SSW '93]. For D chordal, the acyclic reorientation flip graph is Hamiltonian

CONJ. When D is skeletal, all quotientopes admit a Hamiltonian cycle

... checked for all quotients, for all skeletal acyclic directed graphs up to 5 vertices ...

LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

\mathcal{H} hyperplane arrangement in \mathbb{R}^{n}
base region $B=$ distinguished region of $\mathbb{R}^{n} \backslash \mathcal{H}$
inversion set of a region $C=$ set of hyperplanes of \mathcal{H} that separate B and C poset of regions $\operatorname{PR}(\mathcal{H}, B)=$ regions of $\mathbb{R}^{n} \backslash \mathcal{H}$ ordered by inclusion of inversion sets

QU. For which (\mathcal{H}, B) is the poset of regions PR a lattice?

LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

\mathcal{H} hyperplane arrangement in \mathbb{R}^{n}
base region $B=$ distinguished region of $\mathbb{R}^{n} \backslash \mathcal{H}$
inversion set of a region $C=$ set of hyperplanes of \mathcal{H} that separate B and C poset of regions $\operatorname{PR}(\mathcal{H}, B)=$ regions of $\mathbb{R}^{n} \backslash \mathcal{H}$ ordered by inclusion of inversion sets

QU. For which (\mathcal{H}, B) is the poset of regions PR a lattice?

THM. The poset of regions $\operatorname{PR}(\mathcal{H}, B)$
Björner-Edelman-Ziegler ('90)

- is never a lattice when B is not a simplicial region
- is always a lattice when \mathcal{H} is a simplicial arrangement

THM. The poset of regions $\operatorname{PR}(\mathcal{H}, B)$ is a semidistributive lattice $\Longleftrightarrow \mathcal{H}$ is tight with respect to B

QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

\mathcal{H} hyperplane arrangement in \mathbb{R}^{n}
base region $B=$ distinguished region of $\mathbb{R}^{n} \backslash \mathcal{H}$
inversion set of a region $C=$ set of hyperplanes of \mathcal{H} that separate B and C poset of regions $\operatorname{PR}(\mathcal{H}, B)=$ regions of $\mathbb{R}^{n} \backslash \mathcal{H}$ ordered by inclusion of inversion sets

THM. If $\operatorname{PR}(\mathcal{H}, B)$ is a lattice, and \equiv is a congruence of $\operatorname{PR}(\mathcal{H}, B)$, the cones obtained by glueing the regions of $\mathbb{R}^{n} \backslash \mathcal{H}$ in the same congruence class form a complete fan \mathcal{F}_{\equiv}

QU. Is the quotient fan $\mathcal{F} \equiv$ always polytopal?

QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

hyperoctahedral group $=$ isometry group of the hypercube (or of its dual cross-polytope)

THM. The quotient fan of any lattice congruence of the type B weak order is polytopal

Type B quotientopes are obtained

- not as removahedra,
- not as Minkowski sum of cyclohedra,
- but as Minkowski sum of shard polytopes (but this is another story...)

THANK YOU

