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PERMUTAHEDRA & ASSOCIAHEDRA



LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X ⊆ L admits a meet
∧
X and a join

∨
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weak order = permutations of [n] Tamari lattice = binary trees on [n]

ordered by paths of simple transpositions ordered by paths of right rotations
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LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X ⊆ L admits a meet
∧
X and a join

∨
X

4321

4231 43123421

34123241 2431 4213 4132

1234

1324 12432134

21432314 3124 1342 1423

3142 2413 4123 14323214 2341

weak order = permutations of [n] Tamari lattice = binary trees on [n]

ordered by paths of simple transpositions ordered by paths of right rotations

lattice congruence = equivalence relation ≡ which respects meets and joins
x ≡ x′ and y ≡ y′ =⇒ x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′

quotient lattice = lattice on classes with X ≤ Y ⇐⇒ ∃ x ∈ X, y ∈ Y, x ≤ y



FANS: BRAID FAN AND SYLVESTER FAN

polyhedral cone = positive span of a finite set of vectors

= intersection of a finite set of linear half-spaces

fan = collection of polyhedral cones closed by faces

and where any two cones intersect along a face
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C(σ) =
{
x ∈ Rn

∣∣ xσ(1) ≤ · · · ≤ xσ(n)

}
C(T ) = {x ∈ Rn | xi ≤ xj if i→ j in T}
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FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces
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34214321

4312 3412

4132

1432

4123

1423

braid fan = sylvester fan =

C(σ) =
{
x ∈ Rn

∣∣ xσ(1) ≤ · · · ≤ xσ(n)

}
C(T ) = {x ∈ Rn | xi ≤ xj if i→ j in T}

quotient fan = C(T ) is obtained by glueing C(σ) for all linear extensions σ of T



POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations
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{
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∣∣ ∑
j∈J xj ≥

(|J |+1
2

)} Stasheff (’63)

Shnider–Sternberg (’93)

Loday (’04)
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

POLPOLYWOODOODPOLYWOOD


outsidahedra_perm2asso2cube_penche_framed_fast_bothWays_cropped.mov
Media File (video/quicktime)



LATTICES – FANS – POLYTOPES

permutahedron Perm(n) associahedron Asso(n)

=⇒ braid fan =⇒ Sylvester fan

face F of polytope P

normal cone of F = positive span of the outer normal vectors of the facets containing F

normal fan of P = { normal cone of F | F face of P }



LATTICES – FANS – POLYTOPES

permutahedron Perm(n) associahedron Asso(n)

=⇒ braid fan =⇒ Sylvester fan

=⇒ weak order on permutations =⇒ Tamari lattice on binary trees
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LATTICE THEORY OF THE WEAK ORDER



INVERSION SETS
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INVERSION SETS

4321

4231 43123421

34123241 2431 4213 4132

1234

1324 12432134

21432314 3124 1342 1423

3142 2413 4123 14323214 2341

weak order = permutations of [n] ordered by paths of simple transpositions

permutations of [n] ordered by inclusion of inversion sets

inversion of σ = pair (σi, σj) such that i < j and σi > σj

PROP. inversion sets = transitive and cotransitive subsets of {(b, a) | 1 ≤ a < b ≤ n}
inv(σ1 ∨ . . . ∨ σk) = transitive closure of inv(σ1) ∪ · · · ∪ inv(σk)

ninv(σ1 ∧ . . . ∧ σk) = transitive closure of ninv(σ1) ∪ · · · ∪ ninv(σk)



CANONICAL JOIN REPRESENTATIONS

join representation of y ∈ L = subset J ⊆ L such that y =
∨
J

y =
∨
J irredundant if 6 ∃ J ′ ( J with y =

∨
J ′

ordered by containement of order ideals: J ≤ J ′ ⇐⇒ ∀ z ∈ J, ∃ z′ ∈ J ′, z ≤ z′

canonical join representation of y = minimal irredundant join representation of y

= lowest way to write y as a join

=⇒ a canonical join representation is an antichain of join irreducible elements of L



DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

(L,≤,∧,∨) finite lattice is

• distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for any x, y, z ∈ L

• join semidistributive if x ∨ y = x ∨ z implies x ∨ (y ∧ z) = x ∨ y for any x, y, z ∈ L

• semidistributive if both join and meet semidistributive

c ∨ d

a ∨ b ∨ cd

b ∨ ca ∨ ca ∨ b

cba

∅

a ∨ b

dc

ba

∅

a ∨ b = a ∨ c = b ∨ c

cba

∅

distributive semidistributive not semidistributive



DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

(L,≤,∧,∨) finite lattice is

• distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for any x, y, z ∈ L

=⇒ canonical join representations = antichains of join irreducibles

=⇒ L ' inclusion poset of lower ideals of JI(L)

• join semidistributive if x ∨ y = x ∨ z implies x ∨ (y ∧ z) = x ∨ y for any x, y, z ∈ L

=⇒ any y ∈ L admits the canonical join representation y =
∨
xly k∨(x, y)

where k∨(x, y) is the unique minimal element of {z ∈ L | x ∨ z = y}

• semidistributive if both join and meet semidistributive

c ∨ d

a ∨ b ∨ cd

b ∨ ca ∨ ca ∨ b

cba

∅

a ∨ b

dc

ba

∅

a ∨ b = a ∨ c = b ∨ c

cba

∅

distributive semidistributive not semidistributive



FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

draw all points (σi, i) and all segments

from (σi, i) to (σi+1, i + 1) with σi > σi+1

and project down to an horizontal line allowing

arcs to bend but not to cross or pass points

arc = x-monotone curve joining two points

and wiggling around the horizontal axis

(up to deformations)

compatible arcs =

• left(α) 6= left(α′) and right(α) 6= right(α′),

• α and α′ are not crossing.

noncrossing arc diagrams = set of pairwise compatible arcs

THM. δ is a bijection from permutations to noncrossing arc diagrams Reading (’15)

permutation σ = 2537146

1
2
3
4
5
6
7

76421 3 5

noncrossing arc diagram δ(σ)



FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

draw all points (σi, i) and all segments

from (σi, i) to (σi+1, i + 1) with σi > σi+1

and project down to an horizontal line allowing

arcs to bend but not to cross or pass points

arc = x-monotone curve joining two points

and wiggling around the horizontal axis

(up to deformations)
⇐⇒ quadruple (a, b, A,B) with a < b and ]a, b[= A tB

compatible arcs =

• left(α) 6= left(α′) and right(α) 6= right(α′),

• α and α′ are not crossing.

⇐⇒ α = (a, b, A,B) and α′ = (a′, b′, A′, B′)

such that there is no x 6= x′ with

x ∈ (A ∪ {a, b}) ∩ (B′ ∪ {a′, b′}) and x′ ∈ (B ∪ {a, b}) ∩ (A′ ∪ {a′, b′})

noncrossing arc diagrams = set of pairwise compatible arcs

THM. δ is a bijection from permutations to noncrossing arc diagrams Reading (’15)

permutation σ = 5327164

1
2
3
4
5
6
7

76421 3 5

noncrossing arc diagram δ(σ)



WEAK ORDER ON NONCROSSING ARC DIAGRAMS



CANONICAL JOIN REPRESENTATIONS AND NONCROSSING ARC DIAGRAMS

THM. σ =
∨
α∈δ(σ) δ

−1({α}) is the canonical join representation Reading (’15)



LATTICE CONGRUENCES AND LATTICE QUOTIENTS

lattice congruence of L = equivalence relation ≡ which respects meets and joins

x ≡ x′ and y ≡ y′ =⇒ x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′

lattice quotient of L/≡ = lattice on equivalence classes of L under ≡ where

• X ≤ Y ⇐⇒ ∃ x ∈ X, y ∈ Y, x ≤ y

• X ∧ Y = equiv. class of x ∧ y for any x ∈ X and y ∈ Y
• X ∨ Y = equiv. class of x ∨ y for any x ∈ X and y ∈ Y



LATTICE QUOTIENTS AND CANONICAL JOIN REPRESENTATIONS

≡ lattice congruence on L, then

• each class X is an interval [π↓(X), π↑(X)]

• L/≡ is isomorphic (as poset) to the restriction of L to the elements x with π↓(x) = x

• π↓(x) = x if and only if π↓(j) = j for all canonical joinands j of x

• canonical join representations in L/≡ are canonical join representations in L that only

involve join irreducibles j with π↓(j) = j



LATTICE QUOTIENTS OF THE WEAK ORDER

THM. ≡ lattice congruence of the weak order on Sn

A≡ = arcs corresponding to join irreducibles σ with π↓(σ) = σ

Sn/≡ ' subposet induced by noncrossing arc diagrams with all arcs in A≡

Reading (’15)



SUBARC ORDER

THM. ≡ lattice congruence of the weak order on Sn

A≡ = arcs corresponding to join irreducibles σ with π↓(σ) = σ

Sn/≡ ' subposet induced by noncrossing arc diagrams with all arcs in A≡

THM. The following are equivalent for a set of arcs A:

• there exists a lattice congruence ≡ on Sn with A = A≡
• A is a lower ideal of the subarc order

Reading (’15)



SUBARC ORDER

THM. ≡ lattice congruence of the weak order on Sn

A≡ = arcs corresponding to join irreducibles σ with π↓(σ) = σ

Sn/≡ ' subposet induced by noncrossing arc diagrams with all arcs in A≡

THM. The following are equivalent for a set of arcs A:

• there exists a lattice congruence ≡ on Sn with A = A≡
• A is a lower ideal of the subarc order

ac d
b

(a, b, A,B) subarc of (c, d, C,D) ⇐⇒
c < a < b < d and A ⊆ C and B ⊆ D

Reading (’15)



ARC IDEALS

arc ideal = lower ideal of the subarc order

essential congruences:

1, 1, 4, 47, 3322, ...

OEIS A330039

all congruences

1, 2, 7, 60, 3444, ...

OEIS A091687
Reading (’15)
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Reading (’15)



QUOTIENT FANS & QUOTIENTOPES

quotient fan F≡ = chambers are obtained by

glueing the chambers of the permutations σ

in the same congruence class of ≡

quotientope = polytope with normal fan F≡

Reading (’05)

P.–Santos (’19)

Padrol–P.–Ritter (’20+)



QUOTIENT FANS & QUOTIENTOPES

quotient fan F≡ = chambers are obtained by

glueing the chambers of the permutations σ

in the same congruence class of ≡

quotientope = polytope with normal fan F≡

Reading (’05)

P.–Santos (’19)

Padrol–P.–Ritter (’20+)



QUOTIENT FANS & QUOTIENTOPES

quotient fan F≡ = chambers are obtained by

glueing the chambers of the permutations σ

in the same congruence class of ≡

quotientope = polytope with normal fan F≡

Reading (’05)

P.–Santos (’19)

Padrol–P.–Ritter (’20+)POLPOLYWOODOODPOLYWOOD


insidahedra_quotientopes_penche_framed_ultraFast_bothWays_cropped.mov
Media File (video/quicktime)



ACYCLIC REORIENTATION LATTICES



ACYCLIC REORIENTATION POSETS

D directed acyclic graph

ARD = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D

maximal element D̄

self-dual under reversing all arcs

cover relations = flipping a single arc

flippable arcs of E = transitive reduction of E

= E r {(u, v) ∈ E | ∃ directed path u v in E}



ACYCLIC REORIENTATION POSETS

D directed acyclic graph

ARD = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D

maximal element D̄

self-dual under reversing all arcs

cover relations = flipping a single arc

flippable arcs of E = transitive reduction of E

= E r {(u, v) ∈ E | ∃ directed path u v in E}



ACYCLIC REORIENTATION POSETS

D directed acyclic graph

ARD = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

D forest D tournament

boolean lattice weak order



ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. ARD lattice ⇐⇒ D vertebrate

lattice not lattice
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ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. ARD lattice ⇐⇒ D vertebrate

X subset of arcs of D is

• closed if all arcs of D in the transitive closure

of X also belong to X

• coclosed if its complement is closed

• biclosed if it is closed and coclosed

PROP. If D vertebrate,

X biclosed ⇐⇒ the reorientation of X is acyclic



ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. ARD lattice ⇐⇒ D vertebrate

PROP. If D vertebrate,

bwd(E1 ∨ . . . ∨ Ek) =

transitive closure of bwd(E1) ∪ · · · ∪ bwd(Ek)

fwd(E1 ∧ . . . ∧ Ek) =

transitive closure of fwd(E1) ∪ · · · ∪ fwd(Ek)

∨ = ∧ =



DISTRIBUTIVITY & SEMIDISTRIBUTIVITY



DISTRIBUTIVE ACYCLIC REORIENTATION POSETS

THM. ARD distributive lattice ⇐⇒ D forest ⇐⇒ ARD boolean lattice

distributive not distributive



SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =

• D vertebrate = transitive reduction of any induced subgraph of D is a forest

• D filled = any directed path joining the endpoints of an arc in D induces a tournament

THM. ARD semidistributive lattice ⇐⇒ D is skeletal

semidistributive non semidistributive



ROPES & NON-CROSSING ROPE DIAGRAMS



ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple ρ = (u, v,5,4) where

• (u, v) is an arc of D

• 5t4 partitions the transitive support of (u, v) minus {u, v}

ropes
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join irreducibles

THM. join irreducibles of ARD ←→ ropes of D



ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple ρ = (u, v,5,4) where

• (u, v) is an arc of D

• 5t4 partitions the transitive support of (u, v) minus {u, v}

ropes

join irreducibles

THM. join irreducibles of ARD ←→ ropes of D

canonical join representations of ARD ←→ non-crossing rope diagrams of ARD

(u, v,5,4) and (u′, v′,5′,4′) are crossing if there are w 6= w′ such that

w ∈ (5∪ {u, v}) ∩ (4′ ∪ {u′, v′}) and w′ ∈ (4∪ {u, v}) ∩ (5′ ∪ {u′, v′})



CONGRUENCES & QUOTIENTS



SUBROPES ORDER

(u, v,5,4) subrope of (u′, v′,5′,4′) if u, v ∈ {u′, v′} ∪ 5′ ∪4′ and 5 ⊆ 5′ and 4 ⊆ 4′

PROP. congruence lattice of ARD ' lower ideal lattice of subrope order

CORO. ≡ lattice congruence of ARD

• E minimal in its ≡-class ⇐⇒ δ(E) ⊆ R≡
• quotient ARD/≡ ' subposet of ARD induced by {E ∈ ARD | δ(E) ⊆ R≡}



COHERENT CONGRUENCES

(f,Ω) = two of arbitrary subsets of V

R(f,Ω) = lower ideal of ropes (u, v,5,4) of D such that 5 ⊆ f and 4 ⊆ Ω

coherent congruence ≡(f,Ω) = congruence with subrope ideal R(f,Ω)

P.–Pons (’18)examples:

• sylvester congruence = subrope ideal contains only ropes (u, v,5,∅)



COHERENT CONGRUENCES

(f,Ω) = two of arbitrary subsets of V

R(f,Ω) = lower ideal of ropes (u, v,5,4) of D such that 5 ⊆ f and 4 ⊆ Ω

coherent congruence ≡(f,Ω) = congruence with subrope ideal R(f,Ω)

P.–Pons (’18)examples:

• sylvester congruence = subrope ideal contains only ropes (u, v,5,∅)

• Cambrian congruences = when f t Ω = V

Reading (’06)



QUOTIENT FANS & QUOTIENTOPES



GRAPHICAL ARRANGEMENT & GRAPHICAL ZONOTOPE

D directed acyclic graph

graphical arrangement HD = arrangement of hyperplanes xu = xv for all arcs (u, v) ∈ D
graphical zonotope ZD = Minkowski sum of [eu, ev] for all arcs (u, v) ∈ D

hyperplanes of HD ←→ summands of ZD ←→ arcs of D

regions of HD ←→ vertices of ZD ←→ acyclic reorientations of D

poset of regions of HD ←→ oriented graph of ZD ←→ acyclic reorientation poset of D



QUOTIENT FAN

THM. A lattice congruence ≡ of ARD defines a quotient fan F≡ where the chambers

of F≡ are obtained by glueing the chambers of HD corresponding to acyclic reorienta-

tions in the same equivalence class of ≡
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THM. A lattice congruence ≡ of ARD defines a quotient fan F≡ where the chambers

of F≡ are obtained by glueing the chambers of HD corresponding to acyclic reorienta-

tions in the same equivalence class of ≡



QUOTIENTOPES

THM. The quotient fan F≡ of any lattice congruence ≡ of ARD is the normal fan of

• a Minkowski sum of associahedra of Hohlweg – Lange, and

• a Minkowski sum of shard polytopes of Padrol – P. – Ritter

ρ-alternating matching = pair (M5,M4) with M5 ⊆ {u} ∪ 5 and M4 ⊆ 4∪ {v} s.t.

M5 and M4 are alternating along the transitive reduction of D
shard polytope of ρ = convex hull of signed charact. vectors of ρ-alternating matchings



QUOTIENTOPES

THM. The quotient fan F≡ of any lattice congruence ≡ of ARD is the normal fan of

• a Minkowski sum of associahedra of Hohlweg – Lange, and

• a Minkowski sum of shard polytopes of Padrol – P. – Ritter

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron

of D are facet defining inequalities of the graphical zonotope of D



SOME OPEN PROBLEMS



SIMPLE ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to or

⇐⇒ the Hasse diagram of the D-Tamari lattice is regular

⇐⇒ the D-associahedron is a simple polytope

regular non regular



ISOMORPHIC CAMBRIAN ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to

⇐⇒ all Cambrian associahedra of D have the same number of vertices

⇐⇒ all Cambrian associahedra of D have isomorphic 1-skeleta

⇐⇒ all Cambrian associahedra of D have isomorphic face lattices



REMOVAHEDRA

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron

of D are facet defining inequalities of the graphical zonotope of D

CONJ. For any f,Ω ⊆ V , the quotient fan F(f,Ω) is the normal fan of the polytope

obtained by deleting inequalities of the graphical zonotope of D



HAMILTONIAN CYCLES

Not all acyclic reorientation flip graphs admit a Hamiltonian cycle



HAMILTONIAN CYCLES

THM [SSW ’93]. For D chordal, the acyclic reorientation flip graph is Hamiltonian

CONJ. When D is skeletal, all quotientopes admit a Hamiltonian cycle

... checked for all quotients, for all skeletal acyclic directed graphs up to 5 vertices ...



LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in Rn

base region B = distinguished region of Rn rH
inversion set of a region C = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of Rn rH ordered by inclusion of inversion sets

QU. For which (H, B) is the poset of regions PR a lattice?



LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in Rn

base region B = distinguished region of Rn rH
inversion set of a region C = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of Rn rH ordered by inclusion of inversion sets

QU. For which (H, B) is the poset of regions PR a lattice?

THM. The poset of regions PR(H, B) Björner–Edelman–Ziegler (’90)

• is never a lattice when B is not a simplicial region

• is always a lattice when H is a simplicial arrangement

THM. The poset of regions PR(H, B) is a semidistributive lattice

⇐⇒ H is tight with respect to B Reading (’16)



QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in Rn

base region B = distinguished region of Rn rH
inversion set of a region C = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of Rn rH ordered by inclusion of inversion sets

THM. If PR(H, B) is a lattice, and ≡ is a congruence of PR(H, B), the cones obtained

by glueing the regions of RnrH in the same congruence class form a complete fan F≡
Reading (’05)

QU. Is the quotient fan F≡ always polytopal?



QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

hyperoctahedral group = isometry group of the hypercube (or of its dual cross-polytope)

THM. The quotient fan of any lattice congruence of the type B weak order is polytopal

Padrol–P.–Ritter (’20+)

Type B quotientopes are obtained

• not as removahedra,

• not as Minkowski sum of cyclohedra,

• but as Minkowski sum of shard polytopes (but this is another story...)



THANK YOU


