Acyclic reorientation lattices and their lattice quotients

V. PILAUD (CNRS & LIX, École Polytechnique)

Philippe Flajolet Seminar Thursday November 24th, 2022

PERMUTAHEDRA & ASSOCIAHEDRA

lattice = partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

<u>weak order</u> = permutations of [n]ordered by paths of simple transpositions $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

lattice = partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

<u>weak order</u> = permutations of [n]ordered by paths of simple transpositions $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

lattice = partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

weak order= permutations of [n]Tordered by paths of simple transpositionso

 $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

<u>sylvester congruence</u> = equivalence classes are sets of linear extensions of binary trees = equivalence classes are fibers of BST insertion

= rewriting rule $UacVbW \equiv_{sylv} UcaVbW$ with a < b < c

lattice = partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

<u>weak order</u> = permutations of [n]ordered by paths of simple transpositions $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 \mathbb{N}

<u>sylvester congruence</u> = equivalence classes are sets of linear extensions of binary trees = equivalence classes are fibers of BST insertion

= rewriting rule $UacVbW \equiv_{sylv} UcaVbW$ with a < b < c

 $\overline{\Lambda}$

lattice = partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

<u>weak order</u> = permutations of [n]ordered by paths of simple transpositions $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 $\underbrace{ \text{lattice congruence}}_{x \equiv x' \text{ and } y \equiv y' \Longrightarrow x \land y \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' \\ \underline{\text{quotient lattice}} = \text{lattice on classes with } X \leq Y \iff \exists x \in X, \ y \in Y, x \leq y \\ \end{aligned}$

<u>polyhedral cone</u> = positive span of a finite set of vectors = intersection of a finite set of linear half-spaces

 $\underline{fan} =$ collection of polyhedral cones closed by faces and where any two cones intersect along a face

fan = collection of polyhedral cones closed by faces and intersecting along faces

fan = collection of polyhedral cones closed by faces and intersecting along faces

fan = collection of polyhedral cones closed by faces and intersecting along faces

quotient fan = $\mathbb{C}(T)$ is obtained by glueing $\mathbb{C}(\sigma)$ for all linear extensions σ of T

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces

<u>polytope</u> = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces

POLYWOOD

LATTICES – FANS – POLYTOPES

permutahedron $\mathbb{P}erm(n)$ associahedron Asso(n) \implies braid fan \implies Sylvester fan

face \mathbb{F} of polytope \mathbb{P} <u>normal cone</u> of \mathbb{F} = positive span of the outer normal vectors of the facets containing \mathbb{F} <u>normal fan</u> of $\mathbb{P} = \{$ normal cone of $\mathbb{F} \mid \mathbb{F}$ face of $\mathbb{P} \}$

LATTICES – FANS – POLYTOPES

permutahedron $\mathbb{P}erm(n)$

 \implies braid fan

 \implies weak order on permutations

associahedron Asso(n)

 \implies Sylvester fan

 \implies Tamari lattice on binary trees

LATTICE THEORY OF THE WEAK ORDER

INVERSION SETS

weak order = permutations of [n] ordered by paths of simple transpositions

INVERSION SETS

<u>weak order</u> = permutations of [n] ordered by paths of simple transpositions permutations of [n] ordered by inclusion of inversion sets <u>inversion</u> of σ = pair (σ_i, σ_j) such that i < j and $\sigma_i > \sigma_j$

PROP. inversion sets = transitive and cotransitive subsets of $\{(b, a) \mid 1 \le a < b \le n\}$ $\operatorname{inv}(\sigma_1 \lor \ldots \lor \sigma_k) = \text{transitive closure of } \operatorname{inv}(\sigma_1) \cup \cdots \cup \operatorname{inv}(\sigma_k)$ $\operatorname{ninv}(\sigma_1 \land \ldots \land \sigma_k) = \text{transitive closure of } \operatorname{ninv}(\sigma_1) \cup \cdots \cup \operatorname{ninv}(\sigma_k)$

CANONICAL JOIN REPRESENTATIONS

join representation of $y \in L$ = subset $J \subseteq L$ such that $y = \bigvee J$ $y = \bigvee J$ <u>irredundant</u> if $\not\exists J' \subsetneq J$ with $y = \bigvee J'$ ordered by containement of order ideals: $J \leq J' \iff \forall z \in J, \exists z' \in J', z \leq z'$ <u>canonical join representation</u> of y = minimal irredundant join representation of y= lowest way to write y as a join

 \implies a canonical join representation is an antichain of join irreducible elements of L

DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

- (L,\leq,\wedge,\vee) finite lattice is
 - distributive if $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ for any $x, y, z \in L$

• join semidistributive if $x \lor y = x \lor z$ implies $x \lor (y \land z) = x \lor y$ for any $x, y, z \in L$

• semidistributive if both join and meet semidistributive

(L,\leq,\wedge,\vee) finite lattice is

- distributive if $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ for any $x, y, z \in L$
 - \implies canonical join representations = antichains of join irreducibles
 - $\implies L \simeq$ inclusion poset of lower ideals of JI(L)
- join semidistributive if $x \lor y = x \lor z$ implies $x \lor (y \land z) = x \lor y$ for any $x, y, z \in L$
 - $\implies \text{ any } y \in L \text{ admits the canonical join representation } y = \bigvee_{x \lessdot y} k_{\lor}(x, y)$ where $k_{\lor}(x, y)$ is the unique minimal element of $\{z \in L \mid x \lor z = y\}$

• semidistributive if both join and meet semidistributive

FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

draw all points (σ_i, i) and all segments from (σ_i, i) to $(\sigma_{i+1}, i+1)$ with $\sigma_i > \sigma_{i+1}$ and project down to an horizontal line allowing arcs to bend but not to cross or pass points

 $\underline{\operatorname{arc}} = x$ -monotone curve joining two points and wiggling around the horizontal axis (up to deformations)

$\underline{compatible \ arcs} =$

- $\operatorname{left}(\alpha) \neq \operatorname{left}(\alpha')$ and $\operatorname{right}(\alpha) \neq \operatorname{right}(\alpha')$,
- α and α' are not crossing.

permutation $\sigma = 2537146$

noncrossing arc diagram $\delta(\sigma)$

noncrossing arc diagrams = set of pairwise compatible arcs

THM. δ is a bijection from permutations to noncrossing arc diagrams

FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

draw all points (σ_i, i) and all segments from (σ_i, i) to $(\sigma_{i+1}, i+1)$ with $\sigma_i > \sigma_{i+1}$ and project down to an horizontal line allowing arcs to bend but not to cross or pass points

- <u>arc</u> = x-monotone curve joining two points and wiggling around the horizontal axis (up to deformations)
- $\iff \mathsf{quadruple}\ (a,b,A,B) \text{ with } a < b \text{ and }]a,b[=A \sqcup B$

$\underline{compatible arcs} =$

- $\bullet \ \mathbf{left}(\alpha) \neq \mathbf{left}(\alpha') \ \mathbf{and} \ \mathbf{right}(\alpha) \neq \mathbf{right}(\alpha') \mathbf{,}$
- $\bullet \ \alpha \ {\rm and} \ \alpha'$ are not crossing.

 $\iff \alpha = (a, b, A, B) \text{ and } \alpha' = (a', b', A', B')$ such that there is no $x \neq x'$ with

 $x \in (A \cup \{a, b\}) \cap (B' \cup \{a', b'\}) \text{ and } x' \in (B \cup \{a, b\}) \cap (A' \cup \{a', b'\})$

noncrossing arc diagrams = set of pairwise compatible arcs

THM. δ is a bijection from permutations to noncrossing arc diagrams

noncrossing arc diagram $\delta(\sigma)$

Reading ('15)

WEAK ORDER ON NONCROSSING ARC DIAGRAMS

CANONICAL JOIN REPRESENTATIONS AND NONCROSSING ARC DIAGRAMS

THM. $\sigma = \bigvee_{\alpha \in \delta(\sigma)} \delta^{-1}(\{\alpha\})$ is the canonical join representation

Reading ('15)

<u>lattice quotient</u> of L/\equiv = lattice on equivalence classes of L under \equiv where

- $\bullet \ X \leq Y \iff \exists \ x \in X, \ y \in Y, \quad x \leq y$
- $X \wedge Y =$ equiv. class of $x \wedge y$ for any $x \in X$ and $y \in Y$
- $X \lor Y =$ equiv. class of $x \lor y$ for any $x \in X$ and $y \in Y$

LATTICE QUOTIENTS AND CANONICAL JOIN REPRESENTATIONS

- \equiv lattice congruence on L, then
 - \bullet each class X is an interval $[\pi_{\downarrow}(X),\pi^{\uparrow}(X)]$
 - L/\equiv is isomorphic (as poset) to the restriction of L to the elements x with $\pi_{\downarrow}(x) = x$
 - $\pi_{\downarrow}(x) = x$ if and only if $\pi_{\downarrow}(j) = j$ for all canonical joinands j of x
 - canonical join representations in L/\equiv are canonical join representations in L that only involve join irreducibles j with $\pi_{\downarrow}(j) = j$

LATTICE QUOTIENTS OF THE WEAK ORDER

THM. \equiv lattice congruence of the weak order on \mathfrak{S}_n $\mathcal{A}_{\equiv} =$ arcs corresponding to join irreducibles σ with $\pi_{\downarrow}(\sigma) = \sigma$ $\mathfrak{S}_n/\equiv \simeq$ subposet induced by noncrossing arc diagrams with all arcs in \mathcal{A}_{\equiv}

Reading ('15)

SUBARC ORDER

THM. \equiv lattice congruence of the weak order on \mathfrak{S}_n $\mathcal{A}_{\equiv} =$ arcs corresponding to join irreducibles σ with $\pi_{\downarrow}(\sigma) = \sigma$ $\mathfrak{S}_n/\equiv \simeq$ subposet induced by noncrossing arc diagrams with all arcs in \mathcal{A}_{\equiv}

THM. The following are equivalent for a set of arcs \mathcal{A} :

- there exists a lattice congruence \equiv on \mathfrak{S}_n with $\mathcal{A} = \mathcal{A}_{\equiv}$
- $\bullet \ \mathcal{A}$ is a lower ideal of the subarc order

SUBARC ORDER

THM. \equiv lattice congruence of the weak order on \mathfrak{S}_n $\mathcal{A}_{\equiv} =$ arcs corresponding to join irreducibles σ with $\pi_{\downarrow}(\sigma) = \sigma$ $\mathfrak{S}_n/\equiv \simeq$ subposet induced by noncrossing arc diagrams with all arcs in \mathcal{A}_{\equiv}

THM. The following are equivalent for a set of arcs \mathcal{A} :

- there exists a lattice congruence \equiv on \mathfrak{S}_n with $\mathcal{A} = \mathcal{A}_{\equiv}$
- $\bullet \ \mathcal{A}$ is a lower ideal of the subarc order

(a, b, A, B) subarc of $(c, d, C, D) \iff$ c < a < b < d and $A \subseteq C$ and $B \subseteq D$

Reading ('15)

ARC IDEALS

Reading ('15)

ARC IDEALS

QUOTIENT FANS & QUOTIENTOPES

<u>quotient fan</u> \mathcal{F}_{\equiv} = chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv

<u>quotientope</u> = polytope with normal fan \mathcal{F}_{\equiv}

QUOTIENT FANS & QUOTIENTOPES

<u>quotient fan</u> \mathcal{F}_{\equiv} = chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv

 $\underline{\text{quotientope}} = \text{polytope}$ with normal fan \mathcal{F}_{\equiv}

QUOTIENT FANS & QUOTIENTOPES

<u>quotient fan</u> \mathcal{F}_{\equiv} = chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv

 $\underline{\text{quotientope}} = \text{polytope}$ with normal fan \mathcal{F}_{\equiv}

D directed acyclic graph

 \mathcal{AR}_D = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element Dmaximal element \bar{D} self-dual under reversing all arcs

cover relations = flipping a single arc

flippable arcs of $E = \underline{\text{transitive reduction}}$ of $E = E \smallsetminus \{(u, v) \in E \mid \exists \text{ directed path } u \rightsquigarrow v \text{ in } E\}$

D directed acyclic graph

 \mathcal{AR}_D = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element Dmaximal element \overline{D} self-dual under reversing all arcs cover relations = flipping a single arc

flippable arcs of $E = \underline{\text{transitive reduction}}$ of $E = E \smallsetminus \{(u, v) \in E \mid \exists \text{ directed path } u \rightsquigarrow v \text{ in } E\}$

D directed acyclic graph \mathcal{AR}_D = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. \mathcal{AR}_D lattice $\iff D$ vertebrate

lattice

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. \mathcal{AR}_D lattice $\iff D$ vertebrate

lattice

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. \mathcal{AR}_D lattice $\iff D$ vertebrate

 \boldsymbol{X} subset of arcs of \boldsymbol{D} is

- closed if all arcs of D in the transitive closure of X also belong to X
- coclosed if its complement is closed
- biclosed if it is closed and coclosed

PROP. If D vertebrate,

 $X \text{ biclosed} \iff \text{the reorientation of } X \text{ is acyclic}$

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. \mathcal{AR}_D lattice $\iff D$ vertebrate

PROP. If D vertebrate,

 $bwd(E_1 \lor \ldots \lor E_k) =$ transitive closure of $bwd(E_1) \cup \cdots \cup bwd(E_k)$ $fwd(E_1 \land \ldots \land E_k) =$ transitive closure of $fwd(E_1) \cup \cdots \cup fwd(E_k)$

DISTRIBUTIVITY & SEMIDISTRIBUTIVITY

DISTRIBUTIVE ACYCLIC REORIENTATION POSETS

THM. \mathcal{AR}_D distributive lattice $\iff D$ forest $\iff \mathcal{AR}_D$ boolean lattice

SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =

- D <u>vertebrate</u> = transitive reduction of any induced subgraph of D is a forest
- D filled = any directed path joining the endpoints of an arc in <math>D induces a tournament

THM. \mathcal{AR}_D semidistributive lattice $\iff D$ is skeletal

 $\underline{\mathsf{rope}} \text{ of } D = \mathsf{quadruple} \ \rho = (u, v, \bigtriangledown, \bigtriangleup) \text{ where }$

- $\bullet \; (u,v)$ is an arc of D
- $\bigtriangledown \sqcup \bigtriangleup$ partitions the transitive support of (u, v) minus $\{u, v\}$

ropes
$$\swarrow$$
 \swarrow \swarrow \checkmark \checkmark \checkmark \checkmark

 $\underline{\mathsf{rope}} \text{ of } D = \mathsf{quadruple} \ \rho = (u, v, \bigtriangledown, \bigtriangleup) \text{ where }$

- $\bullet \; (u,v)$ is an arc of D
- $\bigtriangledown \sqcup \bigtriangleup$ partitions the transitive support of (u, v) minus $\{u, v\}$

 $\underline{\mathsf{rope}} \text{ of } D = \mathsf{quadruple} \ \rho = (u,v,\bigtriangledown,\bigtriangleup) \ \text{where}$

- $\bullet \; (u,v)$ is an arc of D
- $\bigtriangledown \sqcup \bigtriangleup$ partitions the transitive support of (u, v) minus $\{u, v\}$

 $\begin{array}{l} (u,v,\bigtriangledown,\bigtriangleup) \text{ and } (u',v',\bigtriangledown',\bigtriangleup') \text{ are } \underline{\text{crossing}} \text{ if there are } w \neq w' \text{ such that } \\ w \in (\bigtriangledown \cup \{u,v\}) \cap (\bigtriangleup' \cup \{u',v'\}) \text{ and } w' \in (\bigtriangleup \cup \{u,v\}) \cap (\bigtriangledown' \cup \{u',v'\}) \end{array}$

CONGRUENCES & QUOTIENTS

SUBROPES ORDER

 $(u, v, \bigtriangledown, \bigtriangleup) \underline{\mathsf{subrope}} \text{ of } (u', v', \bigtriangledown', \bigtriangleup') \text{ if } u, v \in \{u', v'\} \cup \bigtriangledown' \cup \bigtriangleup' \text{ and } \bigtriangledown \subseteq \bigtriangledown' \text{ and } \bigtriangleup \subseteq \bigtriangleup'$

PROP. congruence lattice of
$$\mathcal{AR}_D \simeq$$
 lower ideal lattice of subrope order

CORO. \equiv lattice congruence of \mathcal{AR}_D

- *E* minimal in its \equiv -class $\iff \delta(E) \subseteq \mathcal{R}_{\equiv}$
- quotient $\mathcal{AR}_D \equiv \simeq$ subposet of \mathcal{AR}_D induced by $\{E \in \mathcal{AR}_D \mid \delta(E) \subseteq \mathcal{R}_{\equiv}\}$

COHERENT CONGRUENCES

 $(\mho, \Omega) = \mathsf{two of arbitrary subsets of } V$

 $\mathcal{R}_{(\mho,\Omega)} =$ lower ideal of ropes $(u, v, \bigtriangledown, \bigtriangleup)$ of D such that $\bigtriangledown \subseteq \mho$ and $\bigtriangleup \subseteq \Omega$

<u>coherent congruence</u> $\equiv_{(\mho,\Omega)}$ = congruence with subrope ideal $\mathcal{R}_{(\mho,\Omega)}$

examples:

```
P.-Pons ('18)
```

• sylvester congruence = subrope ideal contains only ropes $(u, v, \nabla, \emptyset)$

COHERENT CONGRUENCES

 $(\mho, \Omega) = \mathsf{two} \text{ of arbitrary subsets of } V$

 $\mathcal{R}_{(\mho,\Omega)} =$ lower ideal of ropes $(u, v, \bigtriangledown, \bigtriangleup)$ of D such that $\bigtriangledown \subseteq \mho$ and $\bigtriangleup \subseteq \Omega$

<u>coherent congruence</u> $\equiv_{(\mho,\Omega)}$ = congruence with subrope ideal $\mathcal{R}_{(\mho,\Omega)}$

examples:

P.-Pons ('18)

- sylvester congruence = subrope ideal contains only ropes $(u, v, \nabla, \emptyset)$
- Cambrian congruences = when $\mho \sqcup \Omega = V$

Reading ('06)

QUOTIENT FANS & QUOTIENTOPES

 \boldsymbol{D} directed acyclic graph

<u>graphical arrangement</u> \mathcal{H}_D = arrangement of hyperplanes $x_u = x_v$ for all arcs $(u, v) \in D$ <u>graphical zonotope</u> \mathcal{Z}_D = Minkowski sum of $[e_u, e_v]$ for all arcs $(u, v) \in D$

 $\begin{array}{cccc} \text{hyperplanes of } \mathcal{H}_D & \longleftrightarrow & \text{summands of } \mathcal{Z}_D & \longleftrightarrow & \text{arcs of } D \\ \text{regions of } \mathcal{H}_D & \longleftrightarrow & \text{vertices of } \mathcal{Z}_D & \longleftrightarrow & \text{acyclic reorientations of } D \\ \text{poset of regions of } \mathcal{H}_D & \longleftrightarrow & \text{oriented graph of } \mathcal{Z}_D & \longleftrightarrow & \text{acyclic reorientation poset of } D \end{array}$

QUOTIENT FAN

THM. A lattice congruence \equiv of \mathcal{AR}_D defines a <u>quotient fan</u> \mathcal{F}_{\equiv} where the chambers of \mathcal{F}_{\equiv} are obtained by glueing the chambers of \mathcal{H}_D corresponding to acyclic reorientations in the same equivalence class of \equiv

QUOTIENT FAN

THM. A lattice congruence \equiv of \mathcal{AR}_D defines a <u>quotient fan</u> \mathcal{F}_{\equiv} where the chambers of \mathcal{F}_{\equiv} are obtained by glueing the chambers of \mathcal{H}_D corresponding to acyclic reorientations in the same equivalence class of \equiv

QUOTIENTOPES

THM. The quotient fan \mathcal{F}_{\equiv} of any lattice congruence \equiv of \mathcal{AR}_D is the normal fan of

- a Minkowski sum of associahedra of Hohlweg Lange, and
- a Minkowski sum of shard polytopes of Padrol P. Ritter

 $\begin{array}{l} \rho \mbox{-alternating matching} = \mbox{pair} \ (M_{\bigtriangledown}, M_{\bigtriangleup}) \ \mbox{with} \ M_{\bigtriangledown} \subseteq \{u\} \cup \bigtriangledown \ \mbox{and} \ M_{\bigtriangleup} \subseteq \bigtriangleup \cup \{v\} \ \mbox{s.t.} \\ M_{\bigtriangledown} \ \mbox{and} \ M_{\bigtriangleup} \ \mbox{are alternating along the transitive reduction of} \ D \\ \mbox{shard polytope} \ \mbox{of} \ \rho = \mbox{convex hull of signed charact. vectors of} \ \rho \mbox{-alternating matchings} \end{array}$

QUOTIENTOPES

THM. The quotient fan \mathcal{F}_{\equiv} of any lattice congruence \equiv of \mathcal{AR}_D is the normal fan of

- a Minkowski sum of associahedra of Hohlweg Lange, and
- a Minkowski sum of shard polytopes of Padrol P. Ritter

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron of D are facet defining inequalities of the graphical zonotope of D

SOME OPEN PROBLEMS

SIMPLE ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to \square or \square

- \iff the Hasse diagram of the D-Tamari lattice is regular
- \iff the *D*-associahedron is a simple polytope

ISOMORPHIC CAMBRIAN ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to \sum

- \iff all Cambrian associahedra of D have the same number of vertices
- \iff all Cambrian associahedra of D have isomorphic 1-skeleta
- \iff all Cambrian associahedra of D have isomorphic face lattices

REMOVAHEDRA

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron of D are facet defining inequalities of the graphical zonotope of D

CONJ. For any $\mho, \Omega \subseteq V$, the quotient fan $\mathcal{F}_{(\mho,\Omega)}$ is the normal fan of the polytope obtained by deleting inequalities of the graphical zonotope of D

HAMILTONIAN CYCLES

Not all acyclic reorientation flip graphs admit a Hamiltonian cycle

HAMILTONIAN CYCLES

THM [SSW'93]. For D chordal, the acyclic reorientation flip graph is Hamiltonian

CONJ. When D is skeletal, all quotientopes admit a Hamiltonian cycle

 \dots checked for all quotients, for all skeletal acyclic directed graphs up to 5 vertices \dots

LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

 ${\mathcal H}$ hyperplane arrangement in ${\mathbb R}^n$

base region B = distinguished region of $\mathbb{R}^n \smallsetminus \mathcal{H}$

inversion set of a region C = set of hyperplanes of \mathcal{H} that separate B and C

poset of regions $PR(\mathcal{H}, B)$ = regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ ordered by inclusion of inversion sets

QU. For which (\mathcal{H}, B) is the poset of regions PR a lattice?

LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

 $\mathcal H$ hyperplane arrangement in $\mathbb R^n$

base region $B = \mathsf{distinguished}$ region of $\mathbb{R}^n \smallsetminus \mathcal{H}$

inversion set of a region C = set of hyperplanes of \mathcal{H} that separate B and C

poset of regions $PR(\mathcal{H}, B)$ = regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ ordered by inclusion of inversion sets

QU. For which (\mathcal{H}, B) is the poset of regions PR a lattice?

THM. The poset of regions $\mathsf{PR}(\mathcal{H},B)$

Björner–Edelman–Ziegler ('90)

- is never a lattice when B is not a simplicial region
- \bullet is always a lattice when ${\cal H}$ is a simplicial arrangement

THM. The poset of regions $PR(\mathcal{H}, B)$ is a semidistributive lattice $\iff \mathcal{H}$ is tight with respect to B

Reading ('16)

QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

 $\mathcal H$ hyperplane arrangement in $\mathbb R^n$

<u>base region</u> B = distinguished region of $\mathbb{R}^n \smallsetminus \mathcal{H}$ inversion set of a region C = set of hyperplanes of \mathcal{H} that separate B and C

poset of regions $PR(\mathcal{H}, B)$ = regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ ordered by inclusion of inversion sets

THM. If $PR(\mathcal{H}, B)$ is a lattice, and \equiv is a congruence of $PR(\mathcal{H}, B)$, the cones obtained by glueing the regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ in the same congruence class form a complete fan \mathcal{F}_{\equiv} Reading ('05)

QU. Is the quotient fan \mathcal{F}_{\equiv} always polytopal?
QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

hyperoctahedral group = isometry group of the hypercube (or of its dual cross-polytope)

THM. The quotient fan of any lattice congruence of the type B weak order is polytopal Padrol–P.–Ritter ('20⁺)

Type B quotientopes are obtained

- not as removahedra,
- not as Minkowski sum of cyclohedra,
- but as Minkowski sum of shard polytopes (but this is another story...)

Ę. \sum Ŕ ×. Ż

THANK YOU