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PERMUTAHEDRA & ASSOCIAHEDRA




LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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weak order = permutations of |n] Tamari lattice = binary trees on [n]

ordered by paths of simple transpositions ordered by paths of right rotations
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LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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weak order = permutations of |n] Tamari lattice = binary trees on [n]
ordered by paths of simple transpositions ordered by paths of right rotations

sylvester congruence = equivalence classes are sets of linear extensions of binary trees
= equivalence classes are fibers of BST insertion
= rewriting rule UacVbW =1, UcaVbW with a < b < ¢




LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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weak order = permutations of |n] Tamari lattice = binary trees on [n]
ordered by paths of simple transpositions ordered by paths of right rotations

lattice congruence = equivalence relation = which respects meets and joins

r=2'andy=vy = asAy=2'Ay andzVy=2'Vy
quotient lattice = lattice on classes with X <Y «—= daxe X, yeY z <y




FANS: BRAID FAN AND SYLVESTER FAN

polyhedral cone = positive span of a finite set of vectors

= intersection of a finite set of linear half-spaces
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and where any two cones intersect along a face

a2 4

44

s

\4 \4

» \Vr\




FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces
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FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces

braid fan =

C(a):{meR”‘xa(l)g-..<aza(n)} CT)={xeR"|z;<z;jifi—75inT}



FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces
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braid fan = sylvester fan :f

C(U)Z{%GR”‘xa(l)g---§$a(n)} C(T)Z{CBER”|$¢§IJ- ifz'—>jinT}

quotient fan = C(T) is obtained by glueing C(o) for all linear extensions o of T’




POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points
= bounded intersection of a finite set of affine half-spaces

face = intersection with a supporting hyperplane
face lattice = all the faces with their inclusion relations /

>
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces
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=H N ﬂ1<z’<j<n H[z’,j] Stasheff ('63)
T Shnider—Sternberg ('93)

where H; = {:13 c R" ’ D s T > (MQH)} Loday ('04)



POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON
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Media File (video/quicktime)


LATTICES — FANS — POLYTOPES

permutahedron Perm(n) associahedron Asso(n)

— braid fan —> Sylvester fan
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face It of polytope P
normal cone of I' = positive span of the outer normal vectors of the facets containing I
normal fan of P = { normal cone of I' | IF' face of P }




LATTICES — FANS — POLYTOPES

permutahedron Perm(n)

— braid fan

—> weak order on permutations
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associahedron Asso(n)

— Sylvester fan

— Tamari lattice on binary trees




LATTICE THEORY OF THE WEAK ORDER




INVERSION SETS
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weak order = permutations of [n| ordered by paths of simple transpositions




INVERSION SETS
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weak order = permutations of [n| ordered by paths of simple transpositions

permutations of [n| ordered by inclusion of inversion sets
inversion of o = pair (0;,0;) such that i < 5 and o, > o

PROP. inversion sets = transitive and cotransitive subsets of {(b,a) | 1 <a < b <n}
inv(oy V...V o) = transitive closure of inv(oy) U --- Uinv(oy)
ninv(oy A ... A o) = transitive closure of ninv(oy) U - -+ U ninv(oy)




CANONICAL JOIN REPRESENTATIONS

join representation of y € L = subset J C L such that y =\/ J
y =\ J irredundant if AJ C J with y =\/J’

ordered by containement of order ideals: J < J' «<— Vze J e J,6 2<7

canonical join representation of ¥ = minimal irredundant join representation of y

— lowest way to write y as a join

— a canonical join representation is an antichain of join irreducible elements of L



DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

(L, <, A, V) finite lattice is

e distributive if xt V (y A z) = (zVy)A(zV z) for any z,y,z € L

e join semidistributive if t Vy =2V z impliesx V (y A z) =z Vy forany z,y,z € L

e semidistributive if both join and meet semidistributive

| aVb
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aVb aVec bVce . ; a b/C
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distributive semidistributive not semidistributive



DISTRIBUTIVE AND SEMIDISTRIBUTIVE LATTICES

(L, <, A, V) finite lattice is

e distributive if xt V (y A z) = (zVy)A(zV z) for any z,y,z € L

— canonical join representations = antichains of join irreducibles
—> L =~ inclusion poset of lower ideals of JI(L)

e join semidistributive if t Vy =2V z impliesx V (y A z) =z Vy forany z,y,z € L

— any y € L admits the canonical join representation y = \/x<y ky(x,y)

where ky(x,y) is the unique minimal element of {z € L | 2V 2 =y}

e semidistributive if both join and meet semidistributive

cVd
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FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

draw all points (0;,7) and all segments permutation o = 2537146

from (O'i,i) to (O'H_l,’l;—l— 1) with 0; > 041

and project down to an horizontal line allowing
arcs to bend but not to cross or pass points

compatible arcs =

o left() # left(o) and right(c) +# right(c/), ()

e v and o/ are not crossing. \"J)

noncrossing arc diagram §(co

arc = x-monotone curve joining two points
and wiggling around the horizontal axis
(up to deformations)

noncrossing arc diagrams = set of pairwise compatible arcs

THM. 0 is a bijection from permutations to noncrossing arc diagrams Reading ('15)




FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

draw all points (0;,7) and all segments permutation o = 5327164

from (U@,i) to (O'Z'_|_1,?;—|— 1) with 0; > 041

and project down to an horizontal line allowing
arcs to bend but not to cross or pass points

compatible arcs =

o left() # left(o) and right(c) +# right(c/), ()

e v and o/ are not crossing. \"J)

<~ a=(a,b,A,B)and o/ = (a',b', A", B’
such that there is no x # 2’ with
r € (AU{a,b})N(B'U{a,b'})and 2’ € (BU{a,b}) N (A" U{ad,b'})

arc = xr-monotone curve joining two points
and wiggling around the horizontal axis
(up to deformations)
<= quadruple (a,b, A, B) with a < b and |a,b|= AU B

noncrossing arc diagram §(co

noncrossing arc diagrams = set of pairwise compatible arcs

THM. 0 is a bijection from permutations to noncrossing arc diagrams Reading ('15)




WEAK ORDER ON NONCROSSING ARC DIAGRAMS
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CANONICAL JOIN REPRESENTATIONS AND NONCROSSING ARC DIAGRAMS
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T = e

THM. o = \/aea(a) 6 1({a}) is the canonical join representation Reading ('15)




LATTICE CONGRUENCES AND LATTICE QUOTIENTS

lattice congruence of L = equivalence relation = which respects meets and joins

r=2'andy=y = xAy=2'ANy andazVvy=2' Vv

lattice quotient of L /= = lattice on equivalence classes of L under = where

e X <Y «<— dzxeX,yeY, zxz<y
e X \NY =equiv. classof Ay foranyz € X andy €Y
e X VY =equiv. classof zVy foranyz € X andy € Y




LATTICE QUOTIENTS AND CANONICAL JOIN REPRESENTATIONS

= lattice congruence on L, then
e each class X is an interval |7 (X), 7T(X)]
e /= is isomorphic (as poset) to the restriction of L to the elements x with 7 (z) =
o 7 (x) =« if and only if m (j) = j for all canonical joinands j of z
e canonical join representations in L /= are canonical join representations in L that only
involve join irreducibles j with 7 (j) = j




LATTICE QUOTIENTS OF THE WEAK ORDER

THM. = lattice congruence of the weak order on G,
A= = arcs corresponding to join irreducibles o with 7 (0) = o
S,,/= =~ subposet induced by noncrossing arc diagrams with all arcs in A_

Reading ('15)



SUBARC ORDER

THM. = lattice congruence of the weak order on G,
— = arcs corresponding to join irreducibles o with 7 (0) = 0o
S,,/= =~ subposet induced by noncrossing arc diagrams with all arcs in A_

THM. The following are equivalent for a set of arcs A:
e there exists a lattice congruence = on G,, with A = A_
e A is a lower ideal of the subarc order

Reading ('15) —o o o e o—o o e o o—o




SUBARC ORDER

THM. = lattice congruence of the weak order on G,
— = arcs corresponding to join irreducibles o with 7 (0) = 0o
S,,/= =~ subposet induced by noncrossing arc diagrams with all arcs in A_

THM. The following are equivalent for a set of arcs A:
e there exists a lattice congruence = on G,, with A = A_
e A is a lower ideal of the subarc order

(a,b, A, B) subarc of (¢,d,C, D) <~ U U
c<a<b<dand ACCand BC D

Reading ('15) —o o o e o—o o e o o—o



ARC IDEALS

arc ideal =

lower ideal of the subarc order @
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ARC IDEALS

arc ideal = lower ideal of the subarc order
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QUOTIENT FANS & QUOTIENTOPES

quotient fan - = chambers are obtained by

glueing the chambers of the permutations o // \\
in the same congruence class of = .. .
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quotientope = polytope with normal fan F- ‘M’
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QUOTIENT FANS & QUOTIENTOPES

quotient fan - = chambers are obtained by

glueing the chambers of the permutations o
in the same congruence class of =

quotientope = polytope with normal fan F-
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QUOTIENT FANS & QUOTIENTOPES

quotient fan - = chambers are obtained by

glueing the chambers of the permutations o .‘

in the same congruence class of =
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ACYCLIC REORIENTATION LATTICES




ACYCLIC REORIENTATION POSETS

D directed acyclic graph
AR p = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D

/ )/ )// | maximal element D

self-dual under reversing all arcs

cover relations = flipping a single arc

//( /( / flippable arcs of £ = transitive reduction of E
| 1 = F ~ {(u,v) € E | 3 directed path v ~» v in E}




ACYCLIC REORIENTATION POSETS

D directed acyclic graph
AR p = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

Ej ,Ej minimal element D
)/ )/ maximal element D

~ ~
E} B E self-dual under reversing all arcs
D D cover relations = flipping a single arc

/( flippable arcs of I/ = transitive reduction of £
E] = F ~ {(u,v) € E'| 3 directed path u ~ v in E}

/
3



ACYCLIC REORIENTATION POSETS

D directed acyclic graph
AR p = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

D forest D tournament

boolean lattice weak order



ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate

lattice not lattice



ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate

lattice not lattice




ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate

I~ \ 9 X subset of arcs of D is

e closed if all arcs of D in the transitive closure
of X also belong to X
e coclosed if its complement is closed

e biclosed if it is closed and coclosed

~ ~
/XA X7

PROP. If D vertebrate,
X biclosed <= the reorientation of X is acyclic




ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate

, / \\ , PROP. If D vertebrate,
L )/ )/ ) bwd(Ey V...V Ey)
/ ) / transitive closure of bwd(FEy) U --- U bwd(E})

de(El JANPAN Ek> —
transitive closure of fwd(FEy) U --- U fwd(FEy)

Z Z
N N
N2
N A
AN AN
/ / Z Z Z Z Z Z
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Z
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DISTRIBUTIVITY & SEMIDISTRIBUTIVITY




DISTRIBUTIVE ACYCLIC REORIENTATION POSETS

THM. ARp distributive lattice <= D forest <= AR p boolean lattice
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distributive not distributive




SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =
e D vertebrate = transitive reduction of any induced subgraph of D is a forest

e D filled = any directed path joining the endpoints of an arc in D induces a tournament

THM. AR p semidistributive lattice <= D is skeletal

semidistributive ﬁg 1.1 non semidistributive




ROPES & NON-CROSSING ROPE DIAGRAMS




ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple p = (u, v, 7, AA) where
e (u,v) is an arc of D
e </ LU A\ partitions the transitive support of (u,v) minus {u,v}

ropes & \ A E WV g




ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple p = (u, v, 7, AA) where
e (u,v) is an arc of D
e </ LU A\ partitions the transitive support of (u,v) minus {u,v}
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join irreducibles

THM. join irreducibles of AR — ropes of D




ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple p = (u, v, 7, AA) where
e (u,v) is an arc of D
e </ LU A\ partitions the transitive support of (u,v) minus {u,v}

R I B A
SIS s R i
NN S E

N

join irreducibles

~
N
S
re
Vi
~
Y
S
re
Vi
N
<
Vi
~
N
w

THM. join irreducibles of AR > ropes of D
canonical join representations of AR <— non-crossing rope diagrams of AR

(u,v,%7, ) and (v, o', /', /\') are crossing if there are w # w' such that
w e (v U{u, o) N (A U{d,v'}) and w' € (AU {u,v}) N (v U, 0"}



CONGRUENCES & QUOTIENTS




SUBROPES ORDER

(u, v, 57, A\) subrope of (v, v, 7', A') ifu,v € {u', v} Uy UA and 57 C 7' and A C A

PROP. congruence lattice of AR ~ lower ideal lattice of subrope order

CORO. = lattice congruence of AR p
e F minimal in its =-class <= §(F) C R=
e quotient ARp/= =~ subposet of ARp induced by {F € ARp | Jd(F) C R=}




COHERENT CONGRUENCES

(0,2) = two of arbitrary subsets of V
R0y = lower ideal of ropes (u,v,57,A) of D such that 57 € U and A C )
coherent congruence =;5 o) = congruence with subrope ideal R o)

_ P.—Pons ('18)
examples:

e sylvester congruence = subrope ideal contains only ropes (u, v, 7, 9)
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COHERENT CONGRUENCES

(0,2) = two of arbitrary subsets of V
R0y = lower ideal of ropes (u,v,57,A) of D such that 57 € U and A C )
coherent congruence =;5 o) = congruence with subrope ideal R o)

_ P.—Pons ('18)
examples:

e sylvester congruence = subrope ideal contains only ropes (u, v, 7, 9)
e Cambrian congruences = when O L =V

Reading ('06)
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GRAPHICAL ARRANGEMENT & GRAPHICAL ZONOTOPE

D directed acyclic graph
graphical arrangement Hp = arrangement of hyperplanes z, = x, for all arcs (u,v) € D

graphical zonotope Zp = Minkowski sum of |e,, e,] for all arcs (u,v) € D

hyperplanes of Hp +— summands of Zp, <«— arcs of D
regions of Hp I vertices of Zp +— acyclic reorientations of D
poset of regions of Hp <— oriented graph of Zp <+— acyclic reorientation poset of D



QUOTIENT FAN

THM. A lattice congruence = of AR defines a quotient fan F— where the chambers

of F_ are obtained by glueing the chambers of # , corresponding to acyclic reorienta-
tions in the same equivalence class of =
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QUOTIENT FAN

THM. A lattice congruence = of AR defines a quotient fan F— where the chambers

of F_ are obtained by glueing the chambers of # , corresponding to acyclic reorienta-
tions in the same equivalence class of =
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QUOTIENTOPES

THM. The quotient fan F= of any lattice congruence = of AR is the normal fan of
e a Minkowski sum of associahedra of Hohlweg — Lange, and
e a Minkowski sum of shard polytopes of Padrol — P. — Ritter

S

p-alternating matching = pair (M, Ma) with Mo, C {u} Uy and Ma C AU {v} s.t.
M, and M are alternating along the transitive reduction of D
shard polytope of p = convex hull of signed charact. vectors of p-alternating matchings




QUOTIENTOPES

THM. The quotient fan F= of any lattice congruence = of AR is the normal fan of
e a Minkowski sum of associahedra of Hohlweg — Lange, and
e a Minkowski sum of shard polytopes of Padrol — P. — Ritter

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron
of D are facet defining inequalities of the graphical zonotope of D




SOME OPEN PROBLEMS




SIMPLE ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to & or E§
<= the Hasse diagram of the D-Tamari lattice is regular
<= the D-associahedron is a simple polytope
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ISOMORPHIC CAMBRIAN ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to Eg
<— all Cambrian associahedra of D have the same number of vertices
<= all Cambrian associahedra of D have isomorphic 1-skeleta
<— all Cambrian associahedra of D have isomorphic face lattices

L




REMOVAHEDRA

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron
of D are facet defining inequalities of the graphical zonotope of D

CONJ. For any O, ) C V, the quotient fan F(;5 ¢y is the normal fan of the polytope
obtained by deleting inequalities of the graphical zonotope of D




HAMILTONIAN CYCLES

Not all acyclic reorientation flip graphs admit a Hamiltonian cycle
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HAMILTONIAN CYCLES

THM [SSW'93]. For D chordal, the acyclic reorientation flip graph is Hamiltonian

g

CONJ. When D is skeletal, all quotientopes admit a Hamiltonian cycle

.. checked for all quotients, for all skeletal acyclic directed graphs up to 5 vertices ...




LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in R”

base region B = distinguished region of R" \. H

inversion set of a region C' = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of R" \. ‘H ordered by inclusion of inversion sets

QU. For which (H, B) is the poset of regions PR a lattice?




LATTICE OF REGIONS OF HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in R”

base region B = distinguished region of R" \\. H

inversion set of a region C' = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of R" \. H ordered by inclusion of inversion sets

QU. For which (#H, B) is the poset of regions PR a lattice?

THM. The poset of regions PR(H, B) Bjérner-Edelman—Ziegler (*90)
e is never a lattice when B is not a simplicial region
e is always a lattice when 7 is a simplicial arrangement

THM. The poset of regions PR(?, B) is a semidistributive lattice
<= H is tight with respect to B Reading ('16)




QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in R”

base region B = distinguished region of R" \\. H

inversion set of a region C' = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of R" \. H ordered by inclusion of inversion sets

THM. If PR(H, B) is a lattice, and = is a congruence of PR(H, B), the cones obtained
by glueing the regions of R ~\. H in the same congruence class form a complete fan F—

Reading ('05)

QU. Is the quotient fan F= always polytopal?




QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

hyperoctahedral group = isometry group of the hypercube (or of its dual cross-polytope)

THM. The quotient fan of any lattice congruence of the type B weak order is polytopal
Padrol-P.—Ritter ('207)

Type B quotientopes are obtained
e not as removahedra,
e not as Minkowski sum of cyclohedra,
e but as Minkowski sum of shard polytopes (but this is another story...)




THANK YOU



