ACCORDIOHEDRA

C. HOHLWEG LaCIM, UQAM

T. MANNEVILLE LIX, École Poytechnique

V. PILAUD CNRS & LIX, École Poytechnique

S. STELLA Univ. Roma

Séminaire CALIN LIPN October 25, 2016

FANS & POLYTOPES

Ziegler, *Lectures on polytopes* ('95) Matoušek, *Lectures on Discrete Geometry* ('02)

SIMPLICIAL COMPLEX

simplicial complex = collection of subsets of X downward closed

exm:

$$X = [n] \cup [n]$$

$$\Delta = \{I \subseteq X \mid \forall i \in [n], \ \{i, i\} \not\subseteq I\}$$

FANS

 $\begin{array}{l} \underline{ polyhedral\ cone} = {\rm positive\ span\ of\ a\ finite\ set\ of\ } \mathbb{R}^d \\ = {\rm intersection\ of\ finitely\ many\ linear\ half-spaces} \end{array}$

 $\underline{fan} =$ collection of polyhedral cones closed by faces and where any two cones intersect along a face

simplicial fan = maximal cones generated by d rays

POLYTOPES

simple polytope = facets in general position = each vertex incident to d facets

SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES

P polytope, F face of P<u>normal cone</u> of F = positive span of the outer normal vectors of the facets containing F<u>normal fan</u> of P = { normal cone of $F \mid F$ face of P }

simple polytope \implies simplicial fan \implies simplicial complex

EXAMPLE: PERMUTAHEDRON

Ziegler, *Lectures on polytopes* ('95) Hohlweg, *Permutahedra and associahedra* ('12)

PERMUTAHEDRON

PERMUTAHEDRON

COXETER ARRANGEMENT

ASSOCIAHEDRA

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)

ASSOCIAHEDRON

<u>Associahedron</u> = polytope whose face lattice is isomorphic to the reverse-inclusion lattice of crossing-free sets of internal diagonals of a convex (n + 3)-gon

VARIOUS ASSOCIAHEDRA

<u>Associahedron</u> = polytope whose face lattice is isomorphic to the reverse-inclusion lattice of crossing-free sets of internal diagonals of a convex (n + 3)-gon

 Tamari ('51) — Stasheff ('63) — Haimann ('84) — Lee ('89) —
 ... — Gel'fand-Kapranov-Zelevinski ('94) — ... — Chapoton-Fomin-Zelevinsky ('02) — ... — Loday ('04) — ... — Ceballos-Santos-Ziegler ('11)

THREE FAMILIES OF REALIZATIONS

g-VECTOR FAN

δ internal diagonal

g-vector of δ

 $\mathbf{g}(\delta) = \text{characteristic vector of}$ points separated by δ from the top boundary edge

g-vector fan:

 $\mathcal{F}^{\mathbf{g}} = \{\mathbb{R}_{\geq 0} \, \mathbf{g}(D) \mid D \text{ dissection}\}$

g-VECTOR FAN

 $\mathbf{g}(\delta) = \mathbf{g}$ -vector of δ = characteristic vector of points separated by δ from the top diagonal

THM. The collection of cones $\mathcal{F}^{\mathbf{g}} := \left\{ \mathbb{R}_{\geq 0} \mathbf{g}(D) \mid D \text{ dissection} \right\}$ forms a compl. simpl. fan, called g-vector fan.

stereographic projection from (1, 2, 3)

LODAY'S ASSOCIAHEDRON

$$\mathsf{Asso}(n) = \operatorname{conv} \{ \mathbf{L}(\mathbf{T}) \mid \mathbf{T} \text{ binary tree} \} = \mathbb{H} \cap \bigcap_{1 \le i \le j \le n+1} \mathbf{H}^{\ge}(i,j)$$
$$\mathbf{L}(\mathbf{T}) \coloneqq \left[\ell(\mathbf{T},i) \cdot r(\mathbf{T},i) \right]_{i \in [n+1]} \qquad \mathbf{H}^{\ge}(i,j) \coloneqq \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \sum_{i \le k \le j} x_i \ge \binom{j-i+2}{2} \right\}$$

Loday, *Realization of the Stasheff polytope* ('04)

COMPATIBILITY FANS FOR ASSOCIAHEDRA

Fomin-Zelevinsky, Y-Systems and generalized associahedra ('03)

Fomin-Zelevinsky, Cluster algebras II: Finite type classification ('03)

Chapoton-Fomin-Zelevinsky, Polytopal realizations of generalized associahedra ('02)

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)

$d\text{-}\mathsf{VECTOR}\ \mathsf{FAN}$

COMPATIBILITY FANS FOR ASSOCIAHEDRA

Different initial triangulations T_{\circ} yield different realizations

THM. For any initial triangulation T_{\circ} , the cones $\{\mathbb{R}_{\geq 0} \mathbf{d}(T_{\circ}, D) \mid D \text{ dissection}\}$ form a complete simplicial fan. Moreover, this fan is always polytopal.

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)

ACCORDION COMPLEX

Garver-McConville, Oriented flip graphs and noncrossing tree partitions ('16⁺)

ACCORDIONS AND ZIGZAGS

dissection

accordion

zigzag

ACCORDIONS AND ZIGZAGS

dissection

accordion

zigzag

$D_{\circ}\text{-}\mathsf{ACCORDION}$ COMPLEX

2n points of the unit circle labeled counterclockwise by 1_{\circ} , 1_{\bullet} , 2_{\circ} , 2_{\bullet} , ..., n_{\circ} , n_{\bullet} Fix a dissection D_{\circ} of the red hollow polygon

 $\underline{D_{\circ}}\text{-}accordion\ diagonal} = diagonal\ of\ the\ blue\ solid\ polygon\ that\ crosses\ an\ accordion\ of\ \underline{D_{\circ}}$

 \underline{D}_{o} -accordion dissection = set of non-crossing \underline{D}_{o} -accordion diagonals

 \underline{D}_{\circ} -accordion complex = simplicial complex of \underline{D}_{\circ} -accordion dissections

D_o-ACCORDION COMPLEX

 $\frac{D_{\circ}\text{-accordion complex}}{\text{simplicial complex of}} = \\ D_{\circ}\text{-accordion dissections}$

 $\frac{Exm: for a triangulation T_o,}{the T_o-accordion complex is}$ a simplicial associahedron

FLIPS

PROP. The D_{o} -accordion complex is a pseudomanifold:

- \bullet pure: any maximal $D_{\circ}\text{-}accordion$ dissection has $|D_{\circ}|$ diagonals
- thin: for any maximal D_{\circ} -accordion dissection D_{\bullet} and any $\delta_{\bullet} \in D_{\bullet}$, there is a unique $\delta'_{\circ} \neq \delta_{\circ}$ such that $D_{\circ} \bigtriangleup \{\delta_{\circ}, \delta'_{\circ}\}$ is again a D_{\circ} -accordion dissection

Garver-McConville, Oriented flip graphs and noncrossing tree partitions ('16⁺)

increasing flip = flip that changes a Σ to a Z

$\mathrm{D}_{\circ}\text{-}\mathsf{ACCORDION}$ LATTICE

DUALITY

PROP. D_{\circ} red hollow dissection & D_{\bullet} blue solid dissection D_{\bullet} is a maximal D_{\circ} -accordion dissection $\iff D_{\circ}$ is a maximal D_{\bullet} -accordion dissection

"Look from the other side of the board..."

G-VECTOR FAN

Manneville-P., *Geometric realizations of the accordion complex of a dissection* ('16⁺)

g-VECTORS

For D_{\circ} red hollow dissection, $\delta_{\circ} \in D_{\circ}$ and δ_{\bullet} a D_{\circ} -accordion diagonal, let

$$\varepsilon_{\circ} \left(\delta_{\circ} \in D_{\circ}, \delta_{\bullet} \right) = \begin{cases} 1 & \text{if } \delta_{\bullet} \text{ slaloms on } \delta_{\circ} \in D_{\circ} \text{ as a Z} \\ -1 & \text{if } \delta_{\bullet} \text{ slaloms on } \delta_{\circ} \in D_{\circ} \text{ as an S} \\ 0 & \text{otherwise} \end{cases}$$

g-VECTORS

For D_{\circ} red hollow dissection, $\delta_{\circ} \in D_{\circ}$ and δ_{\bullet} a D_{\circ} -accordion diagonal, let

$$\varepsilon_{\circ} \left(\delta_{\circ} \in D_{\circ}, \delta_{\bullet} \right) = \begin{cases} 1 & \text{if } \delta_{\bullet} \text{ slaloms on } \delta_{\circ} \in D_{\circ} \text{ as a } Z \\ -1 & \text{if } \delta_{\bullet} \text{ slaloms on } \delta_{\circ} \in D_{\circ} \text{ as an } \Sigma \\ 0 & \text{otherwise} \end{cases}$$

g-VECTORS

For D_{\circ} red hollow dissection, $\delta_{\circ} \in D_{\circ}$ and δ_{\bullet} a D_{\circ} -accordion diagonal, let

$$\varepsilon_{\circ} \left(\delta_{\circ} \in D_{\circ}, \delta_{\bullet} \right) = \begin{cases} 1 & \text{if } \delta_{\bullet} \text{ slaloms on } \delta_{\circ} \in D_{\circ} \text{ as a } Z \\ -1 & \text{if } \delta_{\bullet} \text{ slaloms on } \delta_{\circ} \in D_{\circ} \text{ as an } \Sigma \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} \mathbf{g}(\mathsf{D}_{\circ},\delta_{\bullet}) &= \underline{\mathbf{g}}\text{-vector} \text{ of } \delta_{\bullet} \text{ with respect to } \mathsf{D}_{\circ} = \left[\left. \boldsymbol{\varepsilon}_{\circ} \left(\delta_{\circ} \in \mathsf{D}_{\circ},\delta_{\bullet} \right) \right]_{\delta_{\circ} \in \mathsf{D}_{\circ}} \in \mathbb{R}^{\mathsf{D}_{\circ}} \\ &= \text{ alternating } \pm 1 \text{ along the zigzag crossed by } \delta_{\bullet} \text{ in } \mathsf{D}_{\circ} \end{split}$$

g-VECTOR FAN

$$\mathbf{g}(\mathsf{D}_{\circ}, \delta_{\bullet}) = \underline{\mathbf{g}}\text{-vector} \text{ of } \delta_{\bullet} \text{ with respect to } \mathsf{D}_{\circ} = \left[\varepsilon_{\circ} \left(\delta_{\circ} \in \mathsf{D}_{\circ}, \delta_{\bullet} \right) \right]_{\delta_{\circ} \in \mathsf{D}_{\circ}} \in \mathbb{R}^{\mathsf{D}_{\circ}}$$

THM. For any dissection D_{\circ} , the collection of cones

 $\mathcal{F}^{\mathbf{g}}(\mathsf{D}_{\circ}) \coloneqq \left\{ \mathbb{R}_{\geq 0} \mathbf{g}(\mathsf{D}_{\circ}, \mathsf{D}_{\bullet}) \mid \mathsf{D}_{\bullet} \text{ any } \mathsf{D}_{\circ}\text{-accordion dissection} \right\}$

forms a complete simplicial fan, called g-vector fan of D_o .

Manneville-P., Geometric realizations of the accordion complex of a dissection ('16⁺)

g-VECTOR FAN

c-VECTORS

For D_{\circ} red hollow dissection & D_{\bullet} blue solid dissection, accordion dissections of eachother and two diagonals $\delta_{\circ} \in D_{\circ}$ and $\delta_{\bullet} \in D_{\bullet}$, let

g- AND c-VECTORS

For D_o red hollow dissection & D_o blue solid dissection, accordion dissections of eachother,
$$\begin{split} \mathbf{g}(D_{\circ},\delta_{\bullet}) &= \underline{\mathbf{g}}\text{-vector of } \delta_{\bullet} \text{ with respect to } D_{\circ} &= \left[\left. \mathcal{\varepsilon}_{\circ} \left(\delta_{\circ} \in D_{\circ},\delta_{\bullet} \right) \right]_{\delta_{\circ} \in D_{\circ}} \in \mathbb{R}^{D_{\circ}} \\ \mathbf{c}(D_{\circ},\delta_{\bullet} \in D_{\bullet}) &= \underline{\mathbf{c}}\text{-vector of } \delta_{\bullet} \text{ in } D_{\bullet} \text{ with respect to } D_{\circ} &= \left[\left. \mathcal{\varepsilon}_{\bullet} \left(\delta_{\circ},\delta_{\bullet} \in D_{\bullet} \right) \right]_{\delta_{\circ} \in D_{\circ}} \in \mathbb{R}^{D_{\circ}} \\ \end{array} \end{split}$$
3.0 3 3

 $\begin{aligned} \mathbf{g}(\mathrm{D}_{\circ}, \delta_{\bullet}) &= \mathbf{e}_{5_{\circ}7_{\circ}} - \mathbf{e}_{2_{\circ}7_{\circ}} & -\mathbf{e}_{2_{\circ}4_{\circ}} & \mathbf{e}_{5_{\circ}7_{\circ}} \\ \mathbf{c}(\mathrm{D}_{\circ}, \delta_{\bullet} \in \mathrm{D}_{\bullet}) &= -\mathbf{e}_{2_{\circ}7_{\circ}} & -\mathbf{e}_{2_{\circ}4_{\circ}} & \mathbf{e}_{2_{\circ}7_{\circ}} + \mathbf{e}_{5_{\circ}7_{\circ}} \end{aligned}$

g- AND c-VECTORS

For D_{\circ} red hollow dissection & D_{\bullet} blue solid dissection, accordion dissections of eachother,
$$\begin{split} \mathbf{g}(\mathbf{D}_{\circ}, \delta_{\bullet}) &= \underline{\mathbf{g}}\text{-vector of } \delta_{\bullet} \text{ with respect to } \mathbf{D}_{\circ} &= \left[\left. \boldsymbol{\varepsilon}_{\circ} \left(\delta_{\circ} \in \mathbf{D}_{\circ}, \delta_{\bullet} \right) \right]_{\delta_{\circ} \in \mathbf{D}_{\circ}} \in \mathbb{R}^{\mathbf{D}_{\circ}} \\ \mathbf{c}(\mathbf{D}_{\circ}, \delta_{\bullet} \in \mathbf{D}_{\bullet}) &= \underline{\mathbf{c}}\text{-vector of } \delta_{\bullet} \text{ in } \mathbf{D}_{\bullet} \text{ with respect to } \mathbf{D}_{\circ} &= \left[\left. \boldsymbol{\varepsilon}_{\bullet} \left(\delta_{\circ}, \delta_{\bullet} \in \mathbf{D}_{\bullet} \right) \right]_{\delta_{\circ} \in \mathbf{D}_{\circ}} \in \mathbb{R}^{\mathbf{D}_{\circ}} \right]_{\delta_{\circ} \in \mathbf{D}_{\circ}} \end{split}$$
3.0 3 $\mathbf{g}(\mathsf{D}_{\circ}, \delta_{\bullet}) = \mathbf{e}_{5_{\circ}7_{\circ}} - \mathbf{e}_{2_{\circ}7_{\circ}}$ $-\mathbf{e}_{2\circ4\circ}$ $e_{5,7,0}$ $\mathbf{c}(\mathbf{D}_{\circ}, \delta_{\bullet} \in \mathbf{D}_{\bullet}) = -\mathbf{e}_{2,7_{\circ}}$ $e_{2_{\circ}7_{\circ}} + e_{5_{\circ}7_{\circ}}$ $-e_{2,4,0}$

PROP. The g-vectors $g(D_o, D_{\bullet})$ and the c-vectors $c(D_o, D_{\bullet})$ form dual bases.

PROP. Duality: $\mathbf{g}(\mathbf{D}_{\circ}, \mathbf{D}_{\bullet}) = -\mathbf{c}(\mathbf{D}_{\bullet}, \mathbf{D}_{\circ})^{t}$ and $\mathbf{c}(\mathbf{D}_{\circ}, \mathbf{D}_{\bullet}) = -\mathbf{g}(\mathbf{D}_{\bullet}, \mathbf{D}_{\circ})^{t}$

$D_{\circ}\text{-}\mathsf{ZONOTOPE}$

 $\label{eq:constraint} \begin{array}{l} \underline{D_{\mathsf{o}}\text{-zonotope}} = \mathsf{Zono}(D_{\mathsf{o}}) = \mathsf{Minkowski} \text{ sum of all } \mathbf{c}\text{-vectors } \mathbf{C}(D_{\mathsf{o}}) = \bigcup_{D_{\bullet}} \mathbf{c}(D_{\mathsf{o}}, D_{\bullet}) \\ \\ \\ \mathsf{Zono}(D_{\mathsf{o}}) = \sum_{\mathbf{c} \in \mathbf{C}(D_{\mathsf{o}})} \mathbf{c}. \end{array}$

PROP. For any D_o-accordion diagonal γ_{\bullet} , Zono(D_o) has a facet defined by the inequality $\langle \mathbf{g}(\mathbf{D}_{\circ}, \gamma_{\bullet}) \mid \mathbf{x} \rangle \leq \omega(\mathbf{D}_{\circ}, \gamma_{\bullet}),$

where $\omega(D_{\circ}, \gamma_{\bullet}) = \underline{D_{\circ}}$ -height of $\gamma_{\bullet} =$ number of $\underline{D_{\circ}}$ -accordion diagonals that cross γ_{\bullet} .

D_o-ACCORDIOHEDRON

Define $\mathbf{p}(\mathbf{D}_{\circ}, \mathbf{D}_{\bullet}) \coloneqq \sum_{\delta_{\bullet} \in \mathbf{D}_{\bullet}} \omega(\mathbf{D}_{\circ}, \delta_{\bullet}) \cdot \mathbf{c}(\mathbf{D}_{\circ}, \delta_{\bullet} \in \mathbf{D}_{\bullet})$ and $\omega(\mathbf{D}_{\circ}, \gamma_{\bullet}) = \text{number of } \mathbf{D}_{\circ}\text{-accordion diagonals that cross } \gamma_{\bullet}$

THM. The D_{o} -accordiohedron

 $\begin{aligned} \mathsf{Acco}(\mathsf{D}_{\circ}) &= \operatorname{conv} \left\{ \mathbf{p}(\mathsf{D}_{\circ},\mathsf{D}_{\bullet}) \mid \mathsf{D}_{\bullet} \text{ maximal } \mathsf{D}_{\circ}\text{-accordion dissection} \right\} \\ &= \left\{ \mathbf{x} \in \mathbb{R}^{\mathsf{D}_{\circ}} \mid \langle \ \mathbf{g}(\mathsf{D}_{\circ},\delta_{\bullet}) \mid \mathbf{x} \ \rangle \leq \omega(\mathsf{D}_{\circ},\delta_{\bullet}) \text{ for any } \mathsf{D}_{\circ}\text{-accordion diagonal } \delta_{\bullet} \right\} \end{aligned}$

has for normal fan the g-vector fan $\mathcal{F}^{g}(D_{o})$, and thus realizes the D_{o} -accordion complex.

D_o-ACCORDIOHEDRON

Define $\mathbf{p}(\mathbf{D}_{\circ}, \mathbf{D}_{\bullet}) \coloneqq \sum_{\delta_{\bullet} \in \mathbf{D}_{\bullet}} \omega(\mathbf{D}_{\circ}, \delta_{\bullet}) \cdot \mathbf{c}(\mathbf{D}_{\circ}, \delta_{\bullet} \in \mathbf{D}_{\bullet})$ and $\omega(\mathbf{D}_{\circ}, \gamma_{\bullet}) = \text{number of } \mathbf{D}_{\circ}\text{-accordion diagonals that cross } \gamma_{\bullet}$

THM. The D_{o} -accordiohedron

 $\begin{aligned} \mathsf{Acco}(\mathsf{D}_{\circ}) &= \operatorname{conv} \left\{ \mathbf{p}(\mathsf{D}_{\circ},\mathsf{D}_{\bullet}) \mid \mathsf{D}_{\bullet} \text{ maximal } \mathsf{D}_{\circ}\text{-accordion dissection} \right\} \\ &= \left\{ \mathbf{x} \in \mathbb{R}^{\mathsf{D}_{\circ}} \mid \langle \ \mathbf{g}(\mathsf{D}_{\circ},\delta_{\bullet}) \mid \mathbf{x} \ \rangle \leq \omega(\mathsf{D}_{\circ},\delta_{\bullet}) \text{ for any } \mathsf{D}_{\circ}\text{-accordion diagonal } \delta_{\bullet} \right\} \end{aligned}$

has for normal fan the g-vector fan $\mathcal{F}^{g}(D_{o})$, and thus realizes the D_{o} -accordion complex.

PROP. The graph of the D_o -accordiohedron $Acco(D_o)$ linearly oriented in the direction $\mathbb{1} := \sum_{i \in [n]} \mathbf{e}_i$ is the Hasse diagram of the D_o -accordion lattice.

PROP. If $D_o \subseteq D'_o$, then • $\mathcal{F}^g(D_o)$ is the section of $\mathcal{F}^g(D'_o)$ with the coordinate plane $\langle e_{\delta_o} | \delta_o \in D_o \rangle$,

• therefore, $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ is also realized by the projection of $Asso(D_{\circ})$ on $\langle \mathbf{e}_{\delta_{\circ}} \mid \delta_{\circ} \in D_{\circ} \rangle$.

CONJ. For any Coxeter group W and any Coxeter element c of W, the transitive closure of the oriented graph of any projection of the c-associahedron on a coordinate plane is a lattice.

OBS. Symmetries in D_o induce symmetries in $Acco(D_o)$

D-VECTOR FAN

Manneville-P., *Geometric realizations of the accordion complex of a dissection* ('16⁺)

d-VECTORS

For D_{\circ} red hollow dissection, $\delta_{\circ} = i_{\circ}j_{\circ}$ red hollow diagonal and δ_{\bullet} blue solid diagonal, let

$$(\boldsymbol{\delta_{\circ}}, \boldsymbol{\delta_{\bullet}}) \coloneqq \begin{cases} -1 & \text{if } \boldsymbol{\delta_{\bullet}} = i_{\bullet} j_{\bullet}, \\ 0 & \text{if } \boldsymbol{\delta_{\bullet}} \text{ and } i_{\bullet} j_{\bullet} \text{ do not cross,} \\ 1 & \text{if } \boldsymbol{\delta_{\bullet}} \text{ and } i_{\bullet} j_{\bullet} \text{ cross.} \end{cases}$$

 $\mathbf{d}(\mathsf{D}_{\circ}, \delta_{\bullet}) = \underline{\mathbf{d}\text{-vector}} \text{ of } \delta_{\bullet} \text{ with respect to } \mathsf{D}_{\circ} = \left[(\delta_{\circ}, \delta_{\bullet}) \right]_{\delta_{\circ} \in \mathsf{D}_{\circ}} \in \mathbb{R}^{\mathsf{D}_{\circ}}$

d-VECTORS

For D_{\circ} red hollow dissection, $\delta_{\circ} = i_{\circ}j_{\circ}$ red hollow diagonal and δ_{\bullet} blue solid diagonal, let

$$(\boldsymbol{\delta_{\circ}}, \boldsymbol{\delta_{\bullet}}) \coloneqq \begin{cases} -1 & \text{if } \boldsymbol{\delta_{\bullet}} = i_{\bullet} j_{\bullet}, \\ 0 & \text{if } \boldsymbol{\delta_{\bullet}} \text{ and } i_{\bullet} j_{\bullet} \text{ do not cross,} \\ 1 & \text{if } \boldsymbol{\delta_{\bullet}} \text{ and } i_{\bullet} j_{\bullet} \text{ cross.} \end{cases}$$

 $\mathbf{d}(D_{\circ}, \delta_{\bullet}) = \underline{\mathbf{d}\text{-vector}} \text{ of } \delta_{\bullet} \text{ with respect to } D_{\circ} = \left[(\delta_{\circ}, \delta_{\bullet}) \right]_{\delta_{\circ} \in D_{\circ}} \in \mathbb{R}^{D_{\circ}}$

QU. Is the collection of cones

 $\mathcal{F}^{\mathbf{d}}(\mathsf{D}_{\circ}) \coloneqq \left\{ \mathbb{R}_{\geq 0} \mathbf{d}(\mathsf{D}_{\circ}, \mathsf{D}_{\bullet}) \ \middle| \ \mathsf{D}_{\bullet} \text{ any } \mathsf{D}_{\circ} \text{-accordion dissection} \right\}$

a complete simplicial fan?

OBSTRUCTION: EVEN INTERIOR CELLS

Assume D_{\circ} contains an even interior cell with edges $\delta_{\circ}^{k} = i_{\circ}^{k} i_{\circ}^{k+1}$ for $k \in [2p]$ Then the d-vectors of the edges $\delta_{\bullet}^{k} = (i^{k} - 1)_{\bullet}(i^{k+1} - 1)_{\bullet}$ satisfy

even interior cells \implies obstruction for d-vector fans

$d\text{-}\mathsf{VECTOR}\ \mathsf{FAN}$

$$\mathbf{d}(D_{\circ}, \delta_{\bullet}) = \underline{\mathbf{d}\text{-vector}} \text{ of } \delta_{\bullet} \text{ with respect to } D_{\circ} = \left[(\delta_{\circ}, \delta_{\bullet}) \right]_{\delta_{\circ} \in D_{\circ}} \in \mathbb{R}^{D_{\circ}}$$

THM. The collection of cones

 $\mathcal{F}^{\mathbf{d}}(\mathsf{D}_{\circ}) \coloneqq \left\{ \mathbb{R}_{\geq 0} \mathbf{d}(\mathsf{D}_{\circ}, \mathsf{D}_{\bullet}) \ \middle| \ \mathsf{D}_{\bullet} \text{ any } \mathsf{D}_{\circ} \text{-accordion dissection} \right\}$

forms a complete simplicial fan, called <u>d-vector fan</u> of D_{\circ} , if and only if D_{\circ} contains no even interior cell.

Manneville-P., Geometric realizations of the accordion complex of a dissection ('16⁺)

$d\text{-}\mathsf{VECTOR}\ \mathsf{FAN}$

THM. The collection of cones $\mathcal{F}^{\mathbf{d}}(D_{\circ}) \coloneqq \left\{ \mathbb{R}_{\geq 0} \mathbf{d}(D_{\circ}, D_{\bullet}) \mid D_{\bullet} \text{ any } D_{\circ}\text{-acc. diss.} \right\}$ forms a complete simplicial fan, called <u>d-vector fan</u> of D_{\circ}, iff D_{\circ} \text{ contains no even interior cell.

stereographic projection from (-1, -1, -1)

POLYTOPALITY?

 $\ensuremath{\mathsf{QU}}\xspace$ Are all d-vector fans polytopal?

Not all complete simplicial fans are polytopal... Escher always falling water:

TWO FAN REALIZATIONS OF THE $\mathrm{D}_{\mathrm{o}}\text{-}\mathsf{ACCORDION}$ COMPLEX

