Signed tree associahedra

Spines

T a tree on a signed ground set $V = V^- \sqcup V^+$.

- *Spine* on T = directed and labeled tree S such that
- the labels of the nodes of S form a partition of the signed ground set V,
- at a node labeled by U = U⁻ ⊔ U⁺, the source label sets of the incoming arcs are subsets of distinct connected components of T \ U⁻, and the sink label sets of the outgoing arcs are subsets of distinct connected components of T \ U⁺.
 Spine poset S(T) = poset of arc contractions on signed spines of T.

Prop. The spine poset S(T) is a pure graded poset of rank |V|.

$$\label{eq:signed nested complex} \begin{split} \textit{Signed nested complex} = & \text{simplicial complex} \ \mathcal{N}(\mathsf{T}) = \{\mathsf{N}(\mathsf{S}) \mid \mathsf{S} \in \mathcal{S}(\mathsf{T})\}, \\ & \text{where } \mathsf{N}(\mathsf{S}) = \text{collection of source sets of }\mathsf{S}. \end{split}$$

Exm. $V^- = \{1, 3, 4, 5\}$ $V^+ = \{0, 2, 6, 7, 8, 9\}$

Spine fan

Ambiant space $\mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^{\mathsf{V}} \mid \sum_{v \in \mathsf{V}} x_v = \binom{|\mathsf{V}|+1}{2} \}.$ Cone C(S) of a spine S = $\{ \mathbf{x} \in \mathbb{H} \mid x_u \leq x_v \text{ for all } u \to v \text{ in S} \}.$

Theo. The collection of cones $\mathcal{F}(T) = \{C(S) \mid S \in \mathcal{S}(T)\}$ defines a complete simplicial fan on \mathbb{H} , called the spine fan of T.

The spine fan $\mathcal{F}(\mathsf{T})$ coarsens the braid fan on \mathbb{H} . It defines a map κ from linear orders on V to maximal spines on T.

Prop. The fibers of κ are the classes of **T**-congruence defined by $XuvY \equiv_{\mathsf{T}} XvuY$ iff there is $w \in \mathsf{V}$ in between u and v in T and such that $w \in X \cap \mathsf{V}^+$ or $w \in Y \cap \mathsf{V}^-$.

Signed tree associahedron

Theo. The spine fan $\mathcal{F}(T)$ is the normal fan of the signed tree associahedron Asso(T) with

• a vertex $\mathbf{a}(S) \in \mathbb{R}^{V}$ for each maximal $S \in S(T)$, with coordinates $\mathbf{a}(S)_{v} = \begin{cases} |\{\pi \in \Pi(S) \mid v \in \pi \text{ and } r_{v} \notin \pi\}| & \text{if } v \in V^{-} \\ |V| + 1 - |\{\pi \in \Pi(S) \mid v \in \pi \text{ and } r_{v} \notin \pi\}| & \text{if } v \in V^{+} \end{cases}$ where r_{v} = unique incoming (outgoing) arc at $v \in V^{-}$ ($v \in V^{+}$), $\Pi(S) = \{(\text{undirected}) \text{ paths in } S\},$

Some properties

Prop. The signed tree associahedron Asso(T) is sandwiched between the permutahedron Perm(V) and the parallelepiped Para(T):

 $\sum_{u \neq v \in \mathsf{V}} [e_u, e_v] = \mathsf{Perm}(\mathsf{T}) \subset \mathsf{Asso}(\mathsf{T}) \subset \mathsf{Para}(\mathsf{T}) = \sum_{uv \in \mathsf{T}} \pi_{uv} [e_u, e_v]$

Common vertices of

Asso(T) and Para(T) ≡ orientations of T which are spines on T,
Asso(T) and Perm(T) ≡ linear orders on V which are spines on T,

 \Rightarrow no common vertex of the three polytopes except if T = signed path.

Prop. Asso(T) and Asso(T') isometric \iff T and T' isomorphic or anti-isomorphic up to the signs of their leaves, i.e. there is a bijection $\theta : V \rightarrow V'$ st. $\forall u, v \in V$

- $u v edge in T \iff \theta(u) \theta(v) edge in T'$,
- *if* u *is not a leaf of* T*, the signs of* u *and* $\theta(u)$ *coincide (resp. differ).*

Examples

For a signed path P, Asso(P) is the classical associahedron faces \leftrightarrow dissections \leftrightarrow Schröder trees, vertices \leftrightarrow triangulations \leftrightarrow binary trees.

Loday, Realization of the Stasheff polytope, 2004 Hohlweg & Lange, Realizations of the associahedron and cyclohedron, 2007

For an unsigned tree T, Asso(T) is the T-associahedron facets $\leftrightarrow tubes =$ connected induced subgraphs of T, faces $\leftrightarrow tubings =$ collections of tubes which are pairwise nested, or disjoint and non-adjacent.

Carr & Devadoss, Coxeter complexes and graph associahedra, 2006

