Polytopes and Hopf algebras from lattice quotients of the weak order

Vincent Pilaud (CNRS & LIX, École Polytechnique)

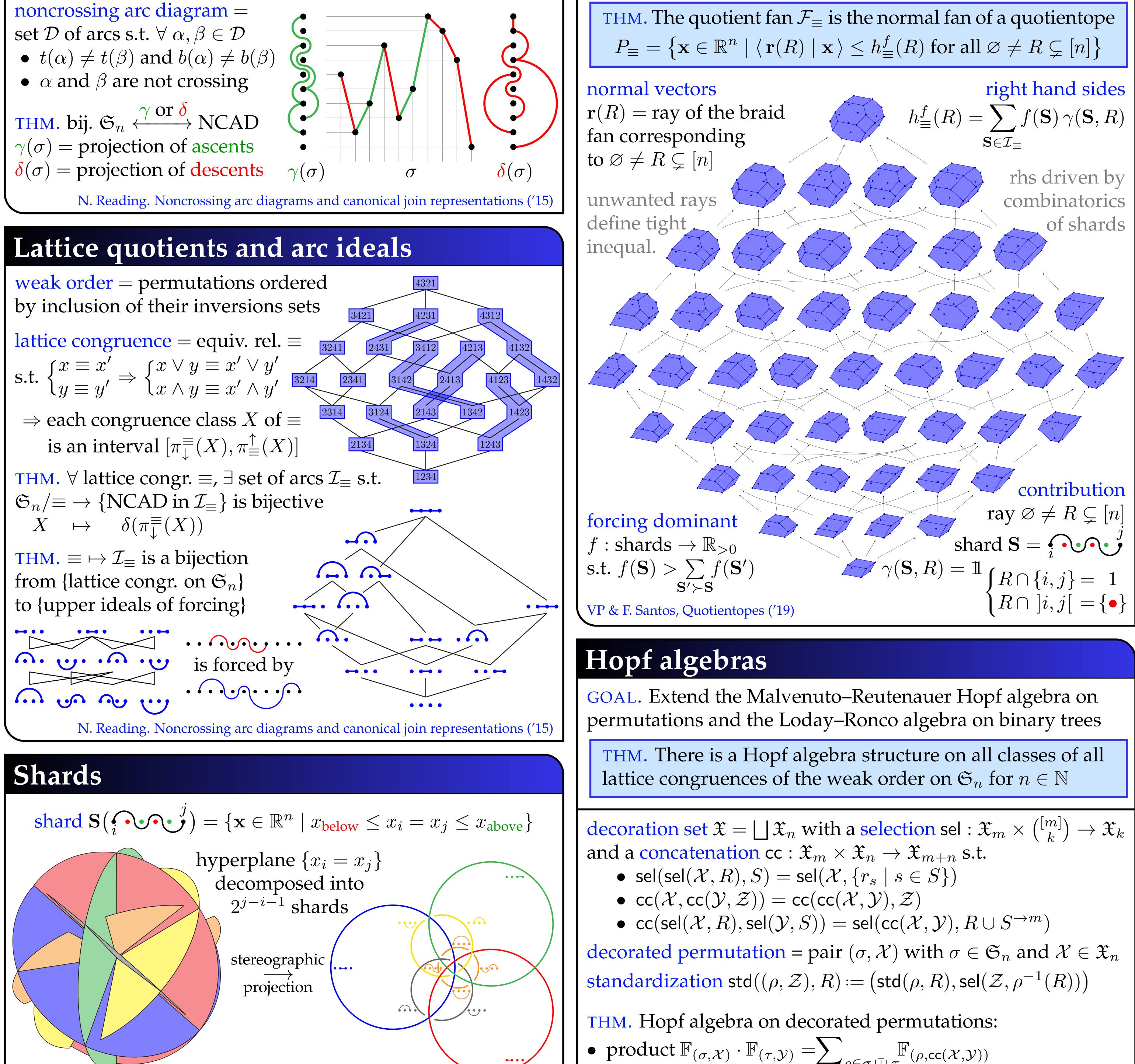
vincent.pilaud@lix.polytechnique.fr

Noncrossing arc diagrams

FPSAC 2019

Ljubljana

noncrossing arc diagram = set \mathcal{D} of arcs s.t. $\forall \alpha, \beta \in \mathcal{D}$ • $t(\alpha) \neq t(\beta)$ and $b(\alpha) \neq b(\beta)$ • α and β are not crossing THM. bij. $\mathfrak{S}_n \xleftarrow{\gamma \text{ or } \delta} \text{NCAD}$ $\gamma(\sigma) =$ projection of ascents $\gamma(\sigma)$



Quotientopes

• product $\mathbb{F}_{(\sigma,\mathcal{X})} \cdot \mathbb{F}_{(\tau,\mathcal{Y})} = \sum_{\rho \in \sigma \amalg \tau} \mathbb{F}_{(\rho,\mathsf{cc}(\mathcal{X},\mathcal{Y}))}$

N. Reading, Lattice theory of the poset of regions ('16)

•

Quotient fans

THM. For a lattice congr. \equiv , the cones obtained by • either glueing the regions of the perm. in the same congr. class of \equiv • or as the connected components of the union of the shards corresp..... to the arcs of the upper ideal \mathcal{I}_{\equiv} form a fan \mathcal{F}_{\equiv} whose dual graph realizes the lattice quotient $\mathfrak{S}_n \equiv$

N. Reading. Lattice congr., fans and Hopf algebras ('05)

• coproduct $\Delta \mathbb{F}_{(\rho,\mathcal{Z})} = \sum_{k=0}^{p} \mathbb{F}_{\mathsf{std}}((\rho,\mathcal{Z}),[k]) \otimes \mathbb{F}_{\mathsf{std}}((\rho,\mathcal{Z}),[p] \setminus [k])$ Ψ : {decorations} \rightarrow {arc ideals} compatible with sel and cc decorated noncrossing arc diagram = pair $(\mathcal{D}, \mathcal{X})$ s.t. $\mathcal{D} \subseteq \Psi(\mathcal{X})$ Define $\mathbb{P}_{(\mathcal{D},\mathcal{X})} = \sum \mathbb{F}_{(\sigma,\mathcal{X})}$ over all σ s.t. $\delta(\pi_{\perp}^{\Psi(\mathcal{X})}(\sigma)) = \mathcal{D}$ THM. The subspace generated by $\mathbb{P}_{(\mathcal{D},\mathcal{X})}$ is a Hopf subalgebra **EXM.** $\mathfrak{X} = \text{ext. arc ideals}$ $\Psi(\mathcal{X}) = \text{strict arcs in } \mathcal{X}$ \Rightarrow contains the permutree algebra VP, Hopf algebras on decorated noncrossing arc diagrams ('19)