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Noncrossing arc diagrams
noncrossing arc diagram =
set D of arcs s.t. ∀ α, β ∈ D
• t(α) 6= t(β) and b(α) 6= b(β)
• α and β are not crossing

THM. bij. Sn
γ or δ←−−−→ NCAD

γ(σ) = projection of ascents
δ(σ) = projection of descents γ(σ) σ δ(σ)

N. Reading. Noncrossing arc diagrams and canonical join representations (’15)

Lattice quotients and arc ideals
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weak order = permutations ordered
by inclusion of their inversions sets

lattice congruence = equiv. rel. ≡

s.t.
{
x ≡ x′
y ≡ y′ ⇒

{
x ∨ y ≡ x′ ∨ y′
x ∧ y ≡ x′ ∧ y′

⇒ each congruence class X of ≡
is an interval [π≡↓ (X), π↑≡(X)]

THM. ∀ lattice congr. ≡, ∃ set of arcs I≡ s.t.
Sn/≡ → {NCAD in I≡}
X 7→ δ(π≡↓ (X))

is bijective

THM. ≡ 7→ I≡ is a bijection
from {lattice congr. on Sn}
to {upper ideals of forcing}

is forced by

N. Reading. Noncrossing arc diagrams and canonical join representations (’15)

Shards
shard S

(
i

j)
= {x ∈ Rn | xbelow ≤ xi = xj ≤ xabove}

hyperplane {xi = xj}
decomposed into

2j−i−1 shards

stereographic
−→

projection

N. Reading, Lattice theory of the poset of regions (’16)

Quotient fans
THM. For a lattice congr. ≡, the cones obtained by
• either glueing the regions of the

perm. in the same congr. class of ≡
• or as the connected components

of the union of the shards corresp.
to the arcs of the upper ideal I≡

form a fan F≡ whose dual graph
realizes the lattice quotient Sn/≡

N. Reading. Lattice congr., fans and Hopf algebras (’05)

Quotientopes
THM. The quotient fanF≡ is the normal fan of a quotientope
P≡ =

{
x ∈ Rn | 〈 r(R) | x 〉 ≤ hf≡(R) for all ∅ 6= R ( [n]

}
normal vectors
r(R) = ray of the braid
fan corresponding
to ∅ 6= R ( [n]

unwanted rays
define tight
inequal.

right hand sides
hf≡(R) =

∑
S∈I≡

f(S) γ(S, R)

rhs driven by
combinatorics

of shards

forcing dominant
f : shards→ R>0

s.t. f(S) >
∑

S′�S
f(S′)

contribution
ray ∅ 6= R ( [n]

shard S = i

j

γ(S, R) = 11R∩{i, j}= 1
R∩ ]i, j[ = {•}VP & F. Santos, Quotientopes (’19)

Hopf algebras
GOAL. Extend the Malvenuto–Reutenauer Hopf algebra on
permutations and the Loday–Ronco algebra on binary trees

THM. There is a Hopf algebra structure on all classes of all
lattice congruences of the weak order on Sn for n ∈ N

decoration set X =
⊔
Xn with a selection sel : Xm ×

(
[m]
k

)
→ Xk

and a concatenation cc : Xm × Xn → Xm+n s.t.
• sel(sel(X , R), S) = sel(X , {rs | s ∈ S})
• cc(X , cc(Y,Z)) = cc(cc(X ,Y),Z)
• cc(sel(X , R), sel(Y, S)) = sel(cc(X ,Y), R ∪ S→m)

decorated permutation = pair (σ,X ) with σ ∈ Sn and X ∈ Xn

standardization std((ρ,Z), R) :=
(
std(ρ,R), sel(Z, ρ−1(R))

)
THM. Hopf algebra on decorated permutations:
• product F(σ,X ) · F(τ,Y) =

∑
ρ∈σ �̄ τ

F(ρ,cc(X ,Y))

• coproduct4F(ρ,Z) =
∑p

k=0
Fstd((ρ,Z),[k]) ⊗ Fstd((ρ,Z),[p]r[k])

Ψ : {decorations} → {arc ideals} compatible with sel and cc

decorated noncrossing arc diagram = pair (D,X ) s.t.D ⊆ Ψ(X )

Define P(D,X ) =
∑

F(σ,X ) over all σ s.t. δ(πΨ(X )
↓ (σ)) = D

THM. The subspace generated by P(D,X ) is a Hopf subalgebra

EXM. X = ext. arc ideals
Ψ(X ) = strict arcs in X
⇒ contains the
permutree algebra

sel( , 136) =

cc( , ) =

VP, Hopf algebras on decorated noncrossing arc diagrams (’19)


