Acyclic reorientation lattices and their lattice quotients Vincent Pilaud (CNRS & LIX, École Polytechnique)

Acyclic reorientation posets

D = directed acyclic graph. $\mathcal{AR}_D =$ poset of acyclic reorientations of D ordered by inclusion of reversed arcs. REM. $\min(\mathcal{AR}_D) = D$ and $\max(\mathcal{AR}_D) = \overline{D}$. EXM. $\mathcal{AR}_{\text{forest}} \simeq \text{boolean lattice},$ $E \mapsto \overline{E}$ is a self-duality of \mathcal{AR}_D . $\mathcal{AR}_{\text{tournament}} \simeq \text{weak order}$. cover relations = reversing an arc in the transitive reduction of E.

\mathcal{AR}_D lattice $\iff D$ vertebrate

D vertebrate = the transitive reduction of any induced subgraph of D is a forest.

THM. \mathcal{AR}_D is a lattice $\iff D$ is vertebrate.

PROP. If *D* vertebrate, then X = bwd(E) for some $E \in A\mathcal{R}_D$ \iff all arcs of *D* in the transitive closure of *X* belong to *X*, and same with $D \smallsetminus X$.

PROP. If *D* vertebrate,

 $bwd(E \lor F) = transitive closure of bwd(E) ∪ bwd(F),$ fwd(E ∧ F) = transitive closure of fwd(E) ∪ fwd(F).

\mathcal{AR}_D semidistributive $\iff D$ skeletal

D filled = any directed path joining the endpoints of an arc in D induces a tournament.

D skeletal = vertebrate + filled.

THM. \mathcal{AR}_D semidistributive lattice $\iff D$ is skeletal.

THM. If *D* skeletal, the canonical join representation of an acyclic reorientation *E* of *D* is *E* = *V*_{*a*∈*A*} *E*_{*a*} where *A* = {arcs of *D* reversed in the transitive reduction of *E*},
an arc is reversed in *E*_{*a*} ⇐⇒ it is the only arc reversed in *E* along a path in *D* joining the endpoints of *a*.

Ropes and rope diagrams

rope of D = quadruple (u, v, ∇, Δ) with

- (u, v) = an arc of D,
- $\bigtriangledown \sqcup \bigtriangleup$ = partition of the transitive support of (u, v) minus $\{u, v\}$.

two ropes $(u, v, \bigtriangledown, \bigtriangleup)$ and $(u', v', \bigtriangledown', \bigtriangleup')$ are crossing if there are $w \neq w'$ such that

- $w \in (\nabla \cup \{u, v\}) \cap (\Delta' \cup \{u', v'\}),$
- $w' \in (\Delta \cup \{u, v\}) \cap (\nabla' \cup \{u', v'\}).$

THM. If *D* is skeletal, then the following correspondences hold:

in \mathcal{AR}_D		in D
join irreducibles	\longleftrightarrow	ropes,
canonical join	\longleftrightarrow	non-crossing

Congruences

 $(u, v, \nabla, \Delta) \text{ subrope of } (u', v', \nabla', \Delta') \text{ if }$ $\bullet u, v \in \{u', v'\} \cup \nabla' \cup \Delta', \\\bullet \nabla \subseteq \nabla' \text{ and } \Delta \subseteq \Delta'.$

THM. If *D* skeletal, then lattice congruences of \mathcal{AR}_D \longleftrightarrow lower ideals of subrope order.

EXM. $(\mathfrak{V}, \Omega) =$ arbitrary subsets of *V*. $\mathbb{I}_{(\mathfrak{V},\Omega)} =$ lower ideal of ropes $(u, v, \bigtriangledown, \bigtriangleup)$ such that $\bigtriangledown \subseteq \mathfrak{V}$ and $\bigtriangleup \subseteq \Omega$. **coherent congruence** $\equiv_{(\mathfrak{V},\Omega)} =$

Quotientopes

graphical fan \mathcal{F}_D fan of the hyp. arr. $x_u = x_v$ for $(u, v) \in D$

quotient fan *F*_≡
chambers obtained
by glueing classes
of chambers of *F*_D

graphical zonotope Z_D quotientope Q_{\equiv} Minkowski sum of Minkowski sum of $[\mathbf{e}_u, \mathbf{e}_v]$ for $(u, v) \in D$ shard polytopes

congruence with subrope ideal $\mathbb{I}_{(\mho,\Omega)}$. sylvester congruence $\equiv_{(V,\varnothing)}$ D-Tamari lattice CONJ. D has no induced \square or \square \iff the *D*-Tamari lattice is regular.

