Acyclic reorientation lattices and their lattice quotients

Vincent Pilaud (CNRS \& LIX, École Polytechnique)

Acyclic reorientation posets

$D=$ directed acyclic graph.
$\mathcal{A R}{ }_{D}=$ poset of acyclic reorientations of D ordered by inclusion of reversed arcs.

REM. $\min \left(\mathcal{A R}_{D}\right)=D$ and $\max \left(\mathcal{A R}_{D}\right)=\bar{D}$. $E \mapsto \bar{E}$ is a self-duality of $\mathcal{A} \mathcal{R}_{D}$. cover relations $=$ reversing an arc in the transitive reduction of E.

$\mathcal{A R}_{D}$ lattice $\Longleftrightarrow D$ vertebrate

D vertebrate $=$ the transitive reduction of any induced subgraph of D is a forest.

THM. $\mathcal{A} \mathcal{R}_{D}$ is a lattice $\Longleftrightarrow D$ is vertebrate.
PROP. If D vertebrate, then $X=\operatorname{bwd}(E)$ for some $E \in \mathcal{A R}_{D}$
\Longleftrightarrow all arcs of D in the transitive closure of X belong to X, and same with $D \backslash X$.

PROP. If D vertebrate,
$\operatorname{bwd}(E \vee F)=$ transitive closure of $\operatorname{bwd}(E) \cup \operatorname{bwd}(F)$,
fwd $(E \wedge F)=$ transitive closure of $\mathrm{fwd}(E) \cup \mathrm{fwd}(F)$.
\square * \wedge \square

$\mathcal{A} \mathcal{R}_{D}$ semidistributive $\Longleftrightarrow D$ skeletal

D filled $=$ any directed path joining the endpoints of an arc in D induces a tournament.
D skeletal $=$ vertebrate + filled.
THM. $\mathcal{A R}_{D}$ semidistributive lattice $\Longleftrightarrow D$ is skeletal.
THM. If D skeletal, the canonical join representation of an acyclic reorientation E of D is $E=\bigvee_{a \in A} E_{a}$ where

- $A=\{\operatorname{arcs}$ of D reversed in the transitive reduction of $E\}$,
- an arc is reversed in $E_{a} \Longleftrightarrow$ it is the only arc reversed in E along a path in D joining the endpoints of a.

Ropes and rope diagrams

rope of $D=$ quadruple $(u, v, \nabla, \triangle)$ with

- $(u, v)=$ an arc of D,
- $\nabla \sqcup \triangle=$ partition of the transitive support of (u, v) minus $\{u, v\}$.
two ropes $(u, v, \nabla, \triangle)$ and $\left(u^{\prime}, v^{\prime}, \nabla^{\prime}, \triangle^{\prime}\right)$ are crossing if there are $w \neq w^{\prime}$ such that
- $w \in(\nabla \cup\{u, v\}) \cap\left(\triangle^{\prime} \cup\left\{u^{\prime}, v^{\prime}\right\}\right)$,
- $w^{\prime} \in(\triangle \cup\{u, v\}) \cap\left(\nabla^{\prime} \cup\left\{u^{\prime}, v^{\prime}\right\}\right)$.

THM. If D is skeletal, then the following correspondences hold:

More details?

arXiv:2111.12387
vincent.pilaud@lix.polytechnique.fr

Congruences

$(u, v, \nabla, \triangle)$ subrope of $\left(u^{\prime}, v^{\prime}, \nabla^{\prime}, \triangle^{\prime}\right)$ if

- $u, v \in\left\{u^{\prime}, v^{\prime}\right\} \cup \nabla^{\prime} \cup \triangle^{\prime}$,
- $\nabla \subseteq \nabla^{\prime}$ and $\triangle \subseteq \triangle^{\prime}$.

THM. If D skeletal, then
lattice congruences of $\mathcal{A} \mathcal{R}_{D}$
\longleftrightarrow lower ideals of subrope order.
EXM. $(\mho, \Omega)=$ arbitrary subsets of V. $\mathbb{I}_{(\mho, \Omega)}=$ lower ideal of ropes $(u, v, \nabla, \triangle)$ such that $\nabla \subseteq \mho$ and $\triangle \subseteq \Omega$. coherent congruence $\equiv_{(\mho, \Omega)}=$ congruence with subrope ideal $\mathbb{I}_{(\mho, \Omega)}$.

conj. D has no induced or
\Longleftrightarrow the D-Tamari lattice is regular.

Quotientopes

graphical fan \mathcal{F}_{D} fan of the hyp. arr. chambers obtained
$x_{u}=x_{v}$ for $(u, v) \in D$ by glueing classes of chambers of \mathcal{F}_{D}

graphical zonotope \mathcal{Z}_{D} quotientope \mathcal{Q}_{\equiv} Minkowski sum of Minkowski sum of $\left[\mathbf{e}_{u}, \mathbf{e}_{v}\right]$ for $(u, v) \in D \quad$ shard polytopes

CONJ. D has no induced
\Longleftrightarrow all Cambrian associahedra of D have isomorphic face lattices.

CONJ. $\mathcal{F}_{(\mho, \Omega)}$ is always removahedral.

