

# MULTI-TRIANGULATIONS AS COMPLEXES OF STAR POLYGONS

Vincent Pilaud<sup>1</sup> & Francisco Santos<sup>2</sup>

<sup>1</sup>École Normale Supérieure, Paris, France – vincent.pilaud@ens.fr <sup>2</sup>Universidad de Cantabria, Santander, Spain – francisco.santos@unican.es



#### ABSTRACT

The maximum possible number of diagonals that can be drawn in a convex polygon with no k+1 of them mutually crossing is k(2n-2k-1) ([CP92]). Maximal such subsets of edges (called here k-triangulations) are known to generalize nicely some properties of triangulations of a convex n-gon ([NAK00],[DKM03],[JON05]).

In this poster, we present proofs of basic properties of k-triangulations (number of edges, flip), using the new tool of stars that generalize triangles for multi-triangulations. We also discuss open problems that may hopefully be easier to analyze using this new tool.

#### RELATED TOPICS AND OPEN PROBLEMS

#### 1. Multi-Dyck-paths

**THEOREM 5.** [JON05] The number of k-triangulations of the convex *n*-gon is  $\det(C_{n-i-j})_{1 \le i,j \le k}$  (where  $C_m = \frac{1}{m+1} \binom{2m}{m}$  denotes the *m*-th Catalan number).

This determinant is also known to count k-tuples of non-crossing Dyck paths of semi-length n - 2k (k-Dyck-path).

**PROBLEM** 1. Find an explicit bijection between k-triangulations



FIG. 5: 3-Dyck-path.

### DEFINITIONS

A k-triangulation of a convex n-gon is a maximal subset of (diagonal) edges without any (k+1)-crossing (that is, subset of k+1 mutually intersecting edges).

A k-star is a polygon formed by connecting 2k+1 vertices  $s_0, \ldots, s_{2k}$  (cyclically ordered) with the edges  $[s_0, s_k], [s_1, s_{1+k}], \ldots, [s_k, s_{2k}], [s_{k+1}, s_0], \ldots, [s_{2k}, s_{k-1}].$ 



FIG. 1: A 4-crossing – a 2-triangulation of the octagon – a 2-star.

## COMPLEXES OF k-STARS

**THEOREM 1.** An edge of a k-triangulation T is contained in zero, one or two k-stars of T, depending on whether its length is smaller, equal or greater than k.





and k-Dyck-paths (done when k = 2 in [ELI07]).

#### 2. Sparsity & rigidity

A graph G = (V, E) is (p, q)-sparse if for any subset F of E,  $|F| \leq p|V(F)| - q$  (where V(F) denotes the set of vertices of F). A (p,q)-sparse graph G = (V, E) is (p,q)-tight when furthermore |E| = p|V| - q.

Depending on the parameters (p, q), sparsity is related to different subjects ([LS07]): (i) a (generically minimally) rigid graph in dimension d is  $(d, \binom{d+1}{2})$ -tight; (ii) a graph is an  $\ell$ -arborescence if and only if it is  $(\ell, \ell)$ -tight.



FIG. 6: A non-rigid graph – a rigid graph – a 2-arborescence.

**LEMMA.** (i) A k-triangulation of a convex polygon is  $(2k, \binom{2k+1}{2})$ -tight. (ii) The dual graph of a k-triangulation is (k, k)-tight.

**PROBLEM 2.** Is a k-triangulation always (generically minimally) rigid in dimension 2k?

### 3. Multi-associahedron

Let  $\Delta_{n,k}$  be the complex of all subsets of edges that do not contain any (k+1)-crossing.

FIG. 2: 2-stars containing a given (red) edge.

**THEOREM 2.** Let T be a k-triangulation.

(i) Every pair of k-stars of T have a unique common bisector. (ii) Any edge which is not in T is the common bisector of a unique pair of k-stars of T.



FIG. 3: Common bisector of two 2-stars.

**COROLLARY.** Any k-triangulation of the convex n-gon contains exactly n - 2k k-stars and thus k(2n-2k-1) edges.

#### FLIPS

**PROBLEM 3.** Is there a polytope of dimension k(n-2k-1) with boundary  $\Delta_{n,k}$ ?



FIG. 7: A realization of the polar of  $\Delta_{6,1}$  (the associahedron).

#### 4. Surfaces

The polygonal complex  $\mathcal{C}(T)$  associated to a k-triangulation T is a polygonal decomposition of an orientable surface with boundary  $S_{n,k}$ .



**THEOREM 3.** If e is an edge contained in two stars of T with common bisector f, then: (i)  $T \triangle \{e, f\}$  is also a k-triangulation and (ii) no other k-triangulation contains  $T \setminus \{e\}$ . The k-triangulation  $T \triangle \{e, f\}$  is obtained by flipping the edge e in the k-triangulation T.



#### FIG. 4: The flip of an edge.

**THEOREM** 4. The graph of flips on the set of k-triangulations of the convex n-gon is connected, regular of degree k(n-2k-1), and its diameter is at most 2k(n-2k-1).



FIG. 8: Decomposition of  $\mathcal{S}_{n,2}$  (n=6,7,8) associated to the greedy 2-triangulation.

**PROBLEM** 4. Characterize the decompositions of  $\mathcal{S}_{n,k}$  that correspond to k-triangulations.

#### REFERENCES

V. CAPOYLEAS & J. PACH, A Turán-type theorem on chords of a convex polygon, 1992 A. DRESS, J. KOOLEN & V. MOULTON, On line arrangements in the hyperbolic plane, 2002 S. ELIZALDE, A bijection between 2-triangulations and pairs of non-crossing Dyck paths, 2007 J. JONSSON, Generalized triangulations and diagonal-free subsets of stack polyominoes, 2005 A. LEE & I. STREINU, Pebble game algorithms and sparse graphs, 2007 T. NAKAMIGAWA, A generalization of diagonal flips in a convex polygon, 2000