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(CNRS & École Polytechnique)
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THREE PERSPECTIVES ON BST INSERTION



BINARY SEARCH TREE INSERTION

BSTinsert(T, x):

if T = ∅ then return BST(x, ∅, ∅)

if x < T.root then return BST(T.root, BSTinsert(T.left, x), T.right)

if x > T.root then return BST(T.root, T.left, BSTinsert(T.right, x))
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Three perspectives on BST insertion:

• lattice theory: weak order and Tamari lattice

• discrete geometry: permutahedra and associahedra

• Hopf algebras: Malvenuto–Reutenauer and Loday–Ronco algebras



LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X ⊆ L admits a meet
∧
X and a join

∨
X

lattice congruence = equivalence relation on L compatible with meets and joins
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fan = collection of polyhedral cones closed by faces and intersecting along faces

polytope = convex hull of a finite set = intersection of finitely many affine half-space



POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polyhedral cone = positive span of a finite set of Rn

= intersection of finitely many linear half-spaces

fan = collection of polyhedral cones closed by faces

and where any two cones intersect along a face



POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of Rn

= bounded intersection of finitely many affine half-spaces

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations



POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

face F of polytope P

normal cone of F = positive span of the outer normal vectors of the facets containing F

normal fan of P = { normal cone of F | F face of P }
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fan = collection of polyhedral cones closed by faces and intersecting along faces

polytope = convex hull of a finite set = intersection of finitely many affine half-space
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= conv
{

[σ−1(i)]i∈[n]

∣∣ σ ∈ Sn

}
= conv

{
[`(T, i) · r(T, i)]i∈[n]

∣∣ T binary tree
}

= H ∩
⋂

∅6=J([n]
HJ = H ∩

⋂
1≤i<j≤n

H[i,j]

where HJ =
{
x ∈ Rn

∣∣ ∑
j∈J xj ≥

(|J |+1
2

)}
Stasheff (’63)

Shnider–Sternberg (’93)

Loday (’04)
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan = collection of polyhedral cones closed by faces and intersecting along faces

polytope = convex hull of a finite set = intersection of finitely many affine half-space
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permutahedron Perm(n) associahedron Asso(n)

=⇒ weak order on permutations =⇒ Tamari lattice on binary trees

Hasse diagram of weak order

Tamari lattice

= graph of permutahedron

associahedron

oriented 12 . . . n→ n . . . 21

left → right comb



HOPF ALGEBRAS: MALVENUTO–REUTENAUER AND LODAY–RONCO

product = linear map · : V ⊗ V → V = a tool to combine two elements (glue)

coproduct = linear map 4 : V → V ⊗ V = a tool to decompose an element (scisors)

Hopf algebra = (V, ·,4) such that 4(a · b) = 4(a) · 4(b)

Two operations on permutations:

shuffle 12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}
convol. 12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}
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Weak order intervals: ρ �̄σ = {τ ∈ Sp+q | ρ\σ ≤ τ ≤ ρ/σ}
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product = linear map · : V ⊗ V → V = a tool to combine two elements (glue)
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Malvenuto–Reutenauer ⊇ Loday–Ronco

vector space 〈 Fσ | σ permutation of any size 〉 〈 PT | T binary tree of any size 〉
product Fρ · Fσ =

∑
τ∈ρ �̄σ

Fτ =
∑

ρ\σ≤τ≤ρ/σ
Fτ PR · PS =

∑
R\S≤τ≤R/S

PT

coproduct 4(Fτ) =
∑
τ∈ρ?σ

Fρ ⊗ Fσ 4(PT ) =
∑

R1···Rk||S
cut of T

(
∏
i∈[k]

PRi)⊗ PS



HOPF ALGEBRAS: MALVENUTO–REUTENAUER AND LODAY–RONCO

product = linear map · : V ⊗ V → V = a tool to combine two elements (glue)

coproduct = linear map 4 : V → V ⊗ V = a tool to decompose an element (scisors)

Hopf algebra = (V, ·,4) such that 4(a · b) = 4(a) · 4(b)

Two operations on permutations:

shuffle 12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}
convol. 12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}

Malvenuto–Reutenauer ⊇ Loday–Ronco

vector space 〈 Fσ | σ permutation of any size 〉 〈 PT | T binary tree of any size 〉
product Fρ · Fσ =

∑
τ∈ρ �̄σ

Fτ =
∑

ρ\σ≤τ≤ρ/σ
Fτ PR · PS =

∑
R\S≤τ≤R/S

PT

coproduct 4(Fτ) =
∑
τ∈ρ?σ

Fρ ⊗ Fσ 4(PT ) =
∑

R1···Rk||S
cut of T

(
∏
i∈[k]

PRi)⊗ PS

Hopf subalgebra = define PT =
∑
τ

Fτ over all permutations τ in the BST fiber of T



A WALK THROUGH THE MANUSCRIPT



PART I. LATTICE CONGRUENCES, POLYTOPES AND HOPF ALGEBRAS

Objective: Explore further the interactions

combinatorics geometry algebra

permutations weak order permutahedron Perm(n) MR Hopf algebra

binary trees Tamari lattice associahedron Asso(n) LR Hopf algebra

binary sequences boolean lattice parallelepiped Para(n) recoil Hopf algebra
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CHAP 2. BRICK POLYTOPES

(k, n)-twist = pipe dream that sends i 7→
{
i if k + 1 ≤ i ≤ k + n,
n + 2k + 1− i otherwise.

k-twist insertion = permutations of [n] −→ acyclic (k, n)-twists
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= rewriting rule UacV1b1 . . . VkbkW ≡k UcaV1b1 . . . VkbkW with a < bi < c
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CHAP 3. PERMUTREEHEDRA

permutree = directed (bottom to top) and labeled (bijectively by [n]) tree such that
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CHAP 3. PERMUTREEHEDRA

permutree = directed (bottom to top) and labeled (bijectively by [n]) tree such that
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CHAP 3. PERMUTREEHEDRA

POLPOLYWOODOODPOLYWOOD
P.–Pons (’18)
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CHAP 4. QUOTIENTOPES

lattice congruence = equivalence relation on L compatible with meets and joins:

x ≡ x′ and y ≡ y′ implies x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′

quotient fan F≡ = chambers are ob-

tained by glueing the chambersC(σ)

of the permutations σ in the same

congruence class of ≡ Reading (’05)



CHAP 4. QUOTIENTOPES

lattice congruence = equivalence relation on L compatible with meets and joins:

x ≡ x′ and y ≡ y′ implies x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′

quotient fan F≡ = chambers are ob-

tained by glueing the chambersC(σ)

of the permutations σ in the same

congruence class of ≡ Reading (’05)

P.–Santos (’19)

quotientope = polytope whose normal fan is F≡ Padrol–P.–Ritter (’20+)



QUOTIENTOPES

quotientope = polytope whose normal fan is F≡

P.–Santos (’19)POLPOLYWOODOODPOLYWOOD
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PART II. BEYOND THE WEAK ORDER

Objective: Extend the weak order beyond the vertices of the permutahedron
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Objective: Extend the weak order beyond the vertices of the permutahedron

Chap 5. Facial weak order Krob–Latapy–Novelli–Phan–Schwer (’01) Palacios–Ronco (’06)

facial weak order = lattice on all faces of Perm(W )

F ≤ G ⇐⇒ minF ≤ minG and maxF ≤ maxG

facial lattice congruence = congruence on faces

F ≡ G ⇐⇒ minF ≡ minG and maxF ≡ maxG

Dermenjian–Hohlweg–McConville–P. (’18, ’19+) 1|2|3

3|2|1

2|1|3 1|3|2

2|3|1 3|1|2

1232|13 13|2

12|3 1|23

23|1 3|12
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Objective: Extend the weak order beyond the vertices of the permutahedron

Chap 5. Facial weak order Krob–Latapy–Novelli–Phan–Schwer (’01) Palacios–Ronco (’06)

facial weak order = lattice on all faces of Perm(W )
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Chap 6. Weak order on integer posets
integer poset = poset on [n]

weak order on integer posets = Chatel–P.–Pons (’19)

C ≤ J ⇐⇒ C− ⊆ J− and C+ ⊇ J+

Hopf algebra on integer posets P.–Pons (’20)

weak order on Φ-posets Gay–P. (’19)



PART III. CLUSTER ALGEBRAS AND GENERALIZED ASSOCIAHEDRA

cluster complex = simplicial complex constructed

from an iterative process of mutations

finite type classification by Weyl groups

g-vector fan = fan associated to an initial cluster

seed, realizing the cluster complex

Fomin–Zelevinsky (’02, ’03, ’05, ’07)
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cluster complex = simplicial complex constructed

from an iterative process of mutations

finite type classification by Weyl groups

g-vector fan = fan associated to an initial cluster

seed, realizing the cluster complex

Fomin–Zelevinsky (’02, ’03, ’05, ’07)

Objective: Construct polytopal realizations of g-vector fans of finite type cluster alg.

Chap 7. Polytopal realizations of finite type g-vector fans
universal associahedron = polytope whose normal

fan contains a copy of each g-vector fan
Hohlweg–P.–Stella (’18)

type cone = space of all polytopal realizations
Padrol–Palu–P.–Plamondon (’19+)

Chap 8. Brick polytopes of subword complexes
subword complex = generalization of pipe dreams and sorting networks to Coxeter groups

brick polytope = polytope realizing only acyclic facets P.–Stump (’15a, ’15b)



PART IV. NON-KISSING AND NON-CROSSING COMPLEXES

Two recent generalizations of the associahedron:

Non-kissing complex Non-crossing complex
of paths on a grid on accordions of a dissection

McConville (’17) Garver–McConville (’17+) Baryshnikov (’01) Chapoton (’16)

Garver–McConville (’18)

Objective: • Explain the connections between non-kissing and non-crossing

• Develop combinatorial and geometric properties of these complexes

Palu–P.–Plamondon (’19)



PART IV. NON-KISSING AND NON-CROSSING COMPLEXES

Objective: • Explain the connections between non-kissing and non-crossing

• Develop combinatorial and geometric properties of these complexes

Chap 9. Non-kissing versus non-crossing Palu–P.–Plamondon (’19)

locally gentle quiver ←→ orientable surface with boundary endowed
with a pair of dual cellular dissections

←→



PART IV. NON-KISSING AND NON-CROSSING COMPLEXES

Objective: • Explain the connections between non-kissing and non-crossing

• Develop combinatorial and geometric properties of these complexes

Chap 9. Non-kissing versus non-crossing Palu–P.–Plamondon (’19)

locally gentle quiver ←→ orientable surface with boundary endowed
with a pair of dual cellular dissections

←→

walks ←→ accordeon or slalom
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PART IV. NON-KISSING AND NON-CROSSING COMPLEXES

Objective: • Explain the connections between non-kissing and non-crossing

• Develop combinatorial and geometric properties of these complexes

Chap 9. Non-kissing versus non-crossing Palu–P.–Plamondon (’19)

locally gentle quiver ←→ orientable surface with boundary endowed
with a pair of dual cellular dissections

non-kissing complex ←→ non-crossing complex

Chap 10. Non-kissing lattices and non-kissing associahedra Palu–P.–Plamondon (’17+)

non-kissing lattice non-kissing associahedron

= quotient of a lattice of biclosed sets = polytopal realization of the g-vector fan
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Figure 4.4: Permutahedron (left), associahedron (middle) and cube (right) as quotientopes.

Theorem 4.8. For any lattice congruence ⌘ of the weak order on Sn, and any forcing dominant
function f : An ! R>0, the quotient fan F(⌘) is the normal fan of the polytope

QTf (⌘) :=
�
x 2 Rn | hr(R) | xi  hf

⌘(R) for all ? 6= R ( [n]
 
.

In particular, when oriented in the direction ! := (n, . . . , 1) � (1, . . . , n) =
P

i2[n](n + 1 � 2i) ei,
the graph of QTf (⌘) is the Hasse diagram of the quotient of the weak order by ⌘.

Remark 4.9. Note that the definition of the height function ensures that hf
⌘(R)  hf

⌘0(R) and
thus QTf (⌘) ✓ QTf (⌘0) when ⌘ coarsens ⌘0. See Figure 4.5.

4.2.3 Minkowski sums of associahedra or shard polytopes
We conclude with an alternative approach to quotientopes recently developed in [PPR20] to study the
polytopality of quotient fans beyond the braid arrangement (see also Section A.3).

Lemma 4.10. For any lattice congruence ⌘ of the weak order, the quotient fan F(⌘) is the com-
mon refinement of the quotient fans F(⌘1), . . . , F(⌘p) of the lattice congruences whose arc ide-
als I⌘1 , . . . , I⌘p are the principal upper ideals of the forcing order generated by the minimal elements
of the arc ideal I⌘ of ⌘.

Lemma 4.11. An arc ideal is principal if and only if it corresponds to a Cambrian congruence (pos-
sibly of low dimension).

Corollary 4.12. For any lattice congruence ⌘ of the weak order, the quotient fan F⌘ is the normal
fan of a Minkowski sum of associahedra.

In fact, this idea can even been pushed further to obtain realizations of all quotientopes (including
associahedra) as Minkowski sums of elementary summands, defined as follows.

Definition 4.13. For an arc ↵ = (a, b, n, S), we define
• an ↵-alternating matching as a (possibly empty) sequence M = {a1, b1, . . . , ak, bk} where

a  a1 < b1 < . . . < ak < bk  b and ai 2 S [ {a} while bi /2 S for all i 2 [k].
• the characteristic vector of this ↵-alternating matching as �(M) =

P
i2[k] eai � ebi

,
• the shard polytope SP(↵) as the convex hull of the characteristic vectors of all ↵-alternating

matchings.

Proposition 4.14. For any arc ↵, the union of the walls of the normal fan of the shard polytope SP(↵)
contains the shard ⌃(↵) and is contained in the union of the shards ⌃(�) for the arcs � forced by ↵.

Corollary 4.15. For any lattice congruence ⌘ of the weak order, the quotient fan F⌘ is the normal
fan of the Minkowski sum of the shard polytopes SP(↵) over all ↵ 2 I⌘.

Example 4.16. For the arc ↵ = (a, b, n, ]a, b[), the ↵-alternating matchings are given by ? and {i, b}
for a  i < b, so that the corresponding shard polytope SP(↵) is the translation of the standard
simplex 4[a,b] by the vector �eb. We obtain thus the classical realization of Loday’s associahedron
as the Minkowski sum of all faces of the standard simplex corresponding to the intervals of [n].
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lattice congruence = equivalence relation on L compatible with meets and joins:

x ≡ x′ and y ≡ y′ implies x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′

quotient fan F≡ = chambers are ob-

tained by glueing the chambers C(σ)

of the permutations σ in the same

congruence class of ≡ Reading (’05)

W≡ = walls of the quotient fan F≡
Describe the possible sets of walls W≡

x

x′ y = y′

→
x ∨ y

x′ ∨ y′



ARCS AND SHARDS

arc (a, b, A,B) with 1 ≤ a < b ≤ n and A tB = ]a, b[ a
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A
B

shard Σ(a, b, A,B) =
{
x ∈ Rn

∣∣ xa′ ≤ xa = xb ≤ xb′ for all a′ ∈ A and b′ ∈ B
}
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ARCS AND SHARDS

arc (a, b, A,B) with 1 ≤ a < b ≤ n and A tB = ]a, b[ a
b

A
B

shard Σ(a, b, A,B) =
{
x ∈ Rn

∣∣ xa′ ≤ xa = xb ≤ xb′ for all a′ ∈ A and b′ ∈ B
}

The set of walls W≡ of the quotient fan F≡ is a union of shards Σ≡ Reading (’05)
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Reading (’15)
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c ≤ a < b ≤ d and A ⊆ C and B ⊆ D

ac d
b

Reading (’15)

TFAE for a set of shards Σ:

• there is a congruence≡ with Σ = Σ≡
• Σ is an upper ideal in forcing order
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essential congruences:
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OEIS A330039

all congruences

1, 2, 7, 60, 3444, ...
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INTERSECTIONS OF CONGRUENCES

If the congruence ≡ is the intersection of the congruences ≡1, . . . ,≡k,
then the quotient fan F≡ is the common refinement of the quotient fans F≡1, . . . ,F≡k

∪ =

Minkowski sum P +Q = {p + q | p ∈ P, q ∈ Q}

Normal fan of P +Q = common refinement of normal fans of P and Q



MINKOWSKI SUMS OF QUOTIENTOPES

If the congruence ≡ is the intersection of the congruences ≡1, . . . ,≡k,
then the quotient fan F≡ is the common refinement of the quotient fans F≡1, . . . ,F≡k

,

and a Minkowski sum of quotientopes for F≡1, . . . ,F≡k
is a quotientope for F≡

∪ =

+ =



MINKOWSKI SUMS OF ASSOCIAHEDRA

If the congruence ≡ is the intersection of the congruences ≡1, . . . ,≡k,
then the quotient fan F≡ is the common refinement of the quotient fans F≡1, . . . ,F≡k

,

and a Minkowski sum of quotientopes for F≡1, . . . ,F≡k
is a quotientope for F≡

Principal arc ideals are Cambrian congruences

Any quotient fan is realized by a Minkowski sum of (low dim.) associahedra

+ =

Padrol-P.-Ritter (’20+)



MINKOWSKI SUMS OF ASSOCIAHEDRA

quotientope = polytope whose normal fan is F≡

P.–Santos (’19)POLPOLYWOODOODPOLYWOOD


insidahedra_quotientopes_penche_framed_ultraFast_bothWays_cropped.mov
Media File (video/quicktime)



SHARD POLYTOPES

for a shard Σ = Σ(a, b, A,B), define

• Σ-matching = sequence a ≤ a1 < b1 < · · · < ak < bk ≤ b where

{
ai ∈ {a} ∪ A
bi ∈ B ∪ {b}

• characteristic vector χ(M) =
∑

i∈[k] eai − ebi

shard polytope SP(Σ) = conv
{
χ(M)

∣∣M Σ-matching
}

=




x ∈ Rn

∣∣∣∣∣∣∣∣∣

xj = 0 for all j ∈ [n] r [a, b]

0 ≤ xa′ ≤ 1 for all a′ ∈ {a} ∪ A
−1 ≤ xb′ ≤ 0 for all b′ ∈ B ∪ {b}

0 ≤
∑

i≤j xi ≤ 1 for all j ∈ [n]





Padrol-P.-Ritter (20+)

exm: for an up shard (a, b, ]a, b[,∅), we get the standard simplex 4[a,b] − eb



SHARD POLYTOPES

shard polytope SP(Σ) = conv
{
χ(M)

∣∣M Σ-matching
}

Padrol-P.-Ritter (20+)

The union of the walls of the normal fan of the shard polytope SP(Σ)

• contains the shard Σ,

• is contained in the union of the shards forcing Σ
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• contains the shard Σ,

• is contained in the union of the shards forcing Σ

For any lattice congruence ≡, the quotient fan F≡ is the normal fan of the Minkowski

sum of the shard polytopes SP(Σ) for Σ ∈ Σ≡ Padrol-P.-Ritter (20+)



SHARD POLYTOPES AND TYPE CONES



CHOOSING RIGHT-HAND-SIDES

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}
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A B C

When is F the normal fan of Ph?
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• αR,s = coeff. of unique linear dependence
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WALL-CROSSING INEQUALITIES

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}

14

23

5

A B C
wall-crossing inequalities:

wall 1 : h2 + h5 > 0

wall 2 : h1 + h3 > h2

wall 3 : h2 + h4 > h3

wall 4 : h3 + h5 > h4

wall 5 : h1 + h4 > 0

H5> H1>
H3>

H2>H4>

A
B

C



TYPE CONE

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}

type cone TC(F) = realization space of F
=
{
h ∈ RN

∣∣ F is the normal fan of Ph

}

=
{
h ∈ RN

∣∣ h satisfies all wall-crossing inequalities of F
}

McMullen (’73)
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F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}

type cone TC(F) = realization space of F
=
{
h ∈ RN

∣∣ F is the normal fan of Ph

}

=
{
h ∈ RN

∣∣ h satisfies all wall-crossing inequalities of F
}

McMullen (’73)
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H5> H1>
H3>

H2>H4>

some properties of TC(F):

• TC(F) is an open cone (dilations preserve normal fans)

• TC(F) has lineality space GRn (translations preserve normal fans)

• dimension of TC(F)/GRn = N − n



TYPE CONE

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}

type cone TC(F) = realization space of F
=
{
h ∈ RN

∣∣ F is the normal fan of Ph

}

=
{
h ∈ RN

∣∣ h satisfies all wall-crossing inequalities of F
}

McMullen (’73)

14

23

5

some properties of TC(F):

• closure of TC(F) = polytopes whose normal fan coarsens F = deformation cone

• Minkowski sums ←→ positive linear combinations



SIMPLICIAL TYPE CONE

Assume that the type cone TC(F) is simplicial

K = (N −n)×N -matrix whose rows are inner normal vectors of the facets of TC(F)

All polytopal realizations of F are affinely equivalent to

R` =
{
z ∈ RN

∣∣ z ≥ 0 and Kz = `
}

for any positive vector ` ∈ RN−n
>0 Padrol–Palu–P.–Plamondon (’19+)

Fundamental exms: g-vector fans of cluster-like complexes




0−1 1
1 0−1
−1 1 0




x1

x2

x3
x2+x3
x1

x1+x3
x2

x1+x2
x3

x1+x2+x3
x1x3

x1+x2+x3
x1x2

x1+x2+x3
x2x3

sylvester fans finite type g-vector fans finite gentle fans

wrt any seed (acyclic or not) for brick and 2-acyclic quivers
Arkani-Hamed–Bai–He–Yan (’18) BMDMTY (’18+) Palu–P.–Plamondon (’18)



SUBMODULAR FUNCTIONS

1234
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2431

4231

2341

closed type cone of braid fan = {deformed permutahedra} = {submodular functions}

deformed permutahedron = polytope whose normal fan coarsens the braid fan

Defo(z) =
{
x ∈ Rn

∣∣ 〈 11 | x 〉 = z[n] and 〈 11R | x 〉 ≥ zR for all R⊆ [n]
}

for some vector z ∈ R2[n] such that zR + zS ≤ zR∪S + zR∩S and z∅ = 0

Postnikov (’09) Postnikov–Reiner–Williams (’08)
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closed type cone of braid fan = {deformed permutahedra} = {submodular functions}

deformed permutahedron = polytope whose normal fan coarsens the braid fan

Defo(z) =
{
x ∈ Rn

≥0

∣∣ 〈 11 | x 〉 = z[n] and 〈 11R | x 〉 ≥ zR for all R ∈ J
}

for some vector z ∈ R2[n] such that zR + zS ≤ zR∪S + zR∩S and z∅ = z{i} = 0,

where J = {J ⊂ [n] | |J | ≥ 2} Postnikov (’09) Postnikov–Reiner–Williams (’08)



SUBMODULAR FUNCTIONS

1

52

6

3 4

= SP(         )

SP(         ) =

SP(         ) =

permutahedron

associahedron
Asso3

associahedron
‒ Asso3

cube

permutahedron
Perm3

diagonal
rectangulation
polytope

1

5 2

63

4

= SP(         )

dimTC(F) = N − n = 6− 2 = 4 F
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Any deformed permutahedron is a Minkowski sum and difference of shard polytopes

Defo(z) =
∑

J∈J
yJ4J =

∑

I∈J
sI SP(ΣI)

with explicit (combinatorial) exchange matrices between the parameters s, y and z



OPEN QUESTIONS

H hyperplane arrangement in Rn

base region B = distinguished region of Rn rH
inversion set of a region C = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of Rn rH ordered by inclusion of inversion sets

The poset of regions PR(H, B) Björner-Edelman-Ziegler (’90)

• is never a lattice when B is not a simplicial region

• is always a lattice when H is a simplicial arrangement

If PR(H, B) is a lattice, and ≡ is a congruence of PR(H, B), the cones obtained by

glueing the regions of Rn rH in the same congruence class form a complete fan F≡
Reading (’05)

Is the quotient fan F≡ always polytopal?
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shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

Reading (’03)
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OPEN QUESTIONS

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

shard polytope of a shard Σ = polytope such that the union of the walls of its normal fan

• contains the shard Σ,

• is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions



OPEN QUESTIONS

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

shard polytope of a shard Σ = polytope such that the union of the walls of its normal fan

• contains the shard Σ,

• is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

If any shard Σ admits a shard polytope SP(Σ), then

• for any lattice congruence ≡ of PR(H, B), the quotient fan F≡ is the normal of the

Minkowski sum of the shard polytopes SP(Σ) for Σ in the shard ideal Σ≡

• if the arrangement H is simplicial, then the shard polytopes SP(Σ) form a basis for

the type cone of the fan defined by H (up to translation)
Padrol-P.-Ritter (20+)



OPEN QUESTIONS

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

shard polytope of a shard Σ = polytope such that the union of the walls of its normal fan

• contains the shard Σ,

• is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

For crystallographic arrangements,

Newton polytopes of F -polynomials

all seem to be shard polytopes,

but some shards are missing... 000

101̅

011̅

01̅1̅

1̅01̅

000
1̅1̅0

01̅1̅

11̅0
02̅0



THANKS


