From permutahedra to associahedra, a walk through geometric and algebraic combinatorics V. PILAUD (CNRS & École Polytechnique) Habilitation à Diriger des Recherches Friday July 10th, 2020

slides available at: http://www.lix.polytechnique.fr/~pilaud/documents/presentations/HDRDefense.pdf
manuscript available at: http://www.lix.polytechnique.fr/~pilaud/documents/reports/HDRVincentPilaud.pdf

THREE PERSPECTIVES ON BST INSERTION

BINARY SEARCH TREE INSERTION

 $\begin{array}{l} \mathsf{BSTinsert}(\mathsf{T},\,\mathsf{x}):\\ \mathsf{if}\;\mathsf{T}=\varnothing\;\mathsf{then}\;\mathsf{return}\;\mathsf{BST}(\mathsf{x},\,\varnothing,\,\varnothing)\\ \mathsf{if}\;\mathsf{x}<\mathsf{T}.\mathsf{root}\;\mathsf{then}\;\mathsf{return}\;\mathsf{BST}(\mathsf{T}.\mathsf{root},\,\mathsf{BSTinsert}(\mathsf{T}.\mathsf{left},\,\mathsf{x}),\,\mathsf{T}.\mathsf{right})\\ \mathsf{if}\;\mathsf{x}>\mathsf{T}.\mathsf{root}\;\mathsf{then}\;\mathsf{return}\;\mathsf{BST}(\mathsf{T}.\mathsf{root},\,\mathsf{T}.\mathsf{left},\,\mathsf{BSTinsert}(\mathsf{T}.\mathsf{right},\,\mathsf{x})) \end{array}$

BST insertion of 2751346:

BINARY SEARCH TREE INSERTION

BST insertion of 2751346:

Three perspectives on BST insertion:

- lattice theory: weak order and Tamari lattice
- discrete geometry: permutahedra and associahedra
- Hopf algebras: Malvenuto–Reutenauer and Loday–Ronco algebras

<u>lattice</u> = partially ordered set L where any $X \subseteq L$ admits a <u>meet</u> $\bigwedge X$ and a join $\bigvee X$ <u>lattice congruence</u> = equivalence relation on L compatible with meets and joins

 $\frac{\text{lattice}}{\text{lattice}} = \text{partially ordered set } L \text{ where any } X \subseteq L \text{ admits a } \underline{\text{meet}} \land X \text{ and a } \underline{\text{join}} \lor X$ $\frac{\text{lattice congruence}}{\text{lattice congruence}} = \text{equivalence relation on } L \text{ compatible with meets and joins}$

 $\underline{\text{weak order}} = \text{permutations of } \mathfrak{S}_n$ ordered by inclusion of inversion sets $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 $\frac{\text{lattice}}{\text{lattice}} = \text{partially ordered set } L \text{ where any } X \subseteq L \text{ admits a } \underline{\text{meet}} \land X \text{ and a } \underline{\text{join}} \lor X$ $\frac{\text{lattice congruence}}{\text{lattice congruence}} = \text{equivalence relation on } L \text{ compatible with meets and joins}$

 $\frac{\text{weak order}}{\text{ordered by inclusion of inversion sets}}$

 $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 \mathbb{N}

right

A B

KΠ

rotation

٨Ŋ

۸۱۸

<u>lattice</u> = partially ordered set L where any $X \subseteq L$ admits a <u>meet</u> $\bigwedge X$ and a join $\bigvee X$ <u>lattice congruence</u> = equivalence relation on L compatible with meets and joins

<u>lattice</u> = partially ordered set L where any $X \subseteq L$ admits a <u>meet</u> $\bigwedge X$ and a join $\bigvee X$ <u>lattice congruence</u> = equivalence relation on L compatible with meets and joins

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ <u>polytope</u> = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ <u>polytope</u> = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

quotient fan = $\mathbb{C}(T)$ obtained by glueing $\mathbb{C}(\sigma)$ for all σ in the same BST insertion fiber

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ $<math>\underline{polytope} = convex hull of a finite set = intersection of finitely many affine half-space$

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ $<math>\underline{polytope} = convex hull of a finite set = intersection of finitely many affine half-space$

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ <u>polytope</u> = convex hull of a finite set = intersection of finitely many affine half-space

POLYWODD

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

HOPF ALGEBRAS: MALVENUTO-REUTENAUER AND LODAY-RONCO

 $\underline{\text{product}} = \text{linear map} \cdot : V \otimes V \to V = \text{a tool to combine two elements (glue)}$ $\underline{\text{coproduct}} = \text{linear map} \ \triangle : V \to V \otimes V = \text{a tool to decompose an element (scisors)}$ $\underline{\text{Hopf algebra}} = (V, \cdot, \triangle) \text{ such that } \triangle(a \cdot b) = \triangle(a) \cdot \triangle(b)$

Two operations on permutations:

 $\underline{\mathsf{shuffle}} \ 12 \sqcup 231 = \{12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312\}$ convol. $12 \star 231 = \{12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231\}$

Weak order intervals: $\rho \amalg \sigma = \{ \tau \in \mathfrak{S}_{p+q} \mid \rho \setminus \sigma \leq \tau \leq \rho / \sigma \}$

HOPF ALGEBRAS: MALVENUTO-REUTENAUER AND LODAY-RONCO

 $\underline{\text{product}} = \text{linear map} \cdot : V \otimes V \to V = \text{a tool to combine two elements (glue)}$ $\underline{\text{coproduct}} = \text{linear map} \ \triangle : V \to V \otimes V = \text{a tool to decompose an element (scisors)}$ $\underline{\text{Hopf algebra}} = (V, \cdot, \triangle) \text{ such that } \triangle(a \cdot b) = \triangle(a) \cdot \triangle(b)$

Two operations on permutations:

 $\underline{\mathsf{shuffle}} \ 12 \amalg 231 = \{12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312\}$ convol. $12 \star 231 = \{12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231\}$

$$\begin{array}{ll} & \underline{\mathsf{Malvenuto-Reutenauer}} & \supseteq & \underline{\mathsf{Loday-Ronco}} \\ \text{vector space} & \langle \ \mathbb{F}_{\sigma} \ | \ \sigma \ \mathsf{permutation of any size} \rangle & \langle \ \mathbb{P}_{T} \ | \ T \ \mathsf{binary tree of any size} \rangle \\ \text{product} & & \mathbb{F}_{\rho} \cdot \mathbb{F}_{\sigma} = \sum_{\tau \in \rho \amalg \sigma} \mathbb{F}_{\tau} = \sum_{\rho \setminus \sigma \leq \tau \leq \rho / \sigma} \mathbb{F}_{\tau} & & \mathbb{P}_{R} \cdot \mathbb{P}_{S} = \sum_{R \setminus S \leq \tau \leq R / S} \mathbb{P}_{T} \\ \text{coproduct} & & \Delta(\mathbb{F}_{\tau}) = \sum_{\tau \in \rho \star \sigma} \mathbb{F}_{\rho} \otimes \mathbb{F}_{\sigma} & & \Delta(\mathbb{P}_{T}) = \sum_{\substack{R_{1} \cdots R_{k} \mid |S \ i \in [k]}} (\prod_{i \in [k]} \mathbb{P}_{R_{i}}) \otimes \mathbb{P}_{S} \end{array}$$

HOPF ALGEBRAS: MALVENUTO-REUTENAUER AND LODAY-RONCO

 $\underline{\text{product}} = \text{linear map} \cdot : V \otimes V \to V = \text{a tool to combine two elements (glue)}$ $\underline{\text{coproduct}} = \text{linear map} \ \triangle : V \to V \otimes V = \text{a tool to decompose an element (scisors)}$ $\underline{\text{Hopf algebra}} = (V, \cdot, \triangle) \text{ such that } \triangle(a \cdot b) = \triangle(a) \cdot \triangle(b)$

Two operations on permutations:

 $\underline{\mathsf{shuffle}} \ 12 \amalg 231 = \{12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312\}$ convol. $12 \star 231 = \{12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231\}$

$$\begin{array}{ll} \underline{\mathsf{Malvenuto-Reutenauer}} & \supseteq & \underline{\mathsf{Loday-Ronco}} \\ \text{vector space} & \langle \ \mathbb{F}_{\sigma} \mid \sigma \ \text{permutation of any size} \rangle & \langle \ \mathbb{P}_{T} \mid T \ \text{binary tree of any size} \rangle \\ \text{product} & \mathbb{F}_{\rho} \cdot \mathbb{F}_{\sigma} = \sum_{\tau \in \rho \amalg \sigma} \mathbb{F}_{\tau} = \sum_{\rho \setminus \sigma \leq \tau \leq \rho/\sigma} \mathbb{F}_{\tau} & \mathbb{P}_{R} \cdot \mathbb{P}_{S} = \sum_{R \setminus S \leq \tau \leq R/S} \mathbb{P}_{T} \\ \text{coproduct} & \Delta(\mathbb{F}_{\tau}) = \sum_{\tau \in \rho \star \sigma} \mathbb{F}_{\rho} \otimes \mathbb{F}_{\sigma} & \Delta(\mathbb{P}_{T}) = \sum_{\substack{R_{1} \cdots R_{k} \mid |S \ i \in [k]}} (\prod_{i \in [k]} \mathbb{P}_{R_{i}}) \otimes \mathbb{P}_{S} \end{array}$$

<u>Hopf subalgebra</u> = define $\mathbb{P}_T = \sum \mathbb{F}_{\tau}$ over all permutations τ in the BST fiber of T

A WALK THROUGH THE MANUSCRIPT

PART I. LATTICE CONGRUENCES, POLYTOPES AND HOPF ALGEBRAS

Objective: Explore further the interactions				
	combinatorics	geometry	algebra	
permutations	weak order	permutahedron $\mathbb{P}erm(n)$	MR Hopf algebra	
binary trees	Tamari lattice	associahedron $Asso(n)$	LR Hopf algebra	
binary sequences	boolean lattice	parallelepiped \mathbb{P} ara (n)	recoil Hopf algebra	

PART I. LATTICE CONGRUENCES, POLYTOPES AND HOPF ALGEBRAS

Objective: Explore further the interactions				
	combinatorics	geometry	algebra	
permutations	weak order	permutahedron $\mathbb{P}erm(n)$	MR Hopf algebra	
binary trees	Tamari lattice	associahedron $Asso(n)$	LR Hopf algebra	
binary sequences	boolean lattice	parallelepiped \mathbb{P} ara (n)	recoil Hopf algebra	

CHAP 2. BRICK POLYTOPES

CHAP 3. PERMUTREEHEDRA

permutree = directed (bottom to top) and labeled (bijectively by [n]) tree such that $\leq j$ P.-Pons ('18) 3 \square binary tree binary sequence generic permutation

CHAP 3. PERMUTREEHEDRA

permutree = directed (bottom to top) and labeled (bijectively by [n]) tree such that

P.-Pons ('18)

$\delta\text{-}\mathsf{permutree}$ insertion of 2751346

 $= \text{rewriting rules } UacVbW \equiv_{\delta} UcaVbW \text{ if } \delta_b \in \{ \bigotimes, \bigotimes \} \\ UbVacW \equiv_{\delta} UbVcaW \text{ if } \delta_b \in \{ \bigotimes, \bigotimes \} \}$

CHAP 3. PERMUTREEHEDRA

POLYWOOD

P.-Pons ('18)

CHAP 4. QUOTIENTOPES

 $\underbrace{ \text{lattice congruence}}_{x \equiv x' \text{ and } y \equiv y' \text{ implies } x \land y \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' }_{x \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' }$

 $\begin{array}{l} \underline{\text{quotient fan}} \ \mathcal{F}_{\equiv} = \text{chambers are ob-}\\ \text{tained by glueing the chambers } \mathbb{C}(\sigma)\\ \text{of the permutations } \sigma \text{ in the same}\\ \text{congruence class of } \equiv \qquad \text{Reading ('05)} \end{array}$

CHAP 4. QUOTIENTOPES

 $\frac{\text{lattice congruence}}{x \equiv x' \text{ and } y \equiv y' \text{ implies } x \wedge y \equiv x' \wedge y' \text{ and } x \vee y \equiv x' \vee y'}$

 $\begin{array}{l} \underline{\text{quotient fan}} \ \mathcal{F}_{\equiv} = \text{chambers are obtained by glueing the chambers } \mathbb{C}(\sigma) \\ \text{of the permutations } \sigma \text{ in the same} \\ \text{congruence class of } \equiv & \text{Reading ('05)} \end{array}$

 $\underline{quotientope} = polytope$ whose normal fan is \mathcal{F}_{\equiv}

QUOTIENTOPES

quotientope = polytope whose normal fan is \mathcal{F}_{\equiv}

PART II. BEYOND THE WEAK ORDER

Objective: Extend the weak order beyond the vertices of the permutahedron

PART II. BEYOND THE WEAK ORDER

Objective: Extend the weak order beyond the vertices of the permutahedron

Chap 5. Facial weak order

Krob–Latapy–Novelli–Phan–Schwer ('01)

 $\frac{\text{facial weak order}}{F \le G \iff \min F \le \min G \text{ and } \max F \le \max G}$

 $\frac{\text{facial lattice congruence}}{F \equiv G \iff \min F \equiv \min G \text{ and } \max F \equiv \max G}$

Dermenjian–Hohlweg–McConville–P. ('18, '19⁺)

PART II. BEYOND THE WEAK ORDER

Objective: Extend the weak order beyond the vertices of the permutahedron

Chap 5. Facial weak order

facial weak order = lattice on all faces of $\mathbb{P}erm(W)$ $F \leq G \iff \min F \leq \min G \text{ and } \max F \leq \max G$ facial lattice congruence = congruence on faces $F \equiv G \iff \min F \equiv \min G \text{ and } \max F \equiv \max G$

Dermenjian–Hohlweg–McConville–P. ('18, '19⁺)

Chap 6. Weak order on integer posets integer poset = poset on [n]weak order on integer posets = Chatel–P.–Pons ('19) $\lhd \leq \blacktriangleleft \iff \lhd^- \subseteq \blacktriangleleft^- \text{ and } \lhd^+ \supseteq \blacktriangleleft^+$ Hopf algebra on integer posets

weak order on Φ -posets

P.–Pons ('20)

 $\frac{\text{cluster complex}}{\text{from an iterative process of mutations}}$

finite type classification by Weyl groups

 \underline{g} -vector fan = fan associated to an initial cluster seed, realizing the cluster complex

Fomin–Zelevinsky ('02, '03, '05, '07)

Objective: Construct polytopal realizations of g-vector fans of finite type cluster alg.

 $\frac{\text{cluster complex}}{\text{from an iterative process of mutations}}$ $\frac{\text{finite type classification}}{g\text{-vector fan}} = \text{fan associated to an initial cluster}$ $\frac{g\text{-vector fan}}{\text{seed, realizing the cluster complex}}$

Fomin–Zelevinsky ('02, '03, '05, '07)

Objective: Construct polytopal realizations of g-vector fans of finite type cluster alg.

Chap 7. Polytopal realizations of finite type g-vector fans

<u>universal associahedron</u> = polytope whose normal fan contains a copy of each g-vector fan Hohlweg-P.-Stella ('18)

<u>type cone</u> = space of all polytopal realizations Padrol-Palu-P.-Plamondon ('19⁺)

 $\frac{\text{cluster complex}}{\text{from an iterative process of mutations}} = \text{simplicial complex constructed}$ $\frac{\text{finite type classification}}{\text{g-vector fan}} = \text{fan associated to an initial cluster}$ $\frac{g - \text{vector fan}}{\text{seed, realizing the cluster complex}}$

Fomin–Zelevinsky ('02, '03, '05, '07)

Objective: Construct polytopal realizations of g-vector fans of finite type cluster alg.

Chap 7. Polytopal realizations of finite type g-vector fans

<u>universal associahedron</u> = polytope whose normal fan contains a copy of each g-vector fan Hohlweg-P.-Stella ('18)

<u>type cone</u> = space of all polytopal realizations Padrol-Palu-P.-Plamondon ('19⁺)

 $\frac{\text{cluster complex}}{\text{from an iterative process of mutations}} = \text{simplicial complex constructed}$ $\frac{\text{finite type classification}}{\text{g-vector fan}} = \text{fan associated to an initial cluster}$ $\frac{g - \text{vector fan}}{\text{seed, realizing the cluster complex}}$

Fomin–Zelevinsky ('02, '03, '05, '07)

Objective: Construct polytopal realizations of g-vector fans of finite type cluster alg.

Chap 7. Polytopal realizations of finite type g-vector fans

 $\underline{universal associahedron} = polytope whose normal fan contains a copy of each g-vector fan Hohlweg-P.-Stella ('18)$

<u>type cone</u> = space of all polytopal realizations Padrol-Palu-P.-Plamondon ('19⁺)

Chap 8. Brick polytopes of subword complexes

 $\frac{\text{subword complex}}{\text{brick polytope}} = \text{generalization of pipe dreams and sorting networks to Coxeter groups}$ $\frac{\text{brick polytope}}{\text{polytope realizing only acyclic facets}} \qquad P.-Stump ('15a, '15b)$

Two recent generalizations of the associahedron:

Objective: • Explain the connections between non-kissing and non-crossing

Objective: • Explain the connections between non-kissing and non-crossing

Objective: • Explain the connections between non-kissing and non-crossing

Objective: • Explain the connections between non-kissing and non-crossing

Today we will focus on page...

Today we will focus on page...

FOCUS ON A RANDOM PAGE

Today we will focus on page...

Section 4.2 - Quotientopes

Figure 4.4: Permutahedron (left), associahedron (middle) and cube (right) as quotientopes.

Theorem 4.8. For any lattice congruence \equiv of the weak order on \mathfrak{S}_n , and any forcing dominant function $f : \mathcal{A}_n \to \mathbb{R}_{>0}$, the quotient fan $\mathcal{F}(\equiv)$ is the normal fan of the polytope

$$\mathbb{QT}^{f}(\equiv) := \left\{ \boldsymbol{x} \in \mathbb{R}^{n} \mid \langle \boldsymbol{r}(R) \mid \boldsymbol{x} \rangle \leq h^{f}_{\equiv}(R) \text{ for all } \emptyset \neq R \subsetneq [n] \right\}.$$

In particular, when oriented in the direction $\boldsymbol{\omega} := (n, \dots, 1) - (1, \dots, n) = \sum_{i \in [n]} (n + 1 - 2i) e_i$, the graph of $\mathbb{QT}^{f}(\equiv)$ is the Hasse diagram of the quotient of the weak order by \equiv .

Remark 4.9. Note that the definition of the height function ensures that $h^f_{=}(R) < h^f_{-\prime}(R)$ and thus $\mathbb{QT}^{f}(\equiv) \subseteq \mathbb{QT}^{f}(\equiv')$ when \equiv coarsens \equiv' . See Figure 4.5.

4.2.3 Minkowski sums of associahedra or shard polytopes

We conclude with an alternative approach to quotientopes recently developed in [PPR20] to study the polytopality of quotient fans beyond the braid arrangement (see also Section A.3).

Lemma 4.10. For any lattice congruence \equiv of the weak order, the quotient fan $\mathcal{F}(\equiv)$ is the common refinement of the quotient fans $\mathcal{F}(\equiv_1), \ldots, \mathcal{F}(\equiv_p)$ of the lattice congruences whose arc ideals $\mathcal{I}_{\equiv_1}, \ldots, \mathcal{I}_{\equiv_n}$ are the principal upper ideals of the forcing order generated by the minimal elements of the arc ideal $\mathcal{I}_{=}$ of \equiv .

Lemma 4.11. An arc ideal is principal if and only if it corresponds to a Cambrian congruence (possibly of low dimension).

Corollary 4.12. For any lattice congruence \equiv of the weak order, the quotient fan $\mathcal{F}_{=}$ is the normal fan of a Minkowski sum of associahedra.

In fact, this idea can even been pushed further to obtain realizations of all quotientopes (including associahedra) as Minkowski sums of elementary summands, defined as follows.

Definition 4.13. For an arc $\alpha = (a, b, n, S)$, we define

- an α -alternating matching as a (possibly empty) sequence $M = \{a_1, b_1, \dots, a_k, b_k\}$ where $a \leq a_1 < b_1 < \ldots < a_k < b_k \leq b \text{ and } a_i \in S \cup \{a\} \text{ while } b_i \notin S \text{ for all } i \in [k].$ • the characteristic vector of this α -alternating matching as $\chi(M) = \sum_{i \in [k]} e_{a_i} - e_{b_i}$,
 • the shard polytope $\mathbb{SP}(\alpha)$ as the convex hull of the characteristic vectors of all α -alternating
- matchings.

Proposition 4.14. For any arc α , the union of the walls of the normal fan of the shard polytope $\mathbb{SP}(\alpha)$ contains the shard $\Sigma(\alpha)$ and is contained in the union of the shards $\Sigma(\beta)$ for the arcs β forced by α .

Corollary 4.15. For any lattice congruence \equiv of the weak order, the quotient fan \mathcal{F}_{\equiv} is the normal fan of the Minkowski sum of the shard polytopes $\mathbb{SP}(\alpha)$ over all $\alpha \in \mathcal{I}_{=}$.

Example 4.16. For the arc $\alpha = (a, b, n,]a, b[$), the α -alternating matchings are given by \emptyset and $\{i, b\}$ for $a \leq i < b$, so that the corresponding shard polytope $\mathbb{SP}(\alpha)$ is the translation of the standard simplex $\triangle_{[a,b]}$ by the vector $-e_b$. We obtain thus the classical realization of Loday's associahedron as the Minkowski sum of all faces of the standard simplex corresponding to the intervals of [n].

47

SHARD POLYTOPES AND QUOTIENTOPES

QUOTIENT FAN

 $\label{eq:lattice congruence} \frac{|\text{attice congruence}|}{x \equiv x' \text{ and } y \equiv y' \text{ implies } x \wedge y \equiv x' \wedge y' \text{ and } x \vee y \equiv x' \vee y'}$

 $\begin{array}{ll} \underline{\text{quotient fan}} \ \mathcal{F}_{\equiv} = \text{chambers are ob-}\\ \text{tained by glueing the chambers } \mathbb{C}(\sigma)\\ \text{of the permutations } \sigma \text{ in the same}\\ \text{congruence class of } \equiv & \text{Reading ('05)} \end{array}$

QUOTIENT FAN

 $\label{eq:lattice congruence} \frac{|\text{attice congruence}|}{x \equiv x' \text{ and } y \equiv y' \text{ implies } x \wedge y \equiv x' \wedge y' \text{ and } x \vee y \equiv x' \vee y'}$

 $\begin{array}{ll} \underline{\text{quotient fan}} \ \mathcal{F}_{\equiv} = \text{chambers are ob-}\\ \text{tained by glueing the chambers } \mathbb{C}(\sigma)\\ \text{of the permutations } \sigma \text{ in the same}\\ \text{congruence class of } \equiv & \text{Reading ('05)} \end{array}$

 $oldsymbol{W}_{\equiv}=$ walls of the quotient fan \mathcal{F}_{\equiv} Describe the possible sets of walls $oldsymbol{W}_{\equiv}$

QUOTIENT FAN

 $\underbrace{ \text{lattice congruence}}_{x \equiv x' \text{ and } y \equiv y' \text{ implies } x \land y \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' }_{x \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' }$

 $\begin{array}{ll} \underline{\text{quotient fan}} \ \mathcal{F}_{\equiv} = \text{chambers are obtained by glueing the chambers } \mathbb{C}(\sigma) \\ \text{of the permutations } \sigma \text{ in the same} \\ \text{congruence class of } \equiv & \text{Reading ('05)} \end{array}$

 $oldsymbol{W}_{\equiv}=$ walls of the quotient fan \mathcal{F}_{\equiv} Describe the possible sets of walls $oldsymbol{W}_{\equiv}$

ARCS AND SHARDS

ARCS AND SHARDS

ARCS AND SHARDS

Reading ('05)

The set of walls W_{\equiv} of the quotient fan \mathcal{F}_{\equiv} is a union of shards Σ_{\equiv}

FORCING

FORCING

SHARD IDEALS

SHARD IDEALS

QUOTIENTOPES

QUOTIENTOPES

INTERSECTIONS OF CONGRUENCES

If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_{\equiv} is the common refinement of the quotient fans $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$

INTERSECTIONS OF CONGRUENCES

If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_{\equiv} is the common refinement of the quotient fans $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$

MINKOWSKI SUMS OF QUOTIENTOPES

If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_{\equiv} is the common refinement of the quotient fans $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$, and a Minkowski sum of quotientopes for $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$ is a quotientope for \mathcal{F}_{\equiv}

MINKOWSKI SUMS OF ASSOCIAHEDRA

If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_{\equiv} is the common refinement of the quotient fans $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$, and a Minkowski sum of quotientopes for $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$ is a quotientope for \mathcal{F}_{\equiv}

Principal arc ideals are Cambrian congruences

MINKOWSKI SUMS OF ASSOCIAHEDRA

SHARD POLYTOPES

for a shard $\Sigma = \Sigma(a, b, A, B)$, define

- $\underline{\Sigma$ -matching = sequence $a \le a_1 < b_1 < \dots < a_k < b_k \le b$ where $\begin{cases} a_i \in \{a\} \cup A \\ b_i \in B \cup \{b\} \end{cases}$
- characteristic vector $\chi(M) = \sum_{i \in [k]} e_{a_i} e_{b_i}$

exm: for an up shard $(a, b,]a, b[, \varnothing)$, we get the standard simplex $\triangle_{[a,b]} - e_b$

SHARD POLYTOPES

shard polytope $\mathbb{SP}(\Sigma) = \operatorname{conv} \{ \chi(M) \mid M \Sigma \operatorname{-matching} \}$

Padrol-P.-Ritter (20⁺)

The union of the walls of the normal fan of the shard polytope $\mathbb{SP}(\Sigma)$

- contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

SHARD POLYTOPES

shard polytope $\mathbb{SP}(\Sigma) = \operatorname{conv} \{ \chi(M) \mid M \Sigma \operatorname{-matching} \}$

Padrol-P.-Ritter (20⁺)

The union of the walls of the normal fan of the shard polytope $\mathbb{SP}(\Sigma)$

- contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

For any lattice congruence \equiv , the quotient fan \mathcal{F}_{\equiv} is the normal fan of the Minkowski sum of the shard polytopes $\mathbb{SP}(\Sigma)$ for $\Sigma \in \Sigma_{\equiv}$ Padrol-P.-Ritter (20⁺)

SHARD POLYTOPES

shard polytope $\mathbb{SP}(\Sigma) = \operatorname{conv} \{ \chi(M) \mid M \Sigma \operatorname{-matching} \}$

Padrol-P.-Ritter (20⁺)

The union of the walls of the normal fan of the shard polytope $\mathbb{SP}(\Sigma)$

- contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

For any lattice congruence \equiv , the quotient fan \mathcal{F}_{\equiv} is the normal fan of the Minkowski sum of the shard polytopes $\mathbb{SP}(\Sigma)$ for $\Sigma \in \Sigma_{\equiv}$ Padrol-P.-Ritter (20⁺)

SHARD POLYTOPES AND TYPE CONES

CHOOSING RIGHT-HAND-SIDES

CHOOSING RIGHT-HAND-SIDES

CHOOSING RIGHT-HAND-SIDES

When is \mathcal{F} the normal fan of \mathbb{P}_h ?

 $\mathcal{F} = \text{complete simplicial fan in } \mathbb{R}^n \text{ with } N \text{ rays}$ $\mathbf{G} = (N \times n)\text{-matrix whose rows are representatives of the rays of } \mathcal{F}$ for a height vector $\mathbf{h} \in \mathbb{R}^N_{>0}$, consider the polytope $\mathbb{P}_{\mathbf{h}} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{G}\mathbf{x} \leq \mathbf{h}\}$

wall-crossing inequality for a wall $\mathbf{R} = \sum_{s \in \mathbf{R} \cup \{r, r'\}} \alpha_{\mathbf{R}, s} h_s > 0$ where • $\mathbf{r}, \mathbf{r'} = \text{rays}$ such that $\mathbf{R} \cup \{\mathbf{r}\}$ and $\mathbf{R} \cup \{\mathbf{r'}\}$ are chambers of \mathcal{F} • $\alpha_{\mathbf{R}, s} = \text{coeff.}$ of unique linear dependence $\sum_{s \in \mathbf{R} \cup \{r, r'\}} \alpha_{\mathbf{R}, s} s = 0$ with $\alpha_{\mathbf{R}, r} + \alpha_{\mathbf{R}, r'} = 2$

 $\mathcal{F} = \text{complete simplicial fan in } \mathbb{R}^n \text{ with } N \text{ rays}$ $\mathbf{G} = (N \times n)\text{-matrix whose rows are representatives of the rays of } \mathcal{F}$ for a height vector $\mathbf{h} \in \mathbb{R}^N_{>0}$, consider the polytope $\mathbb{P}_{\mathbf{h}} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{G}\mathbf{x} \leq \mathbf{h}\}$

wall-crossing inequality for a wall $\mathbf{R} = \sum_{s \in \mathbf{R} \cup \{r, r'\}} \alpha_{\mathbf{R}, s} h_s > 0$ where • $\mathbf{r}, \mathbf{r'} = \text{rays}$ such that $\mathbf{R} \cup \{\mathbf{r}\}$ and $\mathbf{R} \cup \{\mathbf{r'}\}$ are chambers of \mathcal{F} • $\alpha_{\mathbf{R}, s} = \text{coeff.}$ of unique linear dependence $\sum_{s \in \mathbf{R} \cup \{r, r'\}} \alpha_{\mathbf{R}, s} s = 0$ with $\alpha_{\mathbf{R}, r} + \alpha_{\mathbf{R}, r'} = 2$

 ${\mathcal F}$ is the normal fan of $\mathbb{P}_h \iff h$ satisfies all wall-crossing inequalities of ${\mathcal F}$

TYPE CONE

 $\mathcal{F} = \text{complete simplicial fan in } \mathbb{R}^n \text{ with } N \text{ rays}$ $\mathbf{G} = (N \times n) \text{-matrix whose rows are representatives of the rays of } \mathcal{F}$

for a height vector $m{h} \in \mathbb{R}^N_{>0}$, consider the polytope $\mathbb{P}_{m{h}} = \{m{x} \in \mathbb{R}^n \mid m{G} m{x} \leq m{h}\}$

$$\underline{\text{type cone}} \ \mathbb{TC}(\mathcal{F}) = \text{realization space of } \mathcal{F} \qquad \qquad \text{McMullen ('73)} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \mathcal{F} \text{ is the normal fan of } \mathbb{P}_{\boldsymbol{h}} \right\} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \boldsymbol{h} \text{ satisfies all wall-crossing inequalities of } \mathcal{F} \right\}$$

TYPE CONE

 $\mathcal{F} = \text{complete simplicial fan in } \mathbb{R}^n$ with N rays

 $G = (N \times n)$ -matrix whose rows are representatives of the rays of \mathcal{F}

for a height vector $h \in \mathbb{R}^N_{>0}$, consider the polytope $\mathbb{P}_h = \{x \in \mathbb{R}^n \mid Gx \leq h\}$

$$\underline{\text{type cone}} \ \mathbb{TC}(\mathcal{F}) = \text{realization space of } \mathcal{F} \qquad \qquad \text{McMullen ('73)} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \mathcal{F} \text{ is the normal fan of } \mathbb{P}_{\boldsymbol{h}} \right\} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \boldsymbol{h} \text{ satisfies all wall-crossing inequalities of } \mathcal{F} \right\}$$

some properties of $\mathbb{TC}(\mathcal{F})$:

- $\mathbb{TC}(\mathcal{F})$ is an open cone
- $\mathbb{TC}(\mathcal{F})$ has lineality space $G \mathbb{R}^n$ (translations preserve normal fans)
- \bullet dimension of $\mathbb{TC}(\mathcal{F})/\boldsymbol{G}\,\mathbb{R}^n=N-n$

(dilations preserve normal fans)

TYPE CONE

 $\mathcal{F}=\mathsf{complete}\;\mathsf{simplicial}\;\mathsf{fan}\;\mathsf{in}\;\mathbb{R}^n\;\mathsf{with}\;N\;\mathsf{rays}$

 $oldsymbol{G} = (N imes n)$ -matrix whose rows are representatives of the rays of $\mathcal F$

for a height vector $h \in \mathbb{R}^N_{>0}$, consider the polytope $\mathbb{P}_h = \{ x \in \mathbb{R}^n \mid Gx \leq h \}$

$$\underline{\text{type cone}} \ \mathbb{TC}(\mathcal{F}) = \text{realization space of } \mathcal{F} \qquad \qquad \text{McMullen ('73)} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \mathcal{F} \text{ is the normal fan of } \mathbb{P}_{\boldsymbol{h}} \right\} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \boldsymbol{h} \text{ satisfies all wall-crossing inequalities of } \mathcal{F} \right\}$$

some properties of $\mathbb{TC}(\mathcal{F})$:

- \bullet closure of $\mathbb{TC}(\mathcal{F})=$ polytopes whose normal fan coarsens $\mathcal{F}=$ deformation cone
- \bullet Minkowski sums \longleftrightarrow positive linear combinations

SIMPLICIAL TYPE CONE

Assume that the type cone $\mathbb{TC}(\mathcal{F})$ is simplicial $\mathbf{K} = (N-n) \times N$ -matrix whose rows are inner normal vectors of the facets of $\mathbb{TC}(\mathcal{F})$ All polytopal realizations of \mathcal{F} are affinely equivalent to

$$\mathbb{R}_{\boldsymbol{\ell}} = \left\{ \boldsymbol{z} \in \mathbb{R}^N \mid \boldsymbol{z} \ge 0 \text{ and } \boldsymbol{K} \boldsymbol{z} = \boldsymbol{\ell}
ight\}$$

for any positive vector $\boldsymbol{\ell} \in \mathbb{R}^{N-n}_{>0}$

Padrol–Palu–P.–Plamondon ('19⁺)

Fundamental exms: g-vector fans of cluster-like complexes

closed type cone of braid fan = {deformed permutahedra} = {submodular functions}

 $\begin{array}{l} \underline{deformed \ permutahedron} = \text{polytope whose normal fan coarsens the braid fan} \\ \mathbb{D}efo(\boldsymbol{z}) = \left\{ \boldsymbol{x} \in \mathbb{R}^n \quad \big| \ \langle \ \mathbb{1} \mid \boldsymbol{x} \ \rangle = z_{[n]} \ \text{and} \ \langle \ \mathbb{1}_R \mid \boldsymbol{x} \ \rangle \geq z_R \ \text{for all} \ R \subseteq [n] \right\} \\ \text{for some vector } \boldsymbol{z} \in \mathbb{R}^{2^{[n]}} \ \text{such that} \ z_R + z_S \leq z_{R \cup S} + z_{R \cap S} \ \text{and} \ z_{\varnothing} = 0 \\ \\ \mathbb{P}ostnikov ('09) \quad \mathbb{P}ostnikov-\text{Reiner-Williams ('08)} \end{array}$

closed type cone of braid fan = {deformed permutahedra} = {submodular functions}

 $\begin{array}{l} \underline{deformed \ permutahedron} = \mathsf{polytope \ whose \ normal \ fan \ coarsens \ the \ braid \ fan \\ \mathbb{D}\mathsf{efo}(\boldsymbol{z}) = \left\{ \boldsymbol{x} \in \mathbb{R}^n_{\geq 0} \ \middle| \ \langle \ \mathbbm{1} \ \middle| \ \boldsymbol{x} \ \rangle = z_{[n]} \ \mathsf{and} \ \langle \ \mathbbm{1}_R \ \middle| \ \boldsymbol{x} \ \rangle \geq z_R \ \mathsf{for \ all} \ R \in \mathcal{J} \right\} \\ \\ \mathbf{for \ some \ vector} \ \boldsymbol{z} \in \mathbb{R}^{2^{[n]}} \ \mathsf{such \ that} \ z_R + z_S \leq z_{R \cup S} + z_{R \cap S} \ \mathsf{and} \ z_{\varnothing} = z_{\{i\}} = 0, \\ \\ \mathsf{where} \ \mathcal{J} = \left\{ J \subset [n] \ \middle| \ |J| \geq 2 \right\} \\ \end{array}$

Any deformed permutahedron is a Minkowski sum and difference of shard polytopes

$$\mathbb{D}efo(\boldsymbol{z}) = \sum_{J \in \mathcal{J}} y_J \Delta_J = \sum_{I \in \mathcal{J}} s_I \, \mathbb{S}\mathbb{P}(\Sigma_I)$$

with explicit (combinatorial) exchange matrices between the parameters s, y and z

 \mathcal{H} hyperplane arrangement in \mathbb{R}^n base region B = distinguished region of $\mathbb{R}^n \smallsetminus \mathcal{H}$ inversion set of a region C = set of hyperplanes of \mathcal{H} that separate B and Cposet of regions $PR(\mathcal{H}, B)$ = regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ ordered by inclusion of inversion sets

The poset of regions $\mathsf{PR}(\mathcal{H}, B)$

Björner-Edelman-Ziegler ('90)

- is never a lattice when B is not a simplicial region
- \bullet is always a lattice when ${\cal H}$ is a simplicial arrangement

If $PR(\mathcal{H}, B)$ is a lattice, and \equiv is a congruence of $PR(\mathcal{H}, B)$, the cones obtained by glueing the regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ in the same congruence class form a complete fan \mathcal{F}_{\equiv} Reading ('05)

Is the quotient fan \mathcal{F}_{\equiv} always polytopal?

 $\underline{shard} = piece \text{ of hyperplane obtained after cutting all rank 2 subgroups}$ $\underline{shard poset} = (pre)poset of forcing relations among shards$

Reading ('03)

 $\underline{shard} = piece \text{ of hyperplane obtained after cutting all rank 2 subgroups}$ $\underline{shard poset} = (pre)poset of forcing relations among shards$

 $\underline{shard} = piece \text{ of hyperplane obtained after cutting all rank 2 subgroups}$ $\underline{shard poset} = (pre)poset of forcing relations among shards$

Reading ('03)

 \underline{shard} = piece of hyperplane obtained after cutting all rank 2 subgroups shard poset = (pre)poset of forcing relations among shards

shard polytope of a shard $\Sigma =$ polytope such that the union of the walls of its normal fan

- \bullet contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

 $\underline{shard} = piece of hyperplane obtained after cutting all rank 2 subgroups shard poset = (pre)poset of forcing relations among shards$

shard polytope of a shard $\Sigma =$ polytope such that the union of the walls of its normal fan

- \bullet contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

If any shard Σ admits a shard polytope $\mathbb{SP}(\Sigma),$ then

- for any lattice congruence \equiv of $PR(\mathcal{H}, B)$, the quotient fan \mathcal{F}_{\equiv} is the normal of the Minkowski sum of the shard polytopes $\mathbb{SP}(\Sigma)$ for Σ in the shard ideal Σ_{\equiv}
- if the arrangement \mathcal{H} is simplicial, then the shard polytopes $\mathbb{SP}(\Sigma)$ form a basis for the type cone of the fan defined by \mathcal{H} (up to translation)

Padrol-P.-Ritter (20⁺)

 \underline{shard} = piece of hyperplane obtained after cutting all rank 2 subgroups shard poset = (pre)poset of forcing relations among shards

shard polytope of a shard $\Sigma =$ polytope such that the union of the walls of its normal fan

- contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

For crystallographic arrangements, Newton polytopes of *F*-polynomials all seem to be shard polytopes, but some shards are missing...

