From permutahedra to associahedra,

 a walk through geometric and
V. PILAUD (CNRS \& École Polytechnique)

THREE PERSPECTIVES ON BST INSERTION

BINARY SEARCH TREE INSERTION

```
BSTinsert(T, x):
    if T = \varnothing then return BST(x, \varnothing, \varnothing)
    if }x<\mathrm{ T.root then return BST(T.root, BSTinsert(T.left, x), T.right)
    if x > T.root then return BST(T.root, T.left, BSTinsert(T.right, x))
```


BST insertion of 2751346:

BINARY SEARCH TREE INSERTION

BSTinsert (T, x) :
if $\mathrm{T}=\varnothing$ then return $\operatorname{BST}(\mathrm{x}, \varnothing, \varnothing)$
if $x<$ T.root then return BST(T.root, BSTinsert(T.left, x), T.right)
if $x>$ T.root then return BST(T.root, T.left, BSTinsert(T.right, $x)$)

BST insertion of 2751346:
2

Three perspectives on BST insertion:

- lattice theory: weak order and Tamari lattice
- discrete geometry: permutahedra and associahedra
- Hopf algebras: Malvenuto-Reutenauer and Loday-Ronco algebras

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$ lattice congruence $=$ equivalence relation on L compatible with meets and joins

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$ lattice congruence $=$ equivalence relation on L compatible with meets and joins

weak order $=$ permutations of \mathfrak{S}_{n} ordered by inclusion of inversion sets

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$ lattice congruence $=$ equivalence relation on L compatible with meets and joins

weak order $=$ permutations of \mathfrak{S}_{n} ordered by inclusion of inversion sets

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$ lattice congruence $=$ equivalence relation on L compatible with meets and joins

weak order $=$ permutations of \mathfrak{S}_{n} ordered by inclusion of inversion sets

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations
sylvester congruence $=$ equivalence classes are fibers of BST insertion

$$
=\text { rewriting rule } U a c V b W \equiv_{\text {sylv }} U c a V b W \text { with } a<b<c
$$

LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice $=$ partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$ lattice congruence $=$ equivalence relation on L compatible with meets and joins

weak order $=$ permutations of \mathfrak{S}_{n} ordered by inclusion of inversion sets

Tamari lattice $=$ binary trees on $[n]$ ordered by paths of right rotations
sylvester congruence $=$ equivalence classes are fibers of BST insertion

$$
=\text { rewriting rule } U a c V b W \equiv_{\text {sylv }} U c a V b W \text { with } a<b<c
$$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polyhedral cone $=$ positive span of a finite set of \mathbb{R}^{n}
$=$ intersection of finitely many linear half-spaces
fan $=$ collection of polyhedral cones closed by faces and where any two cones intersect along a face

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope $=$ convex hull of a finite set of \mathbb{R}^{n}
= bounded intersection of finitely many affine half-spaces
face $=$ intersection with a supporting hyperplane face lattice $=$ all the faces with their inclusion relations

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

braid fan $=$

$$
\mathbb{C}(\sigma)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\}
$$

$$
\mathbb{C}(T)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{i} \leq x_{j} \text { if } i \rightarrow j \text { in } T\right\}
$$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space
braid fan $=$

$$
\mathbb{C}(\sigma)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\}
$$

quotient $f a n=\mathbb{C}(T)$ obtained by glueing $\mathbb{C}(\sigma)$ for all σ in the same BST insertion fiber

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

5

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

braid fan $=$

$$
\mathbb{C}(\sigma)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\}
$$

sylvester fan $=$

$$
\mathbb{C}(T)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{i} \leq x_{j} \text { if } i \rightarrow j \text { in } T\right\}
$$

quotient fan $=\mathbb{C}(T)$ obtained by glueing $\mathbb{C}(\sigma)$ for all σ in the same BST insertion fiber

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

permutahedron $\operatorname{Perm}(n)$

$$
\begin{aligned}
& =\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\} \\
& =\mathbb{H} \cap \bigcap_{\varnothing \neq J \subseteq[n]} H_{J}
\end{aligned}
$$

$$
=\operatorname{conv}\left\{[\ell(T, i) \cdot r(T, i)]_{i \in[n]} \mid T \text { binary tree }\right\}
$$

$$
=\mathbb{H} \cap \bigcap_{1 \leq i<j \leq n} H_{[i, j]}
$$

where $\mathbb{H}_{J}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \left\lvert\, \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2}\right.\right\}$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

permutahedron $\operatorname{Perm}(n)$

$$
\begin{aligned}
& =\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\} \\
& =\mathbb{H} \cap \bigcap_{\not \subset \neq J \subseteq[n]} H_{J}
\end{aligned}
$$

$$
=\operatorname{conv}\left\{[\ell(T, i) \cdot r(T, i)]_{i \in[n]} \mid T \text { binary tree }\right\}
$$

$$
=\mathbb{H} \cap \bigcap_{1 \leq i<j \leq n} \mathbb{H}_{[i, j]}
$$

where $\mathbb{H}_{J}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \left\lvert\, \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2}\right.\right\}$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

permutahedron $\operatorname{Perm}(n)$

$$
\begin{aligned}
& =\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\} \\
& =\mathbb{H} \cap \bigcap_{\varnothing \neq J \subseteq \subseteq[n]} H_{J}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{conv}\left\{[\ell(T, i) \cdot r(T, i)]_{i \in[n]} \mid T \text { binary tree }\right\} \\
& =\mathbb{H} \cap \bigcap_{1 \leq i<j \leq n} \mathbb{H}_{[i, j]} \begin{array}{r}
\text { Stasheff ('63) } \\
\left.\begin{array}{r}
\text { Shnider-Sternberg ('93) } \\
\text { Loday ('04) }
\end{array}\right)
\end{array}
\end{aligned}
$$

where $\mathbb{H}_{J}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \sum_{j \in J} x_{j} \geq\left({ }_{2}^{(J \mid+1}\right)\right\}$

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan $=$ collection of polyhedral cones closed by faces and intersecting along faces polytope $=$ convex hull of a finite set $=$ intersection of finitely many affine half-space

permutahedron $\operatorname{Perm}(n)$
\Longrightarrow weak order on permutations

\Longrightarrow Tamari lattice on binary trees

Hasse diagram of	weak order Tamari lattice	graph of	permutahedron oriented associahedron	$12 \ldots n \rightarrow n \ldots 21$ left \rightarrow right comb

HOPF ALGEBRAS: MALVENUTO-REUTENAUER AND LODAY-RONCO

product $=$ linear map $\cdot: V \otimes V \rightarrow V=$ a tool to combine two elements (glue) coproduct $=$ linear map $\triangle: V \rightarrow V \otimes V=$ a tool to decompose an element (scisors) $\underline{\text { Hopf algebra }}=(V, \cdot, \triangle)$ such that $\triangle(a \cdot b)=\triangle(a) \cdot \triangle(b)$

Two operations on permutations:
shuffle 12 Ш $231=\{12453,14253,14523,14532,41253,41523,41532,45123,45132,45312\}$ convol. $12 \star 231=\{12453,13452,14352,15342,23451,24351,25341,34251,35241,45231\}$

$\rho \backslash \sigma$

ρ / σ

$\rho \bar{\amalg} \sigma$

$\rho \star \sigma$

Weak order intervals: $\rho \bar{\amalg} \sigma=\left\{\tau \in \mathfrak{S}_{p+q} \mid \rho \backslash \sigma \leq \tau \leq \rho / \sigma\right\}$

HOPF ALGEBRAS: MALVENUTO-REUTENAUER AND LODAY-RONCO

> product $=$ linear map $\cdot V \otimes V \rightarrow V=$ a tool to combine two elements (glue) coproduct $=$ linear map $\triangle: V \rightarrow V \otimes V=$ a tool to decompose an element (scisors) Hopf algebra $=(V, \cdot, \triangle)$ such that $\triangle(a \cdot b)=\triangle(a) \cdot \triangle(b)$

Two operations on permutations:
shuffle 12 Ш $231=\{12453,14253,14523,14532,41253,41523,41532,45123,45132,45312\}$ convol. $12 \star 231=\{12453,13452,14352,15342,23451,24351,25341,34251,35241,45231\}$

Malvenuto-Reutenauer \supseteq Loday-Ronco

vector space $\left\langle\mathbb{F}_{\sigma}\right| \sigma$ permutation of any size \rangle
$\left\langle\mathbb{P}_{T}\right| T$ binary tree of any size \rangle
product

$$
\mathbb{P}_{R} \cdot \mathbb{P}_{S}=\sum_{R \backslash S \leq \tau \leq R / S} \mathbb{P}_{T}
$$

coproduct

$$
\mathbb{F}_{\rho} \cdot \mathbb{F}_{\sigma}=\sum_{\tau \in \rho \amalg \sigma} \mathbb{F}_{\tau}=\sum_{\rho \backslash \sigma \leq \tau \leq \rho / \sigma} \mathbb{F}_{\tau}
$$

$$
\triangle\left(\mathbb{F}_{\tau}\right)=\sum_{\tau \in \rho \star \sigma} \mathbb{F}_{\rho} \otimes \mathbb{F}_{\sigma}
$$

$$
\triangle\left(\mathbb{P}_{T}\right)=\sum_{\substack{R_{1} \cdots R_{k} \| S S \\ \text { cut of } T}}\left(\prod_{i \in[k]} \mathbb{P}_{R_{i}}\right) \otimes \mathbb{P}_{S}
$$

HOPF ALGEBRAS: MALVENUTO-REUTENAUER AND LODAY-RONCO

```
product = linear map \cdot: V\otimesV 
coproduct = linear map }\triangle:V->V\otimesV=\mathrm{ a tool to decompose an element (scisors)
Hopf algebra }=(V,\cdot,\triangle)\mathrm{ such that }\triangle(a\cdotb)=\triangle(a)\cdot\triangle(b
```

Two operations on permutations:
shuffle 12 Ш $231=\{12453,14253,14523,14532,41253,41523,41532,45123,45132,45312\}$
convol. $12 \star 231=\{12453,13452,14352,15342,23451,24351,25341,34251,35241,45231\}$

Malvenuto-Reutenauer \supseteq Loday-Ronco

vector space $\left\langle\mathbb{F}_{\sigma}\right| \sigma$ permutation of any size \rangle
$\left\langle\mathbb{P}_{T}\right| T$ binary tree of any size \rangle
product
coproduct

$$
\mathbb{F}_{\rho} \cdot \mathbb{F}_{\sigma}=\sum_{\tau \in \rho Ш \sigma} \mathbb{F}_{\tau}=\sum_{\rho \backslash \sigma \leq \tau \leq \rho / \sigma} \mathbb{F}_{\tau}
$$

$$
\mathbb{P}_{R} \cdot \mathbb{P}_{S}=\sum_{R \backslash S \leq \tau \leq R / S} \mathbb{P}_{T}
$$

$$
\triangle\left(\mathbb{F}_{\tau}\right)=\sum_{\tau \in \rho \star \sigma} \mathbb{F}_{\rho} \otimes \mathbb{F}_{\sigma}
$$

$$
\triangle\left(\mathbb{P}_{T}\right)=\sum_{\substack{R_{1} \cdots R_{k} \| S \\ \text { cut of } T}}\left(\prod_{i \in[k]} \mathbb{P}_{R_{i}}\right) \otimes \mathbb{P}_{S}
$$

$\underline{\text { Hopf subalgebra }}=$ define $\mathbb{P}_{T}=\sum_{\tau} \mathbb{F}_{\tau}$ over all permutations τ in the BST fiber of T

A WALK THROUGH THE MANUSCRIPT

PART I. LATTICE CONGRUENCES, POLYTOPES AND HOPF ALGEBRAS

Objective: Explore further the interactions

	combinatorics	geometry	algebra
permutations	weak order	permutahedron Perm (n)	MR Hopf algebra
binary trees	Tamari lattice	associahedron Asso (n)	LR Hopf algebra
binary sequences	boolean lattice	parallelepiped Para (n)	recoil Hopf algebra

PART I. LATTICE CONGRUENCES, POLYTOPES AND HOPF ALGEBRAS

Objective: Explore further the interactions

	combinatorics	geometry	algebra
permutations	weak order	permutahedron $\operatorname{Perm}(n)$	MR Hopf algebra
binary trees	Tamari lattice	associahedron Asso (n)	LR Hopf algebra
binary sequences	boolean lattice	parallelepiped $\operatorname{Para}(n)$	recoil Hopf algebra

Chap 2. Brick polytopes

P.-Santos ('12)
P. ('16)

Chap 3. Permutreehedra
Chap 4. Quotientopes

CHAP 2. BRICK POLYTOPES

$\underline{(k, n) \text {-twist }}=$ pipe dream that sends $i \mapsto\left\{\begin{array}{l}i \text { if } k+1 \leq i \leq k+n, \\ n+2 k+1-i \text { otherwise. }\end{array}\right.$ k-twist insertion $=$ permutations of $[n] \longrightarrow$ acyclic (k, n)-twists

k-twist cong. $=$ fibers k-twist insertion

$$
=\text { rewriting rule } U a c V_{1} b_{1} \ldots V_{k} b_{k} W \equiv_{k} U c a V_{1} b_{1} \ldots V_{k} b_{k} W \text { with } a<b_{i}<c
$$

CHAP 3. PERMUTREEHEDRA

permutree $=$ directed (bottom to top) and labeled (bijectively by $[n]$) tree such that

P.-Pons ('18)

generic

permutation

binary tree

binary sequence

CHAP 3. PERMUTREEHEDRA

permutree $=$ directed (bottom to top) and labeled (bijectively by $[n]$) tree such that

P.-Pons ('18)
δ-permutree insertion of 2751346

δ-permutree cong. $=$ fibers δ-permutree insertion

$$
\begin{aligned}
& =\text { rewriting rules } U a c V b W \equiv_{\delta} U c a V b W \text { if } \delta_{b} \in\{\otimes, \otimes\} \\
& U b V a c W \equiv_{\delta} U b V c a W \text { if } \delta_{b} \in\{\boldsymbol{\otimes}, \boldsymbol{\otimes}\}
\end{aligned}
$$

CHAP 3. PERMUTREEHEDRA

CHAP 4. QUOTIENTOPES

lattice congruence $=$ equivalence relation on L compatible with meets and joins:

$$
x \equiv x^{\prime} \text { and } y \equiv y^{\prime} \text { implies } x \wedge y \equiv x^{\prime} \wedge y^{\prime} \text { and } x \vee y \equiv x^{\prime} \vee y^{\prime}
$$

quotient fan $\mathcal{F}_{\equiv}=$ chambers are obtained by glueing the chambers $\mathbb{C}(\sigma)$ of the permutations σ in the same congruence class of \equiv Reading ('05)

CHAP 4. QUOTIENTOPES

lattice congruence $=$ equivalence relation on L compatible with meets and joins: $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ implies $x \wedge y \equiv x^{\prime} \wedge y^{\prime}$ and $x \vee y \equiv x^{\prime} \vee y^{\prime}$
quotient fan $\mathcal{F}_{\equiv}=$ chambers are obtained by glueing the chambers $\mathbb{C}(\sigma)$ of the permutations σ in the same congruence class of \equiv Reading ('05)

quotientope $=$ polytope whose normal fan is \mathcal{F}_{\equiv}
P.-Santos ('19)

Padrol-P.-Ritter ('20+)

PART II. BEYOND THE WEAK ORDER

Objective: Extend the weak order beyond the vertices of the permutahedron

PART II. BEYOND THE WEAK ORDER

Objective: Extend the weak order beyond the vertices of the permutahedron
Chap 5. Facial weak order
Krob-Latapy-Novelli-Phan-Schwer ('01)

PART II. BEYOND THE WEAK ORDER

Objective: Extend the weak order beyond the vertices of the permutahedron

Chap 5. Facial weak order
Krob-Latapy-Novelli-Phan-Schwer ('01) facial weak order $=$ lattice on all faces of $\operatorname{Perm}(W)$ $F \leq G \Longleftrightarrow \min F \leq \min G$ and $\max F \leq \max G$ facial lattice congruence $=$ congruence on faces $F \equiv G \Longleftrightarrow \min F \equiv \min G$ and $\max F \equiv \max G$ Dermenjian-Hohlweg-McConville-P. ('18, '19+)

Palacios-Ronco ('06)

Chap 6. Weak order on integer posets integer poset $=$ poset on $[n]$ weak order on integer posets $=$

$$
\triangleleft \leq \boldsymbol{\iota} \Longleftrightarrow \triangleleft^{-} \subseteq \boldsymbol{\iota}^{-} \text {and } \triangleleft^{+} \supseteq \boldsymbol{\iota}^{+}
$$

Hopf algebra on integer posets
weak order on Φ-posets

PART III. CLUSTER ALGEBRAS AND GENERALIZED ASSOCIAHEDRA

cluster complex $=$ simplicial complex constructed from an iterative process of mutations finite type classification by Weyl groups \boldsymbol{g}-vector fan $=$ fan associated to an initial cluster seed, realizing the cluster complex

```
Fomin-Zelevinsky ('02, '03, '05, '07)
```


Objective: Construct polytopal realizations of \boldsymbol{g}-vector fans of finite type cluster alg.

PART III. CLUSTER ALGEBRAS AND GENERALIZED ASSOCIAHEDRA

cluster complex $=$ simplicial complex constructed from an iterative process of mutations finite type classification by Weyl groups g-vector fan $=$ fan associated to an initial cluster seed, realizing the cluster complex

```
Fomin-Zelevinsky ('02, '03, '05, '07)
```


Objective: Construct polytopal realizations of \boldsymbol{g}-vector fans of finite type cluster alg.
Chap 7. Polytopal realizations of finite type \boldsymbol{g}-vector fans universal associahedron $=$ polytope whose normal fan contains a copy of each \boldsymbol{g}-vector fan Hohlweg-P.-Stella ('18)
type cone $=$ space of all polytopal realizations Padrol-Palu-P.-Plamondon ('19+)

PART III. CLUSTER ALGEBRAS AND GENERALIZED ASSOCIAHEDRA

cluster complex $=$ simplicial complex constructed from an iterative process of mutations finite type classification by Weyl groups g-vector fan $=$ fan associated to an initial cluster seed, realizing the cluster complex

```
Fomin-Zelevinsky ('02, '03, '05, '07)
```


Objective: Construct polytopal realizations of g-vector fans of finite type cluster alg.

Chap 7. Polytopal realizations of finite type \boldsymbol{g}-vector fans universal associahedron $=$ polytope whose normal fan contains a copy of each \boldsymbol{g}-vector fan
Hohlweg-P.-Stella ('18)
type cone $=$ space of all polytopal realizations Padrol-Palu-P.-Plamondon ('19+)

PART III. CLUSTER ALGEBRAS AND GENERALIZED ASSOCIAHEDRA

cluster complex $=$ simplicial complex constructed from an iterative process of mutations finite type classification by Weyl groups \boldsymbol{g}-vector fan $=$ fan associated to an initial cluster seed, realizing the cluster complex

```
Fomin-Zelevinsky ('02, '03, '05, '07)
```


Objective: Construct polytopal realizations of \boldsymbol{g}-vector fans of finite type cluster alg.
Chap 7. Polytopal realizations of finite type \boldsymbol{g}-vector fans universal associahedron $=$ polytope whose normal fan contains a copy of each \boldsymbol{g}-vector fan
Hohlweg-P.-Stella ('18)
type cone $=$ space of all polytopal realizations Padrol-Palu-P.-Plamondon ('19+)

Chap 8. Brick polytopes of subword complexes
 subword complex $=$ generalization of pipe dreams and sorting networks to Coxeter groups brick polytope $=$ polytope realizing only acyclic facets

PART IV. NON-KISSING AND NON-CROSSING COMPLEXES

Two recent generalizations of the associahedron:

Non-kissing complex of paths on a grid
McConville ('17) Garver-McConville ('17 ${ }^{+}$)

Non-crossing complex on accordions of a dissection
Baryshnikov ('01)
Chapoton ('16)
Garver-McConville ('18)

Objective: - Explain the connections between non-kissing and non-crossing

- Develop combinatorial and geometric properties of these complexes

PART IV. NON-KISSING AND NON-CROSSING COMPLEXES

Objective: - Explain the connections between non-kissing and non-crossing

- Develop combinatorial and geometric properties of these complexes

Chap 9. Non-kissing versus non-crossing
\longleftrightarrow orientable surface with boundary endowed with a pair of dual cellular dissections

PART IV. NON-KISSING AND NON-CROSSING COMPLEXES

Objective: • Explain the connections between non-kissing and non-crossing

- Develop combinatorial and geometric properties of these complexes

Chap 9. Non-kissing versus non-crossing
locally gentle quiver
\longleftrightarrow orientable surface with boundary endowed with a pair of dual cellular dissections

accordeon or slalom non-crossing complex

PART IV. NON-KISSING AND NON-CROSSING COMPLEXES

Objective: - Explain the connections between non-kissing and non-crossing

- Develop combinatorial and geometric properties of these complexes

Chap 9. Non-kissing versus non-crossing locally gentle quiver \longleftrightarrow orientable surface with boundary endowed with a pair of dual cellular dissections non-kissing complex \longleftrightarrow non-crossing complex

Chap 10. Non-kissing lattices and non-kissing associahedra

non-kissing lattice
$=$ quotient of a lattice of biclosed sets

non-kissing associahedron
$=$ polytopal realization of the g-vector fan

Today we will focus on page...

Today we will focus on page...

Today we will focus on page...

Figure 4.4: Permutahedron (left), associahedron (middle) and cube (right) as quotientopes.

Theorem 4.8. For any lattice congruence \equiv of the weak order on \mathfrak{S}_{n}, and any forcing dominant function $f: \mathcal{A}_{n} \rightarrow \mathbb{R}_{>0}$, the quotient fan $\mathcal{F}(\equiv)$ is the normal fan of the polytope

$$
\mathbb{Q T}^{f}(\equiv):=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid\langle\boldsymbol{r}(R) \mid \boldsymbol{x}\rangle \leq h_{\equiv}^{f}(R) \text { for all } \varnothing \neq R \subsetneq[n]\right\} .
$$

In particular, when oriented in the direction $\boldsymbol{\omega}:=(n, \ldots, 1)-(1, \ldots, n)=\sum_{i \in[n]}(n+1-2 i) \boldsymbol{e}_{i}$, the graph of $\mathbb{Q T}^{f}(\equiv)$ is the Hasse diagram of the quotient of the weak order by \equiv.
Remark 4.9. Note that the definition of the height function ensures that $h \stackrel{\equiv}{f}(R) \leq h_{\equiv^{\prime}}^{f}(R)$ and thus $\mathbb{Q T}^{f}(\equiv) \subseteq \mathbb{Q T}^{f}\left(\equiv^{\prime}\right)$ when \equiv coarsens \equiv^{\prime}. See Figure 4.5.

4.2.3 Minkowski sums of associahedra or shard polytopes

We conclude with an alternative approach to quotientopes recently developed in [PPR20] to study the polytopality of quotient fans beyond the braid arrangement (see also Section A.3).
Lemma 4.10. For any lattice congruence \equiv of the weak order, the quotient fan $\mathcal{F}(\equiv)$ is the common refinement of the quotient fans $\mathcal{F}\left(\equiv_{1}\right), \ldots, \mathcal{F}\left(\equiv_{p}\right)$ of the lattice congruences whose arc ideals $\mathcal{I}_{\equiv_{1}}$, $\mathcal{I}_{\equiv_{p}}$ are the principal upper ideals of the forcing order generated by the minimal elements of the arc ideal \mathcal{I}_{\equiv} of \equiv.
Lemma 4.11. An arc ideal is principal if and only if it corresponds to a Cambrian congruence (possibly of low dimension).

Corollary 4.12. For any lattice congruence \equiv of the weak order, the quotient fan \mathcal{F}_{\equiv} is the normal fan of a Minkowski sum of associahedra.

In fact, this idea can even been pushed further to obtain realizations of all quotientopes (including associahedra) as Minkowski sums of elementary summands, defined as follows.
Definition 4.13. For an arc $\alpha=(a, b, n, S)$, we define

- an α-alternating matching as a (possibly empty) sequence $M=\left\{a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right\}$ where
$a \leq a_{1}<b_{1}<\ldots<a_{k}<b_{k} \leq b$ and $a_{i} \in S \cup\{a\}$ while $b_{i} \notin S$ for all $i \in[k]$.
- the characteristic vector of this α-alternating matching as $\chi(M)=\sum_{i \in[k]} \boldsymbol{e}_{a_{i}}-\boldsymbol{e}_{b_{i}}$,
- the shard polytope $\operatorname{SP}(\alpha)$ as the convex hull of the characteristic vectors of all α-alternating matchings.
Proposition 4.14. For any arc α, the union of the walls of the normal fan of the shard polytope $\operatorname{SP}(\alpha)$ contains the shard $\Sigma(\alpha)$ and is contained in the union of the shards $\Sigma(\beta)$ for the arcs β forced by α.
Corollary 4.15. For any lattice congruence \equiv of the weak order, the quotient fan \mathcal{F}_{\equiv} is the normal fan of the Minkowski sum of the shard polytopes $\operatorname{SP}(\alpha)$ over all $\alpha \in \mathcal{I}_{\equiv}$.

Example 4.16. For the arc $\alpha=(a, b, n] a,, b[)$, the α-alternating matchings are given by \varnothing and $\{i, b\}$ for $a \leq i<b$, so that the corresponding shard polytope $\mathbb{S P}(\alpha)$ is the translation of the standard simplex $\triangle_{[a, b]}$ by the vector $-e_{b}$. We obtain thus the classical realization of Loday's associahedron as the Minkowski sum of all faces of the standard simplex corresponding to the intervals of $[n]$.

SHARD POLYTOPES AND QUOTIENTOPES

QUOTIENT FAN

lattice congruence $=$ equivalence relation on L compatible with meets and joins: $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ implies $x \wedge y \equiv x^{\prime} \wedge y^{\prime}$ and $x \vee y \equiv x^{\prime} \vee y^{\prime}$
quotient fan $\mathcal{F}_{\equiv}=$ chambers are obtained by glueing the chambers $\mathbb{C}(\sigma)$ of the permutations σ in the same congruence class of \equiv

```
Reading ('05)
```


QUOTIENT FAN

lattice congruence $=$ equivalence relation on L compatible with meets and joins: $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ implies $x \wedge y \equiv x^{\prime} \wedge y^{\prime}$ and $x \vee y \equiv x^{\prime} \vee y^{\prime}$

> quotient fan $\mathcal{F}_{\equiv=\text { chambers are ob- }}$ tained by glueing the chambers $\mathbb{C}(\sigma)$ of the permutations σ in the same congruence class of $\equiv \quad$ Reading ('05)
$\boldsymbol{W}_{\equiv}=$ walls of the quotient fan \mathcal{F}_{\equiv} Describe the possible sets of walls \boldsymbol{W}_{\equiv}

QUOTIENT FAN

lattice congruence $=$ equivalence relation on L compatible with meets and joins: $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ implies $x \wedge y \equiv x^{\prime} \wedge y^{\prime}$ and $x \vee y \equiv x^{\prime} \vee y^{\prime}$

> quotient fan $\mathcal{F}_{\equiv=\text { chambers are ob- }}$ tained by glueing the chambers $\mathbb{C}(\sigma)$ of the permutations σ in the same congruence class of $\equiv \quad$ Reading ('05)
$\boldsymbol{W}_{\equiv}=$ walls of the quotient fan \mathcal{F}_{\equiv}
Describe the possible sets of walls \boldsymbol{W}_{\equiv}

ARCS AND SHARDS

arc (a, b, A, B) with $1 \leq a<b \leq n$ and $A \sqcup B=] a, b[$

shard $\Sigma(a, b, A, B)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{a^{\prime}} \leq x_{a}=x_{b} \leq x_{b^{\prime}}\right.$ for all $a^{\prime} \in A$ and $\left.b^{\prime} \in B\right\}$

arc (a, b, A, B) with $1 \leq a<b \leq n$ and $A \sqcup B=] a, b[$
 shard $\Sigma(a, b, A, B)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{a^{\prime}} \leq x_{a}=x_{b} \leq x_{b^{\prime}}\right.$ for all $a^{\prime} \in A$ and $\left.b^{\prime} \in B\right\}$

ARCS AND SHARDS

arc (a, b, A, B) with $1 \leq a<b \leq n$ and $A \sqcup B=] a, b[$
 shard $\Sigma(a, b, \mathcal{A}, B)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{a^{\prime}} \leq x_{a}=x_{b} \leq x_{b^{\prime}}\right.$ for all $a^{\prime} \in A$ and $\left.b^{\prime} \in B\right\}$

The set of walls \boldsymbol{W}_{\equiv} of the quotient fan \mathcal{F}_{\equiv} is a union of shards $\boldsymbol{\Sigma}_{\equiv}$

FORCING

$\Sigma(a, b, A, B)$ forces $\Sigma(c, d, C, D)=$ $c \leq a<b \leq d$ and $A \subseteq C$ and $B \subseteq D$

FORCING

$\Sigma(a, b, A, B)$ forces $\Sigma(c, d, C, D)=$
$c \leq a<b \leq d$ and $A \subseteq C$ and $B \subseteq D$

TFAE for a set of shards Σ :

- there is a congruence \equiv with $\Sigma=\Sigma_{\equiv}$
- $\boldsymbol{\Sigma}$ is an upper ideal in forcing order

SHARD IDEALS

shard ideal $=$ upper ideal in forcing order

essential congruences:
1, 1, 4, 47, 3322, ...
OEIS A330039
all congruences
$1,2,7,60,3444, \ldots$
OEIS A091687

SHARD IDEALS

shard ideal $=$ upper ideal in forcing order

essential congruences:
1, 1, 4, 47, 3322, ...
OEIS A330039
all congruences
1, 2, 7, 60, 3444, ...
OEIS A091687

QUOTIENTOPES

quotientope $=$ polytope whose normal fan is \mathcal{F}_{\equiv}

QUOTIENTOPES

quotientope $=$ polytope whose normal fan is \mathcal{F}_{\equiv}

INTERSECTIONS OF CONGRUENCES

If the congruence \equiv is the intersection of the congruences $\equiv_{1}, \ldots, \equiv_{k}$, then the quotient fan \mathcal{F}_{\equiv} is the common refinement of the quotient fans $\mathcal{F}_{\equiv_{1}}, \ldots, \mathcal{F}_{\equiv_{k}}$

INTERSECTIONS OF CONGRUENCES

If the congruence \equiv is the intersection of the congruences $\equiv_{1}, \ldots, \equiv_{k}$, then the quotient fan \mathcal{F}_{\equiv} is the common refinement of the quotient fans $\mathcal{F}_{\equiv_{1}}, \ldots, \mathcal{F}_{\equiv_{k}}$

Minkowski sum $\mathbb{P}+\mathbb{Q}=\{\boldsymbol{p}+\boldsymbol{q} \mid \boldsymbol{p} \in \mathbb{P}, \boldsymbol{q} \in \mathbb{Q}\}$

Normal fan of $\mathbb{P}+\mathbb{Q}=$ common refinement of normal fans of \mathbb{P} and \mathbb{Q}

MINKOWSKI SUMS OF QUOTIENTOPES

If the congruence \equiv is the intersection of the congruences $\equiv_{1}, \ldots, \equiv_{k}$, then the quotient fan \mathcal{F}_{\equiv} is the common refinement of the quotient fans $\mathcal{F}_{\equiv_{1}}, \ldots, \mathcal{F}_{\equiv_{k}}$, and a Minkowski sum of quotientopes for $\mathcal{F}_{\equiv_{1}}, \ldots, \mathcal{F}_{\equiv_{k}}$ is a quotientope for \mathcal{F}_{\equiv}

MINKOWSKI SUMS OF ASSOCIAHEDRA

If the congruence \equiv is the intersection of the congruences $\equiv_{1}, \ldots, \equiv_{k}$, then the quotient fan \mathcal{F}_{\equiv} is the common refinement of the quotient fans $\mathcal{F}_{\equiv_{1}}, \ldots, \mathcal{F}_{\equiv_{k}}$, and a Minkowski sum of quotientopes for $\mathcal{F}_{\equiv_{1}}, \ldots, \mathcal{F}_{\equiv_{k}}$ is a quotientope for \mathcal{F}_{\equiv}

Principal arc ideals are Cambrian congruences

Any quotient fan is realized by a Minkowski sum of (low dim.) associahedra

MINKOWSKI SUMS OF ASSOCIAHEDRA

SHARD POLYTOPES

for a shard $\Sigma=\Sigma(a, b, A, B)$, define

- Σ-matching $=$ sequence $a \leq a_{1}<b_{1}<\cdots<a_{k}<b_{k} \leq b$ where $\left\{\begin{array}{l}a_{i} \in\{a\} \cup A \\ b_{i} \in B \cup\{b\}\end{array}\right.$
- characteristic vector $\chi(M)=\sum_{i \in[k]} \boldsymbol{e}_{a_{i}}-\boldsymbol{e}_{b_{i}}$

$$
\text { shard polytope } \mathbb{S P}(\Sigma)=\operatorname{conv}\{\chi(M) \mid M \Sigma \text {-matching }\}
$$

Padrol-P.-Ritter $\left(20^{+}\right) \quad=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid\right.$

$$
\begin{array}{cl}
x_{j}=0 & \text { for all } j \in[n] \backslash[a, b] \\
0 \leq x_{a^{\prime}} \leq 1 & \text { for all } a^{\prime} \in\{a\} \cup A \\
-1 \leq x_{b^{\prime}} \leq 0 & \text { for all } b^{\prime} \in B \cup\{b\} \\
0 \leq \sum_{i \leq j} x_{i} \leq 1 & \text { for all } j \in[n]
\end{array}
$$

ค๐

exm: for an up shard $(a, b] a,, b[, \varnothing)$, we get the standard simplex $\triangle_{[a, b]}-\boldsymbol{e}_{b}$

SHARD POLYTOPES

```
shard polytope \(\mathbb{S P}(\Sigma)=\) conv \(\{\chi(M) \mid M \Sigma\)-matching \(\}\)
```

The union of the walls of the normal fan of the shard polytope $\operatorname{SP}(\Sigma)$

- contains the shard Σ,
- is contained in the union of the shards forcing Σ

ค๑

SHARD POLYTOPES

shard polytope $\operatorname{SP}(\Sigma)=\operatorname{conv}\{\chi(M) \mid M \Sigma$-matching $\}$
The union of the walls of the normal fan of the shard polytope $\mathbb{S P}(\Sigma)$

- contains the shard Σ,
- is contained in the union of the shards forcing Σ

For any lattice congruence \equiv, the quotient fan \mathcal{F}_{\equiv} is the normal fan of the Minkowski sum of the shard polytopes $\operatorname{SP}(\Sigma)$ for $\Sigma \in \Sigma_{\equiv}$

Padrol-P.-Ritter $\left(20^{+}\right)$

SHARD POLYTOPES

```
shard polytope \(\mathbb{S P}(\Sigma)=\operatorname{conv}\{\chi(M) \mid M \Sigma\)-matching \(\}\)
```

The union of the walls of the normal fan of the shard polytope $\mathbb{S P}(\Sigma)$

- contains the shard Σ,
- is contained in the union of the shards forcing Σ

For any lattice congruence \equiv, the quotient fan \mathcal{F}_{\equiv} is the normal fan of the Minkowski sum of the shard polytopes $\operatorname{SP}(\Sigma)$ for $\Sigma \in \Sigma_{\equiv}$

Padrol-P.-Ritter (20^{+})

SHARD POLYTOPES AND TYPE CONES

CHOOSING RIGHT-HAND-SIDES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

A

B

C

CHOOSING RIGHT-HAND-SIDES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

A

B

C

CHOOSING RIGHT-HAND-SIDES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

A

B

C

When is \mathcal{F} the normal fan of \mathbb{P}_{h} ?

WALL-CROSSING INEQUALITIES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

WALL-CROSSING INEQUALITIES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

WALL-CROSSING INEQUALITIES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

wall-crossing inequality for a wall $\boldsymbol{R}=$

$$
\sum_{s \in \boldsymbol{R} \cup\left\{r, r, r^{\prime}\right\}} \alpha_{\boldsymbol{R}, s} h_{s}>0 \quad \text { where }
$$

- $\boldsymbol{r}, \boldsymbol{r}^{\prime}=$ rays such that $\boldsymbol{R} \cup\{\boldsymbol{r}\}$ and $\boldsymbol{R} \cup\left\{\boldsymbol{r}^{\prime}\right\}$ are chambers of \mathcal{F}
- $\alpha_{\boldsymbol{R}, s}=$ coeff. of unique linear dependence $\sum \alpha_{\boldsymbol{R}, s} s=0$ with $\alpha_{\boldsymbol{R}, r}+\alpha_{\boldsymbol{R}, r^{\prime}}=2$

$$
\boldsymbol{s} \in \boldsymbol{R} \cup\left\{\boldsymbol{r}, \boldsymbol{r}^{\prime}\right\}
$$

WALL-CROSSING INEQUALITIES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

$$
\text { wall-crossing inequality for a wall } \boldsymbol{R}=\sum_{s \in \boldsymbol{R} \cup\left\{\boldsymbol{r}, \boldsymbol{r}^{\prime}\right\}} \alpha_{\boldsymbol{R}, s} h_{s}>0 \quad \text { where }
$$

- $\boldsymbol{r}, \boldsymbol{r}^{\prime}=$ rays such that $\boldsymbol{R} \cup\{\boldsymbol{r}\}$ and $\boldsymbol{R} \cup\left\{\boldsymbol{r}^{\prime}\right\}$ are chambers of \mathcal{F}
- $\alpha_{\boldsymbol{R}, s}=$ coeff. of unique linear dependence $\sum \alpha_{\boldsymbol{R}, s} \boldsymbol{s}=0$ with $\alpha_{\boldsymbol{R}, \boldsymbol{r}}+\alpha_{\boldsymbol{R}, \boldsymbol{r}^{\prime}}=2$

$$
s \in \overline{\boldsymbol{R} \cup\left\{\boldsymbol{r}, \boldsymbol{r}^{\prime}\right\}}
$$

\mathcal{F} is the normal fan of $\mathbb{P}_{h} \Longleftrightarrow h$ satisfies all wall-crossing inequalities of \mathcal{F}

WALL-CROSSING INEQUALITIES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

A

B

C
wall-crossing inequalities:

$$
\begin{array}{ll}
\text { wall 1: } & h_{2}+h_{5}>0 \\
\text { wall 2: } & h_{1}+h_{3}>h_{2} \\
\text { wall 3: } & h_{2}+h_{4}>h_{3} \\
\text { wall 4: } & h_{3}+h_{5}>h_{4} \\
\text { wall 5: } & h_{1}+h_{4}>0
\end{array}
$$

TYPE CONE

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

$$
\text { type cone } \begin{aligned}
\mathbb{T} \mathbb{C}(\mathcal{F}) & =\text { realization space of } \mathcal{F} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \mathcal{F} \text { is the normal fan of } \mathbb{P}_{\boldsymbol{h}}\right\} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \boldsymbol{h} \text { satisfies all wall-crossing inequalities of } \mathcal{F}\right\}
\end{aligned}
$$

TYPE CONE

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

$$
\text { type cone } \begin{aligned}
\mathbb{T} \mathbb{C}(\mathcal{F}) & =\text { realization space of } \mathcal{F} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \mathcal{F} \text { is the normal fan of } \mathbb{P}_{\boldsymbol{h}}\right\} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \boldsymbol{h} \text { satisfies all wall-crossing inequalities of } \mathcal{F}\right\}
\end{aligned}
$$

McMullen ('73)

some properties of $\mathrm{TC}(\mathcal{F})$:

- $\mathrm{TC}(\mathcal{F})$ is an open cone
(dilations preserve normal fans)
- $\mathbb{T C}(\mathcal{F})$ has lineality space $G \mathbb{R}^{n} \quad$ (translations preserve normal fans)
- dimension of $\mathbb{T C}(\mathcal{F}) / G \mathbb{R}^{n}=N-n$

TYPE CONE

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

$$
\text { type cone } \begin{aligned}
\mathbb{T} \mathbb{C}(\mathcal{F}) & =\text { realization space of } \mathcal{F} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \mathcal{F} \text { is the normal fan of } \mathbb{P}_{\boldsymbol{h}}\right\} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \boldsymbol{h} \text { satisfies all wall-crossing inequalities of } \mathcal{F}\right\}
\end{aligned}
$$

some properties of $\mathbb{T C}(\mathcal{F})$:

- closure of $\mathrm{TC}(\mathcal{F})=$ polytopes whose normal fan coarsens $\mathcal{F}=$ deformation cone
- Minkowski sums \longleftrightarrow positive linear combinations

SIMPLICIAL TYPE CONE

Assume that the type cone $\mathrm{TC}(\mathcal{F})$ is simplicial $\boldsymbol{K}=(N-n) \times N$-matrix whose rows are inner normal vectors of the facets of $\operatorname{TC}(\mathcal{F})$ All polytopal realizations of \mathcal{F} are affinely equivalent to

$$
\mathbb{R}_{\ell}=\left\{\boldsymbol{z} \in \mathbb{R}^{N} \mid \boldsymbol{z} \geq 0 \text { and } \boldsymbol{K} \boldsymbol{z}=\boldsymbol{\ell}\right\}
$$

for any positive vector $\ell \in \mathbb{R}_{>0}^{N-n}$
Padrol-Palu-P.-Plamondon ('19+)
Fundamental exms: g-vector fans of cluster-like complexes

sylvester fans

Arkani-Hamed-Bai-He-Yan ('18)

finite type \boldsymbol{g}-vector fans wrt any seed (acyclic or not)

finite gentle fans
for brick and 2 -acyclic quivers
Palu-P.-Plamondon ('18)

SUBMODULAR FUNCTIONS

closed type cone of braid fan $=\{$ deformed permutahedra $\}=\{$ submodular functions $\}$
deformed permutahedron $=$ polytope whose normal fan coarsens the braid fan

$$
\operatorname{Defo}(\boldsymbol{z})=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid\langle\mathbb{1} \mid \boldsymbol{x}\rangle=z_{[n]} \text { and }\left\langle\mathbb{1}_{R} \mid \boldsymbol{x}\right\rangle \geq z_{R} \text { for all } R \subseteq[n]\right\}
$$

for some vector $\boldsymbol{z} \in \mathbb{R}^{\mathbb{R}^{[n]}}$ such that $z_{R}+z_{S} \leq z_{R \cup S}+z_{R \cap S}$ and $z_{\varnothing}=0$

SUBMODULAR FUNCTIONS

closed type cone of braid fan $=\{$ deformed permutahedra $\}=\{$ submodular functions $\}$
deformed permutahedron $=$ polytope whose normal fan coarsens the braid fan

$$
\operatorname{Defo}(\boldsymbol{z})=\left\{\boldsymbol{x} \in \mathbb{R}_{\geq 0}^{n} \mid\langle\mathbb{1} \mid \boldsymbol{x}\rangle=z_{[n]} \text { and }\left\langle\mathbb{1}_{R} \mid \boldsymbol{x}\right\rangle \geq z_{R} \text { for all } R \in \mathcal{J}\right\}
$$

for some vector $\boldsymbol{z} \in \mathbb{R}^{2^{[n]}}$ such that $z_{R}+z_{S} \leq z_{R \cup S}+z_{R \cap S}$ and $z_{\varnothing}=z_{\{i\}}=0$, where $\mathcal{J}=\{J \subset[n]| | J \mid \geq 2\}$

SUBMODULAR FUNCTIONS

Any deformed permutahedron is a Minkowski sum and difference of shard polytopes

$$
\operatorname{Defo}(\boldsymbol{z})=\sum_{J \in \mathcal{J}} y_{J} \triangle_{J}=\sum_{I \in \mathcal{J}} s_{I} \operatorname{SP}\left(\Sigma_{I}\right)
$$

with explicit (combinatorial) exchange matrices between the parameters s, y and z

OPEN QUESTIONS

\mathcal{H} hyperplane arrangement in \mathbb{R}^{n}
base region $B=$ distinguished region of $\mathbb{R}^{n} \backslash \mathcal{H}$
inversion set of a region $C=$ set of hyperplanes of \mathcal{H} that separate B and C poset of regions $\operatorname{PR}(\mathcal{H}, B)=$ regions of $\mathbb{R}^{n} \backslash \mathcal{H}$ ordered by inclusion of inversion sets

The poset of regions $\operatorname{PR}(\mathcal{H}, B)$
Björner-Edelman-Ziegler ('90)

- is never a lattice when B is not a simplicial region
- is always a lattice when \mathcal{H} is a simplicial arrangement

If $\operatorname{PR}(\mathcal{H}, B)$ is a lattice, and \equiv is a congruence of $\operatorname{PR}(\mathcal{H}, B)$, the cones obtained by glueing the regions of $\mathbb{R}^{n} \backslash \mathcal{H}$ in the same congruence class form a complete fan \mathcal{F}_{\equiv}

Reading ('05)

Is the quotient fan \mathcal{F}_{\equiv} always polytopal?

OPEN QUESTIONS

shard $=$ piece of hyperplane obtained after cutting all rank 2 subgroups shard poset $=($ pre $)$ poset of forcing relations among shards

OPEN QUESTIONS

shard $=$ piece of hyperplane obtained after cutting all rank 2 subgroups shard poset $=($ pre $)$ poset of forcing relations among shards

OPEN QUESTIONS

shard $=$ piece of hyperplane obtained after cutting all rank 2 subgroups shard poset $=($ pre $)$ poset of forcing relations among shards

OPEN QUESTIONS

shard $=$ piece of hyperplane obtained after cutting all rank 2 subgroups shard poset $=($ pre $)$ poset of forcing relations among shards
shard polytope of a shard $\Sigma=$ polytope such that the union of the walls of its normal fan

- contains the shard Σ,
- is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

OPEN QUESTIONS

shard $=$ piece of hyperplane obtained after cutting all rank 2 subgroups shard poset $=($ pre $)$ poset of forcing relations among shards
shard polytope of a shard $\Sigma=$ polytope such that the union of the walls of its normal fan

- contains the shard Σ,
- is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

If any shard Σ admits a shard polytope $\operatorname{SP}(\Sigma)$, then

- for any lattice congruence \equiv of $\operatorname{PR}(\mathcal{H}, B)$, the quotient fan \mathcal{F}_{\equiv} is the normal of the Minkowski sum of the shard polytopes $\operatorname{SP}(\Sigma)$ for Σ in the shard ideal Σ_{\equiv}
- if the arrangement \mathcal{H} is simplicial, then the shard polytopes $\mathbb{S P}(\Sigma)$ form a basis for the type cone of the fan defined by \mathcal{H} (up to translation)

OPEN QUESTIONS

shard $=$ piece of hyperplane obtained after cutting all rank 2 subgroups shard poset $=($ pre $)$ poset of forcing relations among shards
shard polytope of a shard $\Sigma=$ polytope such that the union of the walls of its normal fan

- contains the shard Σ,
- is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

For crystallographic arrangements, Newton polytopes of F-polynomials all seem to be shard polytopes, but some shards are missing...

