CAMBRIAN TREES

Grégory CHATEL Carsten LANGE Vincent PILAUD (Univ. MIV)

(Univ. Munich)

(CNRS & LIX)

MOTIVATION

COMBINATORICS

CAMBRIAN TREES

Cambrian tree = directed and labeled tree such that

increasing tree = directed and labeled tree such that labels increase along arcs leveled Cambrian tree = directed tree with a Cambrian labeling and an increasing labeling

CAMBRIAN TREES AND TRIANGULATIONS

Cambrian trees are dual to triangulations of polygons

signature
$$\longleftrightarrow$$
 vertices above or below $[0, 9]$ node $j \longleftrightarrow$ triangle $i < j < k$

For any signature ε , there are $C_n = \frac{1}{n+1} \binom{2n}{n} \varepsilon$ -Cambrian trees

Cambrian correspondence = signed permutation \longrightarrow leveled Cambrian tree

Cambrian correspondence = signed permutation \longrightarrow leveled Cambrian tree

Cambrian correspondence = signed permutation \longrightarrow leveled Cambrian tree

Cambrian correspondence = signed permutation \longrightarrow leveled Cambrian tree

Cambrian correspondence = signed permutation \longrightarrow leveled Cambrian tree

Cambrian correspondence = signed permutation \longmapsto leveled Cambrian tree

Cambrian correspondence = signed permutation \longmapsto leveled Cambrian tree

Cambrian correspondence = signed permutation \longmapsto leveled Cambrian tree

Cambrian correspondence = signed permutation \longmapsto leveled Cambrian tree

Exm: signed permutation $\underline{2751346}$

 ${f P}(au)={f P}$ -symbol of au= Cambrian tree produced by Cambrian correspondence ${f Q}(au)={f Q}$ -symbol of au= increasing tree produced by Cambrian correspondence (analogy to Robinson-Schensted algorithm)

Cambrian map = signed permutation \mapsto triangulation

CAMBRIAN CONGRUENCE

 ε -Cambrian congruence = transitive closure of the rewriting rules

$$UacVbW \equiv_{\varepsilon} UcaVbW$$
 if $a < b < c$ and $\varepsilon_b = -$
 $UbVacW \equiv_{\varepsilon} UbVcaW$ if $a < b < c$ and $\varepsilon_b = +$

where a, b, c are elements of [n] while U, V, W are words on [n]

PROP.
$$\tau \equiv_{\varepsilon} \tau' \iff \mathbf{P}(\tau) = \mathbf{P}(\tau')$$

CAMBRIAN CONGRUENCE

 ε -Cambrian congruence = transitive closure of the rewriting rules

$$UacVbW \equiv_{\varepsilon} UcaVbW$$
 if $a < b < c$ and $\varepsilon_b = -$
 $UbVacW \equiv_{\varepsilon} UbVcaW$ if $a < b < c$ and $\varepsilon_b = +$

where a, b, c are elements of [n] while U, V, W are words on [n]

PROP.
$$\tau \equiv_{\varepsilon} \tau' \iff \mathbf{P}(\tau) = \mathbf{P}(\tau')$$

PROP. Cambrian congruence class labeled by Cambrian tree T $\{\tau \in \mathfrak{S}^{\varepsilon} \mid \mathbf{P}(\tau) = T\} = \{\text{linear extensions of } T\}$

PROP. Cambrian classes are intervals of the weak order minimums avoid $\overline{2}31$ and $31\underline{2}$ while maximums avoid $\overline{2}13$ and $13\underline{2}$

ROTATIONS AND CAMBRIAN LATTICES

Rotation operation preserves Cambrian trees:

increasing rotation = rotation of edge $i \rightarrow j$ where i < j

PROP. The transitive closure of the increasing rotation graph is the Cambrian lattice P defines a lattice homomorphism from weak order to Cambrian lattice

Reading. Cambrian lattices. 2006

(rotation on Cambrian trees correspond to flips in triangulations)

ROTATIONS AND FLIPS

Rotation on Cambrian trees \longleftrightarrow flips on triangulations

ROTATIONS AND CAMBRIAN LATTICES

CANOPY

vertices i and i+1 are always comparable in a Cambrian tree

Canopy of a Cambrian tree $T = \text{sequence } \operatorname{\mathbf{can}}(T) \in \pm^{n-1} \text{ defined by}$

$$\mathbf{can}(T)_i = \begin{cases} - & \text{if } i \text{ above } i+1 \text{ in } T \\ + & \text{if } i \text{ below } i+1 \text{ in } T \end{cases}$$

CANOPY

vertices i and i+1 are always comparable in a Cambrian tree

Canopy of a Cambrian tree $T = \text{sequence } \operatorname{\mathbf{can}}(T) \in \pm^{n-1} \text{ defined by}$

$$\mathbf{can}(T)_i = \begin{cases} - & \text{if } i \text{ above } i+1 \text{ in } T \\ + & \text{if } i \text{ below } i+1 \text{ in } T \end{cases}$$

GEOMETRY

POLYTOPES & COMBINATORICS

polytope = convex hull of a finite set of \mathbb{R}^d

= bounded intersection of finitely many half-spaces

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations

Given a set of points, determine the face lattice of its convex hull.

Given a lattice, is there a polytope which realizes it?

Permutohedron Perm(n)

ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion

VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n+3)-gon, ordered by reverse inclusion

(Pictures by Ceballos-Santos-Ziegler)

Lee ('89), Gel'fand-Kapranov-Zelevinski ('94), Billera-Filliman-Sturmfels ('90), ..., Ceballos-Santos-Ziegler ('11) Loday ('04), Hohlweg-Lange ('07), Hohlweg-Lange-Thomas ('12), P.-Santos ('12), P.-Stump ('12+), Lange-P. ('13+)

LODAY'S ASSOCIAHEDRON

Loday's associahedron $= \operatorname{conv} \{L(T) \mid T \text{ triangulation of the } (n+3)\text{-gon}\}$ $= \mathbb{H} \, \cap \bigcap_{\substack{\delta \text{ diagonal of the } (n+3)\text{-gon}}} \mathbf{H}^{\geq}(\delta)$

$$L(T) = \left(\ell(T,j) \cdot r(T,j)\right)_{j \in [n+1]}$$

$$\mathbf{H}^{\geq}(\delta) = \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \sum_{j \in B(\delta)} x_j \ge {|B(\delta)| + 1 \choose 2} \right\}$$

LODAY'S ASSOCIAHEDRON AND PERMUTAHEDRON

ASSOCIAHEDRON AND PERMUTAHEDRON

The associahedron is obtained from the permutahedron by removing facets

HOHLWEG & LANGE'S ASSOCIAHEDRA

Can also replace Loday's (n+3)-gon by others...

... to obtain different realizations of the associahedron

HOHLWEG & LANGE'S ASSOCIAHEDRA

ASSOCIAHEDRA AND CAMBRIAN TREES

Lange-P., Using spines to revisit a construction of the associahedron ('13⁺)

Cambrian trees = labeled and oriented dual binary trees

Alternative vertex description of Hohlweg-Lange's associahedra:

$$HL(T)_j = \begin{cases} |\{\pi \text{ maximal path in } T \text{ with 2 incoming arcs at } j\}| & \text{if } j \text{ down} \\ n+2-|\{\pi \text{ maximal path in } T \text{ with 2 outgoing arcs at } j\}| & \text{if } j \text{ up} \end{cases}$$

CAMBRIAN TREES AND NORMAL CONES

Incidence cone $C(T) = cone \{e_i - e_j \mid \text{ for all } i \to j \text{ in } T\}$ Braid cone $C^{\diamond}(T) = \{\mathbf{x} \in \mathbb{H} \mid x_i \leq x_j \text{ for all } i \to j \text{ in } T\}$

THEO. The cones form complete simplicial fans:

- (i) $\{C^{\diamond}(\tau) \mid \tau \in \mathfrak{S}_n\} = \text{braid fan} = \text{normal fan of the permutahedron}$
- (ii) $\{C^{\diamond}(T) \mid T \in Camb(\varepsilon)\} = \varepsilon$ -Cambrian fan = normal fan of the ε -associahedron
- (iii) $\{C^{\diamond}(\chi) \mid \chi \in \pm^{n-1}\} = \text{boolean fan} = \text{normal fan of the parallelepiped}$

CAMBRIAN TREES AND NORMAL CONES

Incidence cone $C(T) = cone \{e_i - e_j \mid \text{ for all } i \to j \text{ in } T\}$ Braid cone $C^{\diamond}(T) = \{\mathbf{x} \in \mathbb{H} \mid x_i \leq x_j \text{ for all } i \to j \text{ in } T\}$

THEO. The cones form complete simplicial fans:

- (i) $\{C^{\diamond}(\tau) \mid \tau \in \mathfrak{S}_n\} = \text{braid fan} = \text{normal fan of the permutahedron}$
- (ii) $\{C^{\diamond}(T) \mid T \in Camb(\varepsilon)\} = \varepsilon$ -Cambrian fan = normal fan of the ε -associahedron
- (iii) $\{C^{\diamond}(\chi) \mid \chi \in \pm^{n-1}\} = \text{boolean fan} = \text{normal fan of the parallelepiped}$

CAMBRIAN TREES AND NORMAL CONES

Incidence cone $C(T) = cone \{e_i - e_j \mid \text{ for all } i \to j \text{ in } T\}$ Braid cone $C^{\diamond}(T) = \{\mathbf{x} \in \mathbb{H} \mid x_i \leq x_j \text{ for all } i \to j \text{ in } T\}$

THEO. The cones form complete simplicial fans:

- (i) $\{C^{\diamond}(\tau) \mid \tau \in \mathfrak{S}_n\} = \mathsf{braid} \ \mathsf{fan} = \mathsf{normal} \ \mathsf{fan} \ \mathsf{of} \ \mathsf{the} \ \mathsf{permutahedron}$
- (ii) $\{C^{\diamond}(T) \mid T \in Camb(\varepsilon)\} = \varepsilon$ -Cambrian fan = normal fan of the ε -associahedron
- (iii) $\{C^{\diamond}(\chi) \mid \chi \in \pm^{n-1}\} = \text{boolean fan} = \text{normal fan of the parallelepiped}$

Characterization of fibers in terms of cones:

$$T = \mathbf{P}(\tau) \iff C(T) \subseteq C(\tau) \iff C^{\diamond}(T) \supseteq C^{\diamond}(\tau),$$

$$\chi = \mathbf{can}(T) \iff C(\chi) \subseteq C(T) \iff C^{\diamond}(\chi) \supseteq C^{\diamond}(T),$$

$$\chi = \mathbf{rec}(\tau) \iff C(\chi) \subseteq C(\tau) \iff C^{\diamond}(\chi) \supseteq C^{\diamond}(\tau).$$

ALGEBRA

SHUFFLE AND CONVOLUTION

For $n, n' \in \mathbb{N}$, consider the set of perms of $\mathfrak{S}_{n+n'}$ with at most one descent, at position n:

$$\mathfrak{S}^{(n,n')} := \{ \tau \in \mathfrak{S}_{n+n'} \mid \tau(1) < \dots < \tau(n) \text{ and } \tau(n+1) < \dots < \tau(n+n') \}$$

For $\tau \in \mathfrak{S}_n$ and $\tau' \in \mathfrak{S}_{n'}$, define shifted concatenation $\tau \bar{\tau}' = [\tau(1), \ldots, \tau(n), \tau'(1) + n, \ldots, \tau'(n') + n] \in \mathfrak{S}_{n+n'}$ shifted shuffle product $\tau \, \bar{\sqcup} \, \tau' = \left\{ (\tau \bar{\tau}') \circ \pi^{-1} \; \middle| \; \pi \in \mathfrak{S}^{(n,n')} \right\} \subset \mathfrak{S}_{n+n'}$ convolution product $\tau \star \tau' = \left\{ \pi \circ (\tau \bar{\tau}') \; \middle| \; \pi \in \mathfrak{S}^{(n,n')} \right\} \subset \mathfrak{S}_{n+n'}$

Exm: $12 \coprod 231 = \{12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312\}$ $12 \star 231 = \{12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231\}$

MALVENUTO-REUTENAUER ALGEBRA

DEF. Combinatorial Hopf Algebra = combinatorial vector space \mathcal{B} endowed with

$$\mathsf{product}\,\cdot:\mathcal{B}\otimes\mathcal{B}\to\mathcal{B}$$

 $\mathsf{coproduct} \ \triangle : \mathcal{B} \to \mathcal{B} \otimes \mathcal{B}$

which are "compatible", ie.

Malvenuto-Reteunauer algebra = Hopf algebra FQSym with basis $(\mathbb{F}_{\tau})_{\tau \in \mathfrak{S}}$ and where

$$\mathbb{F}_{\tau} \cdot \mathbb{F}_{\tau'} = \sum_{\sigma \in \tau \mathrel{\bar{\coprod}} \tau'} \mathbb{F}_{\sigma} \qquad \text{and} \qquad \triangle \mathbb{F}_{\sigma} = \sum_{\sigma \in \tau \star \tau'} \mathbb{F}_{\tau} \otimes \mathbb{F}_{\tau'}$$

SIGNED VERSION

For signed permutations:

- signs are attached to values in the shuffle product
- signs are attached to positions in the convolution product

Exm: $\overline{12} \sqcup \underline{23}\overline{1} = \{\overline{12453}, \overline{14253}, \overline{14523}, \overline{14532}, \underline{41253}, \underline{41523}, \underline{41532}, \underline{41532}, \underline{45123}, \underline{45132}, \underline{45312}\},$ $\overline{12} \star \underline{231} = \{\overline{12453}, \overline{13452}, \overline{14352}, \overline{15342}, \overline{23451}, \overline{24351}, \overline{25341}, \overline{34251}, \overline{35241}, \overline{45231}\}.$

 $\mathsf{FQSym}_\pm = \mathsf{Hopf}$ algebra with basis $(\mathbb{F}_{ au})_{ au \in \mathfrak{S}_\pm}$ and where

$$\mathbb{F}_{ au} \cdot \mathbb{F}_{ au'} = \sum_{\sigma \in au \, ar{\square} \, au'} \mathbb{F}_{\sigma} \qquad ext{and} \qquad riangle \mathbb{F}_{\sigma} = \sum_{\sigma \in au \star au'} \mathbb{F}_{ au} \otimes \mathbb{F}_{ au'}$$

CAMBRIAN ALGEBRA AS SUBALGEBRA OF FQSym_±

Cambrian algebra = vector subspace Camb of $FQSym_{\pm}$ generated by

$$\mathbb{P}_{\mathrm{T}} \coloneqq \sum_{\substack{\tau \in \mathfrak{S}_{\pm} \\ \mathbf{P}(\tau) = \mathrm{T}}} \mathbb{F}_{\tau} = \sum_{\tau \in \mathcal{L}(\mathrm{T})} \mathbb{F}_{\tau},$$

for all Cambrian trees T.

THEO. Camb is a subalgebra of FQSym $_{\pm}$

(ie. the Cambrian congruence is "compatible" with the product and coproduct in FQSym $_{\pm}$)

GAME: Explain the product and coproduct directly on the Cambrian trees...

PROP. For any Cambrian trees T and T',

$$\mathbb{P}_{\mathrm{T}}\cdot\mathbb{P}_{\mathrm{T}'}=\sum_{\mathrm{S}}\mathbb{P}_{\mathrm{S}}$$

where S runs over the interval $T \nearrow T'$, $T \nwarrow T'$ in the $\varepsilon(T)\varepsilon(T')$ -Cambrian lattice

COPRODUCT IN CAMBRIAN ALGEBRA

$$\triangle \mathbb{P}_{\overline{2}\overline{1}\overline{3}} + \mathbb{F}_{\overline{2}\overline{3}\underline{1}})$$

$$= 1 \otimes (\mathbb{F}_{\overline{2}\underline{1}\overline{3}} + \mathbb{F}_{\overline{2}\overline{3}\underline{1}}) + \mathbb{F}_{\overline{1}} \otimes \mathbb{F}_{\underline{1}\overline{2}} + \mathbb{F}_{\overline{1}} \otimes \mathbb{F}_{\overline{2}\underline{1}} + \mathbb{F}_{\overline{2}\underline{1}} \otimes \mathbb{F}_{\overline{1}} + \mathbb{F}_{\overline{1}\overline{2}} \otimes \mathbb{F}_{\underline{1}} + (\mathbb{F}_{\overline{2}\underline{1}\overline{3}} + \mathbb{F}_{\overline{2}\overline{3}\underline{1}}) \otimes 1$$

$$= 1 \otimes \mathbb{P}_{\overline{1}} + \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} + \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} + \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} + \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_$$

PROP. For any Cambrian tree S,

$$\triangle \mathbb{P}_{\mathrm{S}} = \sum_{\gamma} \left(\prod_{\mathrm{T} \in B(\mathrm{S}, \gamma)} \mathbb{P}_{\mathrm{T}} \right) \otimes \left(\prod_{\mathrm{T}' \in A(\mathrm{S}, \gamma)} \mathbb{P}_{\mathrm{T}'} \right)$$

where γ runs over all cuts of S, and $A(S, \gamma)$ and $B(S, \gamma)$ denote the Cambrian forests above and below γ respectively

COPRODUCT IN CAMBRIAN ALGEBRA

$$\triangle \mathbb{P}_{\overline{2}\overline{1}\overline{3}} + \mathbb{F}_{\overline{2}\overline{3}\underline{1}})$$

$$= 1 \otimes (\mathbb{F}_{\overline{2}\underline{1}\overline{3}} + \mathbb{F}_{\overline{2}\overline{3}\underline{1}}) + \mathbb{F}_{\overline{1}} \otimes \mathbb{F}_{\underline{1}\overline{2}} + \mathbb{F}_{\overline{1}} \otimes \mathbb{F}_{\overline{2}\underline{1}} + \mathbb{F}_{\overline{2}\underline{1}} \otimes \mathbb{F}_{\overline{1}} + \mathbb{F}_{\overline{1}\overline{2}} \otimes \mathbb{F}_{\underline{1}} + (\mathbb{F}_{\overline{2}\underline{1}\overline{3}} + \mathbb{F}_{\overline{2}\overline{3}\underline{1}}) \otimes 1$$

$$= 1 \otimes \mathbb{P}_{\overline{1}} + \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} + \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} + \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_{\overline{1}} + \mathbb{P}_{\overline{1}} \otimes \mathbb{P}_$$

PROP. For any Cambrian tree S,

$$\triangle \mathbb{P}_{\mathrm{S}} = \sum_{\gamma} \left(\prod_{\mathrm{T} \in B(\mathrm{S}, \gamma)} \mathbb{P}_{\mathrm{T}} \right) \otimes \left(\prod_{\mathrm{T}' \in A(\mathrm{S}, \gamma)} \mathbb{P}_{\mathrm{T}'} \right)$$

where γ runs over all cuts of S, and $A(S, \gamma)$ and $B(S, \gamma)$ denote the Cambrian forests above and below γ respectively

DUAL CAMBRIAN ALGEBRA AS QUOTIENT OF FQSym*

 $\mathsf{FQSym}_\pm^* = \mathsf{dual}\ \mathsf{Hopf}\ \mathsf{algebra}\ \mathsf{with}\ \mathsf{basis}\ (\mathbb{G}_ au)_{ au\in\mathfrak{S}_\pm}\ \mathsf{and}\ \mathsf{where}$

$$\mathbb{G}_{ au}\cdot\mathbb{G}_{ au'}=\sum_{\sigma\in au\star au'}\mathbb{G}_{\sigma} \qquad ext{and} \qquad riangle \mathbb{G}_{\sigma}=\sum_{\sigma\in auoxdotut au'}\mathbb{G}_{ au}\otimes\mathbb{G}_{ au'}$$

PROP. The graded dual Camb* of the Cambrian algebra is isomorphic to the image of $FQSym_{\pm}^*$ under the canonical projection

$$\pi: \mathbb{C}\langle A \rangle \longrightarrow \mathbb{C}\langle A \rangle / \equiv,$$

where \equiv denotes the Cambrian congruence. The dual basis \mathbb{Q}_T of \mathbb{P}_T is expressed as $\mathbb{Q}_T = \pi(\mathbb{G}_\tau)$, where τ is any linear extension of T

PROP. For any Cambrian trees T and T',

$$\mathbb{Q}_{\mathrm{T}} \cdot \mathbb{Q}_{\mathrm{T}'} = \sum_{s} \mathbb{Q}_{\mathrm{T}s\mathrm{T}'}$$

where s runs over all shuffles of $\varepsilon(\mathrm{T})$ and $\varepsilon(\mathrm{T}')$

PROP. For any Cambrian trees T and T',

$$\mathbb{Q}_{\mathrm{T}} \cdot \mathbb{Q}_{\mathrm{T}'} = \sum_{s} \mathbb{Q}_{\mathrm{T}s\mathrm{T}'}$$

where s runs over all shuffles of $\varepsilon(\mathrm{T})$ and $\varepsilon(\mathrm{T}')$

$$\begin{array}{l} \mathbb{Q}_{\mathbf{y}} \cdot \mathbb{Q}_{\mathbf{1}} \mathbf{y} = \mathbb{G}_{\underline{1}\overline{2}} \cdot \mathbb{G}_{\overline{2}\underline{1}\overline{3}} \\ = \mathbb{G}_{\underline{1}\overline{2}4\underline{3}\overline{5}} + \mathbb{G}_{\underline{1}\overline{3}4\underline{2}\overline{5}} + \mathbb{G}_{\underline{1}\overline{4}3\underline{2}\overline{5}} + \mathbb{G}_{\underline{1}\overline{5}3\underline{2}\overline{4}} + \mathbb{G}_{\underline{2}\overline{3}4\underline{1}\overline{5}} + \mathbb{G}_{\underline{2}\overline{3}1\overline{4}} + \mathbb{G}_{\underline{3}\overline{4}2\underline{1}\overline{5}} + \mathbb{G}_{\underline{3}\overline{5}2\underline{1}\overline{4}} + \mathbb{G}_{\underline{4}\overline{5}2\underline{1}\overline{3}} \\ = \mathbb{Q}_{\mathbf{1}} \mathbf{y} + \mathbb{Q}_{\mathbf{1}}$$

PROP. For any Cambrian trees T and T',

$$\mathbb{Q}_{\mathrm{T}} \cdot \mathbb{Q}_{\mathrm{T}'} = \sum_{s} \mathbb{Q}_{\mathrm{T}s\mathrm{T}'}$$

where s runs over all shuffles of $\varepsilon(T)$ and $\varepsilon(T')$

PROP. For any Cambrian trees T and T',

$$\mathbb{Q}_{\mathrm{T}} \cdot \mathbb{Q}_{\mathrm{T}'} = \sum_{s} \mathbb{Q}_{\mathrm{T}s\mathrm{T}'}$$

where s runs over all shuffles of $\varepsilon(\mathrm{T})$ and $\varepsilon(\mathrm{T}')$

PROP. For any Cambrian trees T and T',

$$\mathbb{Q}_{\mathrm{T}} \cdot \mathbb{Q}_{\mathrm{T}'} = \sum_{s} \mathbb{Q}_{\mathrm{T}s\mathrm{T}'}$$

where s runs over all shuffles of $\varepsilon(T)$ and $\varepsilon(T')$

$$\Delta \mathbb{Q}_{\overline{2}\overline{1}\overline{3}} = 1 \otimes \mathbb{G}_{\overline{2}\underline{1}\overline{3}} + \mathbb{G}_{\underline{1}} \otimes \mathbb{G}_{\overline{1}\overline{2}} + \mathbb{G}_{\overline{2}\underline{1}} \otimes \mathbb{G}_{\overline{1}} + \mathbb{G}_{\overline{2}\underline{1}\overline{3}} \otimes 1$$

$$= 1 \otimes \mathbb{Q}_{\overline{2}} + \mathbb{Q}_{\overline{2}} \otimes \mathbb{Q}_{\overline{1}} + \mathbb{Q}_{\overline{2}} \otimes \mathbb{Q}_{\overline{1}} + \mathbb{Q}_{\overline{2}} \otimes 1.$$

PROP. For any Cambrian tree S,

$$\triangle \mathbb{Q}_{\mathcal{S}} = \sum_{\gamma} \mathbb{Q}_{L(\mathcal{S},\gamma)} \otimes \mathbb{Q}_{R(\mathcal{S},\gamma)}$$

where γ runs over all gaps between vertices of S, and $L(S,\gamma)$ and $R(S,\gamma)$ denote the Cambrian trees left and right to γ respectively

$$\triangle \mathbb{Q}_{\underline{1}\underline{3}} = \triangle \mathbb{G}_{\underline{2}\underline{1}\overline{3}}$$

$$= 1 \otimes \mathbb{G}_{\underline{2}\underline{1}\overline{3}} + \mathbb{G}_{\underline{1}} \otimes \mathbb{G}_{\overline{1}\underline{2}} + \mathbb{G}_{\underline{2}\underline{1}} \otimes \mathbb{G}_{\overline{1}} + \mathbb{G}_{\underline{2}\underline{1}\overline{3}} \otimes 1$$

$$= 1 \otimes \mathbb{Q}_{\underline{1}\underline{3}} + \mathbb{Q}_{\underline{1}} \otimes \mathbb{Q}_{\underline{1}} + \mathbb{Q}_{\underline{1}} \otimes \mathbb{Q}_{\underline{1}} + \mathbb{Q}_{\underline{1}} \otimes \mathbb{Q}_{\underline{1}} + \mathbb{Q}_{\underline{1}} \otimes 1.$$

PROP. For any Cambrian tree S,

$$\triangle \mathbb{Q}_{S} = \sum_{\gamma} \mathbb{Q}_{L(S,\gamma)} \otimes \mathbb{Q}_{R(S,\gamma)}$$

where γ runs over all gaps between vertices of S, and $L(S,\gamma)$ and $R(S,\gamma)$ denote the Cambrian trees left and right to γ respectively

$$\triangle \mathbb{Q}_{\underline{1}\underline{3}} = \triangle \mathbb{G}_{\underline{2}\underline{1}\overline{3}}$$

$$= 1 \otimes \mathbb{G}_{\underline{2}\underline{1}\overline{3}} + \mathbb{G}_{\underline{1}} \otimes \mathbb{G}_{\overline{1}\underline{2}} + \mathbb{G}_{\underline{2}\underline{1}} \otimes \mathbb{G}_{\overline{1}} + \mathbb{G}_{\underline{2}\underline{1}\overline{3}} \otimes 1$$

$$= 1 \otimes \mathbb{Q}_{\underline{1}\underline{3}} + \mathbb{Q}_{\underline{1}} \otimes \mathbb{Q}_{\underline{1}} + \mathbb{Q}_{\underline{1}} \otimes \mathbb{Q}_{\underline{1}} + \mathbb{Q}_{\underline{1}} \otimes \mathbb{Q}_{\underline{1}} + \mathbb{Q}_{\underline{1}} \otimes 1.$$

PROP. For any Cambrian tree S,

$$\triangle \mathbb{Q}_{S} = \sum_{\gamma} \mathbb{Q}_{L(S,\gamma)} \otimes \mathbb{Q}_{R(S,\gamma)}$$

where γ runs over all gaps between vertices of S, and $L(S,\gamma)$ and $R(S,\gamma)$ denote the Cambrian trees left and right to γ respectively

MULTIPLICATIVE BASES

Define

$$\mathbb{E}^{ ext{T}} \coloneqq \sum_{ ext{T} \leq ext{T}'} \mathbb{P}_{ ext{T}}$$

$$\mathbb{E}^{\mathrm{T}} \coloneqq \sum_{\mathrm{T} < \mathrm{T}'} \mathbb{P}_{\mathrm{T}'} \qquad \text{and} \qquad \mathbb{H}^{\mathrm{T}} \coloneqq \sum_{\mathrm{T}' < \mathrm{T}} \mathbb{P}_{\mathrm{T}'}.$$

PROP. $(\mathbb{E}^T)_{T\in Camb}$ and $(\mathbb{H}^T)_{T\in Camb}$ are multiplicative bases of Camb, ie.

$$\mathbb{E}^{\mathrm{T}}\cdot\mathbb{E}^{\mathrm{T}'}=\mathbb{E}^{\mathrm{T}^{ackslashar{\mathrm{T}}'}} \qquad \mathsf{and} \qquad \mathbb{H}^{\mathrm{T}}\cdot\mathbb{H}^{\mathrm{T}'}=\mathbb{H}^{\mathrm{T}^{ackslashar{\mathrm{T}}'}}$$

$$\mathbb{H}^T \cdot \mathbb{H}^{T'} = \mathbb{H}^{T \nwarrow_{\bar{T}'}}$$

INDECOMPOSABLE ELEMENTS

PROP. The following properties are equivalent for a Cambrian tree S:

- ullet \mathbb{E}^S can be decomposed into a product $\mathbb{E}^S = \mathbb{E}^T \cdot \mathbb{E}^{T'}$ for non-empty T, T'
- ullet $([k] \parallel [n] \smallsetminus [k])$ is an edge cut of S for some $k \in [n]$
- at least one linear extension τ of S is decomposable, ie. $\tau([k]) = [k]$ for some $k \in [n]$

The tree S is then called \mathbb{E} -decomposable

INDECOMPOSABLE ELEMENTS

PROP. For any signature $\varepsilon \in \pm^n$, the set of \mathbb{E} -indecomposable ε -Cambrian trees forms a principal upper ideal of the ε -Cambrian lattice

PROP. For any signature $\varepsilon \in \pm^n$, there are C_{n-1} \mathbb{E} -indecomposable ε -Cambrian trees. Therefore, there are 2^nC_{n-1} \mathbb{E} -indecomposable Cambrian trees on n vertices

PERSPECTIVES

PERSPECTIVES

Extend combinatorial, geometric and algebraic properties of binary trees to further families of trees...

THANK YOU