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COMBINATORICS




CAMBRIAN TREES

Cambrian tree = directed and labeled tree such that

i <3 >3
J D)
A7
<J =] ?

increasing tree = directed and labeled tree such that labels increase along arcs
leveled Cambrian tree = directed tree with a Cambrian labeling and an increasing labeling
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CAMBRIAN TREES AND TRIANGULATIONS

Cambrian trees are dual to triangulations of polygons

signature <— vertices above or below |0, 9]
node j <+— triangle 1 < j < k

%(2;;) e-Cambrian trees

For any signature ¢, there are C), = —



CAMBRIAN CORRESPONDENCE

Cambrian correspondence = signed permutation —— leveled Cambrian tree

Exm: signed permutation 2751346
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CAMBRIAN CORRESPONDENCE

Cambrian correspondence = signed permutation —— leveled Cambrian tree

Exm: signed permutation 2751346
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CAMBRIAN CORRESPONDENCE

Cambrian correspondence = signed permutation —— leveled Cambrian tree

Exm: signed permutation 2751346
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CAMBRIAN CORRESPONDENCE

Cambrian correspondence = signed permutation —— leveled Cambrian tree

Exm: signed permutation 2751346
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CAMBRIAN CORRESPONDENCE

Cambrian correspondence = signed permutation —— leveled Cambrian tree

Exm: signed permutation 2751346

\ 3 \fi/ 7
\ | &
W

— N W s OO

P~
5

P(7) = P-symbol of 7 = Cambrian tree produced by Cambrian correspondence
Q(7) = Q-symbol of 7 = increasing tree produced by Cambrian correspondence

(analogy to Robinson-Schensted algorithm)



CAMBRIAN CORRESPONDENCE AND TRIANGULATIONS

Cambrian map = signed permutation — triangulation

Exm: signed permutation 43816257
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CAMBRIAN CORRESPONDENCE AND TRIANGULATIONS

Cambrian map = signed permutation — triangulation

Exm: signed permutation 43816257

Reading. Cambrian lattices 2006



CAMBRIAN CONGRUENCE

e-Cambrian congruence = transitive closure of the rewriting rules

UacVOW =. UcaVOW ifa<b<cand g, = —
UbVacW =. UbVecaW ifa<b<candeg,=-+

where a, b, ¢ are elements of [n| while U, V, W are words on [n]

PROP. 7 =. 7" «<— P(71) =P(7)
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CAMBRIAN CONGRUENCE

e-Cambrian congruence = transitive closure of the rewriting rules

UacVOW =, UcaVOW ifa<b<candg,=—
UbVacW =. UbVecaW ifa<b<candeg,=-+

where a, b, ¢ are elements of [n] while U, V, W are words on [n]

PROP. 7 =. 7' <= P(1) =P(7)

PROP. Cambrian congruence class labeled by Cambrian tree T
{r € & | P(7) = T} = {linear extensions of T}

PROP. Cambrian classes are intervals of the weak order
minimums avoid 231 and 312 while maximums avoid 213 and 132

Reading. Cambrian lattices. 2006



ROTATIONS AND CAMBRIAN LATTICES

Rotation operation preserves Cambrian trees:

A R

rotation
of i — j

N

increasing rotation = rotation of edge i — j where i < j

PROP. The transitive closure of the increasing rotation graph is the Cambrian lattice
P defines a lattice homomorphism from weak order to Cambrian lattice

Reading. Cambrian lattices. 2006

(rotation on Cambrian trees correspond to flips in triangulations)



ROTATIONS AND FLIPS

Rotation on Cambrian trees «+— flips on triangulations




ROTATIONS AND CAMBRIAN LATTICES
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CANOPY

vertices ¢ and ¢ + 1 are always comparable in a Cambrian tree

Canopy of a Cambrian tree T = sequence can(T) € £"! defined by

— ifiabovei+1inT
+ ifibelowi+1inT

PROP. P, can, and rec define lattice homomorphisms:

rec




CANOPY

vertices ¢ and ¢ + 1 are always comparable in a Cambrian tree

Canopy of a Cambrian tree T = sequence can(T) € £"! defined by

{ if 2 above74+1inT

+ ifibelowi+1inT

PROP. P, can, and rec define lattice homomorphisms:
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GEOMETRY




POLYTOPES & COMBINATORICS

polytope = convex hull of a finite set of R?
= bounded intersection of finitely many half-spaces

face = intersection with a supporting hyperplane
face lattice = all the faces with their inclusion relations

Given a set of points, determine the face lattice of its convex hull.

Given a lattice, is there a polytope which realizes it?




PERMUTAHEDRON

312

321

Permutohedron Perm(n)
= conv {(a(1),..., on+1)) o€}
=Hn () H(J)

D#JC[n+1]
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PERMUTAHEDRON

Permutohedron Perm(n)
=conv{(o(l),...,0(n+1)) | o € X1}
=Hn () H>(J)

D+JC[n+1]

k-faces of Perm(n)
= surjections from [n + 1]

to n+1— k|



PERMUTAHEDRON

Permutohedron Perm(n)
= conv{(c(1),...,0(n+1)) | o € Xp1}

D =Hn [) H>(J)

D+JC[n+1]

D k-faces of Perm(n)
= surjections from [n + 1]

to n+1— k|
ordered partitions of [n + 1]
into n + 1 — k parts




PERMUTAHEDRON

Permutohedron Perm(n)
= conv{(c(1),...,0(n+1)) | o € Xp1}

D =Hn [) H>(J)

D+JC[n+1]

D k-faces of Perm(n)

= surjections from [n + 1]

to n+1— k|

ordered partitions of [n + 1]
11D into n + 1 — k parts

1) con nections to

® Inversion sets

e weak order

e reduced expressions

e braid moves

e cosets of the symmetric group




ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free
sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion
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faces <> dissections faces <> Schroder trees




VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free
sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion
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(Pictures by Ceballos-Santos-Ziegler)

Lee ('89), Gel'fand-Kapranov-Zelevinski ('94), Billera-Filliman-Sturmfels ('90), ..., Ceballos-Santos-Ziegler ('11)
Loday ('04), Hohlweg-Lange ('07), Hohlweg-Lange-Thomas ('12), P.-Santos ('12), P.-Stump ('12%), Lange-P. ('137)



LODAY'S ASSOCIAHEDRON

Loday's associahedron = conv {L(T) | T triangulation of the (n + 3)-gon}

- Hn (  HO)
o diagonal
of the (n+3)-gon

_ {X c Rn+1

S (\B(cS;Hl)}

jE€B(0)

Loday, Realization of the Stasheff polytope ('04)



LODAY'S ASSOCIAHEDRON AND PERMUTAHEDRON
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ASSOCIAHEDRON AND PERMUTAHEDRON

The associahedron is obtained from the permutahedron by removing facets



HOHLWEG & LANGE'S ASSOCIAHEDRA

Can also replace Loday's (n + 3)-gon by others. ..
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Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)



HOHLWEG & LANGE'S ASSOCIAHEDRA

Asso(P) = conv{HL(T) | T triangulation of P} = H N ﬂ H=(6)
0 diagonal of P

HL(T), - T, ) -r(T,5) if 7 down H>(5) — {x
"\ n+2—T,5)-r(T,5) ifjup

S <|B(5;\ +1>}

JEB(9)

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)



ASSOCIAHEDRA AND CAMBRIAN TREES

Lange-P., Using spines to revisit a construction of the associahedron ('137)

Cambrian trees = labeled and oriented dual binary trees

Alternative vertex description of Hohlweg-Lange's associahedra:
maximal path in T" with 2 incoming arcs at j if 5 down
HI(T), {I{W p g J} J

n + 2 — |[{m maximal path in T" with 2 outgoing arcs at j}| if j up



CAMBRIAN TREES AND NORMAL CONES

Incidence cone C(T) = cone{e; —e; | forall i — 5 in T}
Braid cone C%(T) = {x e H | x; < z; for all i — j in T}

THEO. The cones form complete simplicial fans:
(i) {C°(7) | 7 € 6,} = braid fan = normal fan of the permutahedron

(ii) {C°(T) | T € Camb(e)} = e-Cambrian fan = normal fan of the e-associahedron

(iii) {Co(x) ‘ X € i”_l} = boolean fan = normal fan of the parallelepiped
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CAMBRIAN TREES AND NORMAL CONES

Incidence cone C(T) = cone{e; —e; | forall i — 5 in T}
Braid cone C°(T) = {x e H | x; < x; for all i — j in T}

THEO. The cones form complete simplicial fans:
(i) {C°(7) | 7 € &,} = braid fan = normal fan of the permutahedron

(i) {C°(T) | T € Camb(e)} = e-Cambrian fan = normal fan of the e-associahedron

(iii) {CO(X) ‘ X € i”_l} = boolean fan = normal fan of the parallelepiped

Characterization of fibers in terms of cones:

T=P(r) < C(T) CC(r) — C°(T) D C°(1),
x = can(T) <= C(x) C C(T) <= C°(x) 2 C(T),
x =rec(t) <= C(x) CC(r) <= C°(x) 2 C°(7).




ALGEBRA




SHUFFLE AND CONVOLUTION

For n,n’ € N, consider the set of perms of G,,,, with at most one descent, at position n:

&= {1 € G | (1) < -+ <7(n) and 7(n+1) < - < 7(n +n)}

Forr€ &, and 7 € &,, define

shifted concatenation 77/ = [7(1),...,7(n), 7 (1) +n,...,7'(n') +n| € G,
shifted shuffle product 717" = {(’7'7_'/) o1 ’ T E 6(”’”')} C Gpan
convolution product 7% 7" = {7T o (77" ‘ T e 6(”’”/)} C S,

Exm: 1210231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}
12 %231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}

5 ] 5 ] 5—

4 I — 4 N

3 N 3 3 u

2— 2@ 2

ATl | bl e T
1 2345 1 2345 1 2345

concatenation shuffle convolution



MALVENUTO-REUTENAUER ALGEBRA

DEF. Combinatorial Hopf Algebra = combinatorial vector space B endowed with
product - : B® B — B
coproduct A : B+ B® B
which are “compatible’, ie.

: JAN
B® B > B »BR B
N 3
BoBoBRB »BRIBRB®B

I Q@ swap ® [

Malvenuto-Reteunauer algebra = Hopf algebra FQSym with basis (IF;),cs and where
F,-F.= » F, and AF,= Y F, oF.

cer ! oeTxT!




SIGNED VERSION

For signed permutations:
e signs are attached to values in the shuffle product
e signs are attached to positions in the convolution product

Exm: 12101231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
12 %

5 5 5

4 41— 4

3 3 3

27 P 2 S

1 —P | 1 | 1 —P T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
concatenation shuffle convolution

FQSym, = Hopf algebra with basis (IF;),cg, and where

F. .-TF, = Z F, and AF, = ZFT@)FT/

cer 7’ oeTxT!




CAMBRIAN ALGEBRA AS SUBALGEBRA OF FQSym_

Cambrian algebra = vector subspace Camb of FQSym_ generated by

TeG4 TeL(T)
P(7)=T
for all Cambrian trees T.
%ﬂ + Forsiza5 + Fooi3545 + Frors3as T Frosi3us + Fosnass

THEO. Camb is a subalgebra of FQSym_

(ie. the Cambrian congruence is “compatible” with the product and coproduct in FQSym_)

GAME: Explain the product and coproduct directly on the Cambrian trees...



PRODUCT IN CAMBRIAN ALGEBRA

+ Fig515 + Fams1n

_|_
s | ( 3195 + F@—z)
_|_

PROP. For any Cambrian trees T and T,

IPT.IPT,ZZIPS
S

where S runs over the interval [T AT TR T’} in the (T)e(T")-Cambrian lattice




COPRODUCT IN CAMBRIAN ALGEBRA

1® (Fgz+Fogy) + F1®F3 + FyQFy + Fp QF + Fp®F; + (Faz+ Fay) @1

1 ® TP\, QP+ Py, QP +Py QP +P\, P, + P ;1
¥ ¥ ¥ R
M P¥§(PA-P¥)%+P?;®P¥+P§®PA+ ]Pg@l.

I
X
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PROP. For any Cambrian tree S,

re=Y (1 pT) (I pT/)

¥ TeB(S,y) T'eA(S,y)

where ~ runs over all cuts of S, and A(S,~)
and B(S, ) denote the Cambrian forests above
and below ~ respectively




COPRODUCT IN CAMBRIAN ALGEBRA

AP M = A(Fy3+ Fggy)

=1® (Fg3+Fg) + Fr@F5 + Fr@Fy + F5@F + Fp@F, + (Fgz+Fgp) ®1

= 1®PM +IP’¥®P%+P¥®P%+P%®P¥+P$®PA+ ngl
= 1®PM + P¥®(PA-P¥) +P}§¥®P¥+P$®Pﬁ+ PM@)L

PROP. For any Cambrian tree S,

re=Y (1 pT) (I pT/)

¥ TeB(S,y) T'eA(S,y)

where ~ runs over all cuts of S, and A(S,~)
and B(S, ) denote the Cambrian forests above
and below ~ respectively




DUAL CAMBRIAN ALGEBRA AS QUOTIENT OF FQSym’,

FQSym? = dual Hopf algebra with basis (G),cg, and where
G,-Gy=> G, and AG,= » G, ®G,

oeTxT! cer 7’

PROP. The graded dual Camb™ of the Cambrian algebra is isomorphic to the image
of FQSymZ. under the canonical projection

m:C(A) — C(A4)/ =,

where = denotes the Cambrian congruence. The dual basis Q1 of Pr is expressed
as Qp = (G, ), where 7 is any linear extension of T




PRODUCT IN DUAL CAMBRIAN ALGEBRA

PROP. For any Cambrian trees T and T,

QT | @T’ — Z @TST’

where s runs over all shuffles of £(T) and ('T")
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PRODUCT IN DUAL CAMBRIAN ALGEBRA

PROP. For any Cambrian trees T and T,

QT | @T’ — Z @TST’

where s runs over all shuffles of £(T) and ('T")
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PRODUCT IN DUAL CAMBRIAN ALGEBRA

PROP. For any Cambrian trees T and T,

QT | @T’ — Z @TST’

where s runs over all shuffles of £(T) and ('T")
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PRODUCT IN DUAL CAMBRIAN ALGEBRA
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PROP. For any Cambrian trees T and T,

QT | @T’ — Z @TST’

where s runs over all shuffles of £(T) and ('T")
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PRODUCT IN DUAL CAMBRIAN ALGEBRA

|
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PROP. For any Cambrian trees T and T, 1 0
Qr-Qr =) Qur [\
S — QSTD
where s runs over all shuffles of £(T) and ('T") \6
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COPRODUCT IN DUAL CAMBRIAN ALGEBRA

AQM = AGy3
= 1 @ G213 + Gl & 612 + GQl & Gl + 6213 0y 1

—1®@W+@A®Q$+Q%®Q¥+Q#®l

Y

PROP. For any Cambrian tree S,

AQg = Z @L(S,v) & @R(Sﬁ)
Y

where v runs over all gaps between vertices of S,
and L(S,v) and R(S,7) denote the Cambrian
trees left and right to ~ respectively
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PROP. For any Cambrian tree S,

AQg = Z @L(S,v) & @R(Sﬁ)
Y

where v runs over all gaps between vertices of S,
and L(S,v) and R(S,7) denote the Cambrian
trees left and right to ~ respectively
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COPRODUCT IN DUAL CAMBRIAN ALGEBRA

AQM = AGy3
= 1 @ G213 + Gl & 612 + GQl & Gl + 6213 0y 1

—1®@W+@A®Q$+Q%®Q¥+Q#®l

PROP. For any Cambrian tree S,

AQg = Z @L(S,v) & @R(Sﬁ)
Y

where v runs over all gaps between vertices of S,
and L(S,v) and R(S,7) denote the Cambrian
trees left and right to ~ respectively 2




MULTIPLICATIVE BASES

Define E'=) Pr and H'=) Py
9 o
| I
% % i T b VA,
N
: @
il =i B ¥a
\ (
M &l A A
\/
W W
A Il

PROP. (E1)tccamy and (H!)recamn are multiplicative bases of Camb, ie.

ET.EY = k" and HT-HY = H\r




INDECOMPOSABLE ELEMENTS

PROP. The following properties are equivalent for a Cambrian tree S:
e ES can be decomposed into a product ES = ET - ET for non-empty T, T’
e ([k] || [n] . [K]) is an edge cut of S for some k € [n]
e at least one linear extension 7 of S is decomposable, ie. 7([k]) = [k] for some k € |n]

The tree S is then called [E-decomposable

/ —




INDECOMPOSABLE ELEMENTS

PROP. For any signature ¢ € +", the set of [E-indecomposable -Cambrian trees forms
a principal upper ideal of the e-Cambrian lattice

PROP. For any signature ¢ € ", there are C),,_; [E-indecomposable e-Cambrian trees.
Therefore, there are 2"C),,_; [E-indecomposable Cambrian trees on n vertices

A C A C

Y. Y




PERSPECTIVES




PERSPECTIVES

Extend combinatorial, geometric and algebraic properties of binary trees to further

families of trees...

Spines of a graph

Binary trees Schroder trees Cambrian trees
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