Combinatorial description of the cohomology of the affine flag variety

Seung Jin Lee

School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 130-722, Republic of Korea.

Abstract. We construct the affine version of the Fomin-Kirillov algebra, called the affine FK algebra, to investigate the combinatorics of affine Schubert calculus for type A. We introduce Murnaghan-Nakayama elements and Dunkl elements in the affine FK algebra. We show that they are commutative as Bruhat operators, and the commutative algebra generated by these operators is isomorphic to the cohomology of the affine flag variety. As a byproduct, we obtain Murnaghan-Nakayama rules both for the affine Schubert polynomials and affine Stanley symmetric functions. This enables us to express k-Schur functions in terms of power sum symmetric functions. We also provide the definition of the affine Schubert polynomials, polynomial representatives of the Schubert basis in the cohomology of the affine flag variety.

Keywords. affine flag variety, affine Fomin-Kirillov algebra, affine nilCoxeter algebra, affine Schubert polynomials, k-Schur function, Murnaghan-Nakayama rule

1 Introduction

Fomin and Kirillov defined a certain quadratic algebra, also called the Fomin-Kirillov algebra, to better understand the combinatorics of the cohomology ring of the flag variety. They showed that the commutative subalgebra generated by Dunkl elements of degree 1 is isomorphic to the cohomology of the flag variety. Since then, a lot of variations for the quadratic algebra have been studied [Kir15, KM04, KM05a, KM05b, KM10, KM12]. For example, there are generalizations of the Fomin-Kirillov algebra
for K-theory, quantum, equivariant cohomology and for other finite types.

In this extended abstract, we introduce the affine Fomin-Kirillov algebra (affine FK algebra in short), generalizing the Fomin-Kirillov algebra to affine type A, to describe the cohomology of the affine flag variety. We introduce higher degree generators called Murnaghan-Nakayama elements in the affine FK algebra, which is isomorphic to the homology of the affine flag variety as a \mathbb{Q}-module. We show that Murnaghan-Nakayama elements and Dunkl elements commute with each other as Bruhat operators and show that the algebra generated by these elements as Bruhat operators is isomorphic to the cohomology of the affine flag variety as subalgebras in $\text{Hom}_\mathbb{Q}(\mathcal{A}, \mathcal{A})$. Our proof identifies three different operators on \mathcal{A}, namely: Bruhat operators, cap operators defined by the author [Lee14], and the operators defined by Berg, Saliola and Serrano [BSS14] on the affine nilCoxeter algebra \mathcal{A}. The identification combines algebraic, geometric and combinatorial components of affine Schubert calculus. Those three operators will be considered as elements in $\text{Hom}_\mathbb{Q}(\mathcal{A}, \mathcal{A})$. In this extended abstract, we mainly discuss Bruhat operators and cap operators.

Positive integers $n \geq 2$ and $k = n - 1$ will be fixed throughout the paper. The coefficient ring of the cohomology is \mathbb{Q}, and related combinatorics will be adjusted accordingly although the three operators are well-defined over \mathbb{Z}.

1.1 Cap operators

The set $\{A_w : w \in \widetilde{S}_n\}$ forms a basis of \mathcal{A} (see Section 2.3), where \widetilde{S}_n is the affine symmetric group. There is a coproduct structure on \mathcal{A} defined by

$$\Delta(A_w) = \sum p_{u,v}^w A_u \otimes A_v$$

where the sum is over all $u, v \in \widetilde{S}_n$ satisfying $\ell(w) = \ell(u) + \ell(v)$. Kostant and Kumar [KK86] showed that $p_{u,v}^w$ is the same as the structure coefficient for the cohomology of the affine flag variety. Note that $p_{u,v}^w$'s are nonnegative integers [Gra01].

For $u \in \widetilde{S}_n$, a cap operator D_u is defined by

$$D_u(A_w) = \sum p_{u,v}^w A_v,$$

where the sum is over all $v \in \widetilde{S}_n$ satisfying $\ell(w) = \ell(u) + \ell(v)$. Let ϕ_{id} be the map from \mathcal{A} to \mathbb{Q} by taking the coefficient of A_{id}. Then ϕ_{id} induces a \mathbb{Q}-module homomorphism $\phi_{\text{id},*}$ from $\text{Hom}_\mathbb{Q}(\mathcal{A}, \mathcal{A})$ to $\text{Hom}_\mathbb{Q}(\mathcal{A}, \mathbb{Q})$. Note that the cohomology of the affine flag variety is isomorphic to $\text{Hom}_\mathbb{Q}(\mathcal{A}, \mathcal{A})$ over \mathbb{Q} [KK86], and the Schubert basis ξ^u can be considered as an element in $\text{Hom}_\mathbb{Q}(\mathcal{A}, \mathbb{Q})$ defined by $\xi^u(A_w) = \delta_{w,v}$ for all $v \in \widetilde{S}_n$. However, the problem with this description is that there is no natural product structure on $\text{Hom}_\mathbb{Q}(\mathcal{A}, \mathbb{Q})$.

One can avoid this problem by considering cap operators. It is obvious that the image of D_w via $\phi_{\text{id},*}$ is ξ^w so that the cohomology of the affine flag variety can be identified with the subalgebra generated by D_w in $\text{Hom}_\mathbb{Q}(\mathcal{A}, \mathcal{A})$, which naturally has the product structure by composition. Geometrically, $D_u(A_w)$ can be identified with $\xi^u \cap \xi_w$ where ξ^u is the Schubert class for u in the cohomology, ξ_w is the Schubert class for w in the homology of the affine flag variety, and \cap is the cap product.
1.2 Bruhat operators

The affine Fomin-Kirillov algebra is generated by \([ij]\) for \(i < j\) with distinct residues modulo \(n\) with certain quadratic relations among \([ij]\). An element \([ij]\) can be considered as a (right) Bruhat action on the affine nilCoxeter algebra defined by

\[
A_w \cdot [ij] = \begin{cases}
A_{w t_{ij}} & \text{if } \ell(w t_{ij}) = \ell(w) - 1 \\
0 & \text{otherwise}
\end{cases}
\]

for all \(w \in \widetilde{S}_n\), where \(t_{ij}\) is a transposition in \(\widetilde{S}_n\). For an element \(x\) in the affine FK algebra, define \(D_x(A_w) = A_w \cdot x\) when it is well-defined. In this paper, we only consider elements \(x\) such that \(D_x(A_w)\) are well-defined for all \(w \in \widetilde{S}_n\). See Section 3 for details.

Now we are ready to state the main theorems in this paper. For \(0 \leq i < m < n\), let \(\rho_{i,m}\) be the element \(s_{m-1}s_{m-2} \cdots s_1s_{m-2} \cdots s_1\) in \(\widetilde{S}_n\). Let \(\tilde{\theta}_i\) (resp. \(p_m\)) be the Dunkl elements (resp. MN elements) in the affine FK algebra defined in Section 4.

Theorem 1.1 For \(0 \leq i < m < n\), we have

\[
D_{\tilde{\theta}_i} = D_{\rho_{i+1}} - D_{s_i},
\]

\[
D_{p_m} = \sum_{i=0}^{m-1} (-1)^i D_{\rho_{i,m}}.
\]

Theorem 1.1 allows us to identify \(D_{\tilde{\theta}_i}\) with \(\xi^{i+1} - \xi^i\), and \(D_{p_m}\) with \(\xi(m) := \sum_{i=0}^{m-1} (-1)^i \xi^{\rho_{i,m}}\). Since the first equation is immediate from the Chevalley rule, we mainly focus on properties of \(p_m\). Note that the second equation together with the definition of \(p_m\) provides MN rule for the cohomology of the affine flag variety, which also provides MN rule for the affine Stanley symmetric functions. It also implies a description of \(k\)-Schur functions in terms of power sum symmetric functions which gives the character table of the representation of the symmetric group whose Frobenius characteristic image is the \(k\)-Schur function.

It turns out that the cohomology of the affine flag variety \(\tilde{F}l\) is generated by all \(\xi^{i+1} - \xi^i\) and \(\xi(m)\), and the subalgebra generated by \(\xi^{i+1} - \xi^i\) (resp. \(\xi(m)\)) is isomorphic to the cohomology of the finite flag variety \(F l_m\) (resp. the affine Grassmannian \(\tilde{G}r\)). It provides the following isomorphism

\[
H^*(\tilde{F}l) \cong H^*(\tilde{G}r) \otimes H^*(F l_m) \cong \mathbb{Q}[x_1, \ldots, x_n]/\langle h_i(x) = 0 \quad \forall i \rangle =: R_n
\]

where all \(p_m\) and \(x_i\) commute with each other and \(p_m\) (resp. \(x_i\)) corresponds to \(\xi(m)\) (resp. \(\xi^{i+1} - \xi^i\)), and \(h_i(x)\) is a homogeneous polynomial of degree \(i\) in \(x_1, \ldots, x_n\). The affine Schubert polynomial \(\tilde{\Theta}_w\) for \(w \in \widetilde{S}_n\) is defined by the image of \(\xi^w\) in \(R_n\) via the above isomorphism. We provide an explicit definition of the affine Schubert polynomials in terms of divided difference operators without proof. The affine Schubert polynomials simultaneously generalize the affine Schubert polynomials and Schubert polynomials. See [Lee15] for details.
The paper is structured as follows: In Section 2, we review affine symmetric groups, symmetric functions, and the affine nilCoxeter algebra. In Section 3, we define the affine FK algebra and study the Bruhat operator acting on the affine nilCoxeter algebra. In Section 4, we define Dunkl elements and Murnaghan-Nakayama elements, and investigate relations among those elements. In particular, we list identities that uniquely determine Bruhat operators for MN elements. In Section 5, we prove Theorem [3]. In section 6, we provide the Murnaghan-Nakayama rules both for the affine Schubert polynomial and the affine Stanley symmetric functions. we also discuss a new formula for \(k \)-Schur functions in terms of power sum symmetric functions as well as its relation with representation theory. In section 7, we define the affine Schubert polynomials in terms of divided difference operators.

2 Preliminaries

2.1 Affine symmetric group

Let \(I \) be the set \(\{0, 1, \ldots, n - 1\} = \mathbb{Z}/n\mathbb{Z} \). Let \(\tilde{S}_n \) denote the affine symmetric group with simple generators \(s_0, s_1, \ldots, s_{n-1} \) satisfying the relations

\[
s_i^2 = 1, \\
 s_is_{i+1}s_i = s_{i+1}s_is_{i+1}, \\
 s_is_j = s_js_i \quad \text{if} \ i - j \neq 1, -1.
\]

where indices are taken modulo \(n \). An element of the affine symmetric group may be written as a word in the generators \(s_i \). A reduced word of the element is a word of minimal length. The length of \(w \), denoted \(\ell(w) \), is the number of generators in any reduced word of \(w \). The Bruhat order, also called strong order, on affine symmetric group elements is a partial order where \(u < w \) if there is a reduced word for \(u \) that is a subword of a reduced word for \(w \). If \(u < w \) and \(\ell(u) = \ell(w) - 1 \), we write \(u \preceq w \). The subgroup of \(\tilde{S}_n \) generated by \(\{s_1, \ldots, s_{n-1}\} \) is naturally isomorphic to the symmetric group \(S_n \). The 0-Grassmannian elements are minimal length coset representatives of \(\tilde{S}_n/S_n \). In other words, \(w \) is 0-Grassmannian if and only if all reduced words of \(w \) end with \(s_0 \).

2.2 Symmetric functions

Let \(\Lambda \) denote the ring of symmetric functions over \(\mathbb{Q} \). For a partition \(\lambda \), we let \(m_\lambda, h_\lambda, p_\lambda, s_\lambda \) denote the monomial, homogeneous, power sum and Schur symmetric functions, respectively, indexed by \(\lambda \). Each of these families forms a basis of \(\Lambda \). Let \(\langle \cdot, \cdot \rangle \) be the Hall inner product on \(\Lambda \) satisfying \(\langle m_\lambda, h_\mu \rangle = \langle s_\lambda, s_\mu \rangle = \delta_{\lambda,\mu} \) for partitions \(\lambda, \mu \).

Let \(\Lambda_{(k)} \) denote the subalgebra generated by \(h_1, h_2, \ldots, h_k \). The elements \(h_\lambda \) with \(\lambda_1 \leq k \) form a basis of \(\Lambda_{(k)} \). We call a partition \(\lambda \) with \(\lambda_1 \leq k \) a \(k \)-bounded partition. Note that there is a bijection between the set of \(k \)-bounded partitions and the set of 0-Grassmannian elements in \(\tilde{S}_n \) [LM05]. Let \(\Lambda^{(k)} = \Lambda/I_k \) denote the quotient of \(\Lambda \) by the ideal \(I_k \) generated by \(m_\lambda \) with \(\lambda_1 > k \). The image of the elements \(m_\lambda \) with \(\lambda_1 \leq k \) form a basis of \(\Lambda^{(k)} \). Note that \(I_k \) is isomorphic to the ideal generated by \(p_\lambda \) for \(\lambda_1 > k \), so that \(p_\lambda \) for \(k \)-bounded partitions \(\lambda \) form a basis of \(\Lambda^{(k)} \). There is another remarkable basis for \(\Lambda_{(k)} \) and \(\Lambda^{(k)} \). For a \(k \)-bounded partition \(\lambda \), a \(k \)-Schur function \(s_\lambda^{(k)} \) and an affine Schur function \(\hat{F}_\lambda \) are defined
Combinatorial description of the cohomology of the affine flag variety

in [LM07a, LM07b, Lam06]. Lam [Lam08] showed that the k-Schur functions (resp. the affine Schur functions) are representatives of the Schubert basis of the homology (resp. the cohomology) of the affine Grassmannian $\hat{G}r$ for $SL(n)$ via the isomorphism of Hopf-algebras

$$\Lambda^{(k)}_r \cong H_*(\hat{G}r) \quad \Lambda^{(k)} \cong H^*(\hat{G}r).$$

The restriction of the Hall inner product on $\Lambda^{(k)} \times \Lambda^{(k)}$ gives the identity

$$\langle \tilde{F}_\lambda, s^{(k)}_\mu \rangle = \delta_{\lambda,\mu}.$$ Since we do not use the definitions of k-Schur functions, affine Schur functions, and affine Stanley symmetric functions in this paper, definitions are omitted. See [Lam06, Lam08, LLMS10] for more details.

2.3 Affine nilCoxeter algebra

The affine nilCoxeter algebra \mathbb{A} is the algebra generated by $A_0, A_1, \ldots, A_{n-1}$ over \mathbb{Z}, satisfying

$$A_i^2 = 0 \quad A_i A_{i+1} A_i = A_{i+1} A_i A_{i+1} \quad A_i A_j = A_j A_i \quad \text{if } i-j \neq 1, -1.$$ where the indices are taken modulo n. The subalgebra \mathbb{A}_f of \mathbb{A} generated by A_i for $i \neq 0$ is isomorphic to the nilCoxeter algebra studied by Fomin and Stanley [FS94]. The simple generators A_i are considered as the divided difference operators.

The A_i satisfy the same braid relations as the s_i in \hat{S}_n, i.e., $A_i A_{i+1} A_i = A_{i+1} A_i A_{i+1}$. Therefore it makes sense to define

$$A_w = A_{i_1} \ldots A_{i_l} \quad \text{where} \quad w = s_{i_1} \ldots s_{i_l} \quad \text{is a reduced decomposition.}$$

Lam [Lam06] defined certain elements h_i in \mathbb{A} for $i < n$ and showed that the elements $\{h_i\}_{i < n}$ commute and freely generate a subalgebra \mathbb{B} of \mathbb{A} called the affine Fomin-Stanley algebra. It is well-known that \mathbb{B} is isomorphic to $\Lambda^{(k)}$ via the map sending h_i to h_i. Therefore, the set $\{h_\lambda = h_{\lambda_1} \ldots h_{\lambda_l} \mid \lambda_1 \leq k\}$ forms a basis of \mathbb{B}.

3 Affine Fomin-Kirillov algebra

For $i \in \mathbb{Z}$, let \overline{i} be the residue of i modulo n.

Definition 3.1 Let A be the free algebra generated by $S = \{[ij] : i, j \in \mathbb{Z}, i < j, \overline{i} \neq \overline{j}\}$. Let $A(N)$ be the subalgebra of A generated by elements $[ij]$ with $|i|, |j| \geq N$. Then we have a filtration

$$A = A(0) \supset A(1) \supset A(2) \supset \cdots.$$ Let A be the inverse limit $\varprojlim (A/A(i))$.

An element x in \mathcal{A} can be written as a (possibly infinite) linear combination of noncommutative monomials $[j_1,1][j_2,1][j_3,2]\cdots[j_m,1]$. For $i > j$, we use the convention $[ij] = -[ji]$.

Define the Bruhat action of $[ij]$ on \mathbb{A} by

$$A_w \cdot [ij] = \begin{cases} A_{wt_{ij}} & \text{if } \ell(wt_{ij}) = \ell(w) - 1 \\ 0 & \text{otherwise.} \end{cases}$$

where t_{ij} is a transposition exchanging i and j in \tilde{S}_n. For an element in \mathcal{A}, one can define an action on \mathbb{A} extended linearly. For an element x in \mathcal{A}, even if x is an infinite summation of product of $[ij]$'s, it is possible that all but finitely many terms in x vanish when acting with x on an element A_w. An element x in \mathcal{A} gives a valid action on \mathbb{A} if all but finitely many terms in x vanish when acting with x on any element A_w. Let \mathcal{E} be the subalgebra of \mathcal{A} consisting of elements which give a valid action on \mathbb{A}. All elements in \mathcal{A} in this paper containing an infinite sum have a valid action on \mathbb{A}. Define the map $D : \mathcal{E} \to \text{Hom}_\mathbb{Q}(\mathbb{A}, \mathbb{A})$ by sending x to D_x, where $D_x(A_w) := A_w \cdot x$. We call D_x a Bruhat operator for x. We often say “x as a Bruhat operator” instead of D_x since we are mainly interested in describing the cohomology of the affine flag variety as a subalgebra in $\text{Hom}_\mathbb{Q}(\mathbb{A}, \mathbb{A})$.

As Bruhat operators, we have following relations between the operators $[ij]$.

(a) $[ij]^2 = 0$.
(b) $[ij][kl] = [kl][ij]$ if i, j, k, l are all distinct.
(c) For i, j, k with distinct residues, $[ij][jk] = [jk][ik] + [ik][ij]$ and $[jk][ij] = [ik][jk] + [ik][ij]$.
(d) For distinct i, j with $i \neq j$, $\sum_{i' = i, j' = j'} [i'j'][ij] = 0$.
(e) $[i, j] = [i + n, j + n]$.

Note that the relations (a)-(c) are analogous to those in the definition of the Fomin-Kirillov algebra, and proofs for these relations are similar. The relation (d) is an affine type A analogue of the quadratic relation in the bracket algebra which is a generalization of the Fomin-Kirillov algebra to (classical) Coxeter groups [KM04]. The relation (e) is obvious since we have $t_{i,j} = t_{i+n,j+n}$ as elements in the affine symmetric group. The quotient algebra of \mathcal{E} modulo relations (a)-(e) is called the affine Fomin-Kirillov algebra \tilde{FK}_n.

Note that there is a (left) \tilde{S}_n-action on \tilde{FK}_n (and \mathcal{E}) defined by $w[ij] = [w(i), w(j)]$ for $w \in \tilde{S}_n$ and $[ij] \in S$. Indeed, one can check that the two-sided ideal generated by relations (a)-(e) is invariant under the \tilde{S}_n-action.

4 Dunkl elements and Murnaghan-Nakayama elements

In this section, we define Dunkl elements and MN elements and investigate identities among these elements. For $i \in \mathbb{Z}$, a Dunkl element $\tilde{\theta}_i$ can be defined in an analogous way to the definition of the Dunkl element $\tilde{\theta}_i$ in the Fomin-Kirillov algebra defined in [FK99].

Definition 4.1 For $i \in \mathbb{Z}$, define a Dunkl element $\tilde{\theta}_i$ by $\sum_{j \in \mathbb{Z}, j \neq i} [ij]$.
We define Murnaghan-Nakayama elements $p_m(i)$ (MN elements in short) in \widetilde{FK}_n as a generalization of $\theta^m_1 + \cdots + \theta^m_n$ in the Fomin-Kirillov algebra. Unlike the finite case, MN elements are not generated by Dunkl elements \tilde{b}_i. We define MN elements by investigating the combinatorics of the Fomin-Kirillov algebra studied by Mészáros, Panova, Postnikov [MPP14] and generalizing them to affine case.

Let D be the 2-dimensional infinite grid. A box is specified by its position (i, j) when the vertices of the box are $(i, j), (i, j + 1), (i + 1, j), (i + 1, j + 1)$. Let D_a be the set of all boxes at (i, j) with $i < a < j$. A diagram D on D_a is a finite collection of boxes in D_a. For a diagram D on D_a, we associate a graph with the vertex set Z obtained by adding an edge between i and j for each box at (i, j) in D. We say that a diagram D is a connected tree if the associated graph consists of all but finitely many isolated points and a single tree, and all vertices in the tree have distinct residues modulo n. Let $\text{Supp}(D)$ be the set consisting of indices of all vertices in the single tree in the associated graph for D and $c(D)$ the number of vertices in the tree with index $\leq a$. Note that the box at $(i, i+np)$ does not appear in a connected tree for any $i, p \in \mathbb{Z}$.

A labeling L_D on a diagram D is a bijection from the set $\{1, 2, \ldots, |D|\}$ to the set of boxes in D. For a labeling L of a connected tree D, one can associate an element in the affine FK algebra defined by $x_{D_L} = [D_L(1)] [D_L(2)] \cdots [D_L(|D|)]$ where $[D_L(i)]$ is $[a_i, b_i]$ for the i-th box placed at (a_i, b_i). We call two labelings L and L' equivalent if we have $x_{D_L} = x_{D_{L'}}$ by only using commutation relation.

The following lemma is an obvious generalization of [MPP14] Lemma7.

Lemma 4.2 Let v, l be positive integers and D be a connected tree in D_a with $l + v$ boxes contained in l rows and $v + 1$ columns. Then the following two sets are equal:

1. The equivalent classes of labelings of D such that the class contains a labeling with:
 i_1, \ldots, i_l are distinct, $j_1 \leq \cdots \leq j_l, j_{l+1}, \ldots, j_{l+v}$ are distinct, $i_{l+1} \leq \cdots \leq i_{l+v}$.

2. The equivalent classes of labelings of D such that the class contains a labeling with:
 i_1, \ldots, i_{l-1} are distinct, $j_1 \leq \cdots \leq j_{l-1}, j_l, \ldots, j_{l+v}$ are distinct, $i_l \leq \cdots \leq i_{l+v}$.

Let $M(D) = \{D_{L_1}, \ldots, D_{L_k}\}$ be the set of representative labelings of equivalent classes in Lemma 4.2.

Definition 4.3 Let m and a be positive integers. Define $p_m(a)$ in \widetilde{FK}_n by

$$p_m(a) = \sum_{D \in D_a} \sum_{D_L \in M(D)} (-1)^{c(D)-1} x_{D_L}$$

where the first sum runs over connected trees in D_a. We denote $p_m(0)$ by p_m.

We list few identities among Dunkl elements and MN elements.

Theorem 4.4 For $m < n, i \in \mathbb{Z}$, we have

$$p_m(i) + \tilde{\theta}^m_{i+1} = p_m(i + 1)$$

in \widetilde{FK}_n.

Combinatorial description of the cohomology of the affine flag variety 749
Theorem 4.5 For \(m > 0 \), we have
\[
\sum_{i=1}^{n} \tilde{\theta}_i^m = 0.
\]

Proof. It is obvious from Theorem 4.4 and the fact \(p_m(0) = p_m(n) \) by the relation (e).
\(\square \)

Theorem 4.6 For \(i, a \in I \), we have
\[
s_i p_m(a) = \begin{cases} p_m(a) & \text{if } i \neq a \\ p_m(i) + \tilde{\theta}_{i+1}^m - \tilde{\theta}_i^m & \text{if } i = a \end{cases}
\]
(2)

For \(x = p_m \), we call \(D_{p_m} \) a Murnaghan-Nakayama operator of degree \(m \) (a MN operator in short).

The following theorems uniquely determine the MN operators.

Theorem 4.7 For \(w \in \tilde{S}_n \) and \(w' \in S_n \), we have
\[
D_{p_m}(A_w A_{w'}) = D_{p_m}(A_w) A_{w'}.
\]

Theorem 4.8 For \(h \in B \) and \(w \in \tilde{S}_n \),
\[
D_{p_m}(h A_w) = D_{p_m}(h) A_w + h D_{p_m}(A_w).
\]

Theorem 4.9 For \(1 \leq m \leq i < n \) and \(a \in \mathbb{Z} \), we have
\[
D_{p_m(a)} h_i = h_{i-m}.
\]

5 Relations between operators

To show Theorem 1.1, it is enough to show that \(\sum_{i=0}^{m-1} (-1)^i D_{p_i,m} \) also satisfies Theorem 4.7, 4.8, 4.9. First of all, Theorem 4.7 follows from the fact that all \(p_i,m \) are 0-Grassmannian elements (see [Lee14]). Therefore, it is enough to show that \(D_{p_m} \) and \(\sum_{i=0}^{m-1} (-1)^i D_{p_i,m} \) are the same operators as actions on \(B \cong \Lambda(k) \). One can show that the restriction of \(D_{p_i,m} \) is \(s_{[m-i,1]} \), where \(s_{[m-i,1]} \) is the Schur function for the hook shape \([m-i,1]\), \(s_{[m-i,1]} \) is the image of \(s_{[m-i,1]} \) in \(\Lambda(k) \), and \(f^\perp \) is an operator acting on \(\Lambda(k) \) adjoint to the multiplication by \(f \) for \(f \in \Lambda(k) \). This follows from the comparison between cap operators and BSS operators denoted by \(D_J \) in [BSS14]. See [Lee14] for details.

Recall the following theorems about the power sum symmetric functions \(p_m \): (see [Sta99] for instance):
\[
p_m = \sum_{i=0}^{m-1} (-1)^i s_{[m-i,1]},
\]
\[
p^+_m(fg) = p^+_m(f)g + fp^+_m(g),
\]
\[
p^+_m(h_i) = h_{i-m}
\]
for any symmetric functions \(f, g \). Therefore, we proved that \(D = \sum_{i=0}^{m-1} (-1)^i D_{p_i,m} \) satisfies the following identities.
1. \(D(fg) = D(f)g + fD(g) \) for \(f, g \in \mathbb{B} \).

2. \(D(hA_v) = D(h)A_v \) for \(h \in \mathbb{B} \) and a 0-Grassmannian element \(v \).

3. \(D(h_i) = h_{i-m} \)

Note that the above identities uniquely determine \(D \) as an action on \(\mathbb{A} \). Since \(p_m \) also satisfies the above identities by Theorem 4.7, 4.8, 4.9, the main theorem follows.

6 Murnaghan-Nakayama rule for the affine flag variety

Recall that \(\xi^w \) is the Schubert class for \(w \) in the cohomology of the affine flag variety and \(\xi(m) = \sum_{i=0}^{m} (-1)^i \xi^{p_i, m} \). Note that \(\xi(m) \) maps to \(p_m \) via the map \(p^*_m : H^*(\hat{F}l) \to H^*(Gr) \cong \Lambda^k \).

Theorem 6.1 For \(w, u \in \widetilde{S}_n, m < n \), let \(c^w_{m,u} \) be integers satisfying \(D_{p_m}(A_w) = \sum_u c^w_{m,u} A_u \). Then for \(v \in \widetilde{S}_n \), we have

\[
\xi(m) \cup \xi^v = \sum_{w \in \widetilde{S}_n} c^w_{m,u} \xi^w.
\]

Proof. For \(u \in \widetilde{S}_n \), let \(\xi_u \) be the Schubert class for \(u \) in the homology of the affine flag variety and let \(\langle \cdot, \cdot \rangle \) be the pairing between the cohomology and homology of the affine flag variety. Then we have

\[
\langle \xi(m) \cup \xi^v, \xi_w \rangle = \langle \xi^v, D_{p_m}(\xi_w) \rangle = c^w_{m,v}.
\]

Therefore, the definition of \(p_m \) provide MN rule for the cohomology of the affine flag variety. One can also obtain the MN rule for the affine Stanley symmetric functions from the fact that the Stanley symmetric function \(\bar{F}_w \) is the pullback \(p^*_m(\xi^w) \) where \(p^*_m : H^*(\hat{F}l) \to H^*(Gr) \) (See [Lam08] for details). By applying the pullback \(p^*_m \) to both sides of Theorem 6.1, we have the following MN rule.

Corollary 6.2 For \(m < n, v \in \widetilde{S}_n \), we have

\[
p_m \bar{F}_v = \sum_{w \in \widetilde{S}_n} c^w_{m,u} \bar{F}_w.
\]

Example 6.3 Consider the identity \(\bar{F}_{10} p_3 = \bar{F}_{12310} - \bar{F}_{20310} + \bar{F}_{03210} \). Each term can be computed from the Bruhat actions of the following terms in \(p_m(0) \).

\[
\begin{align*}
s_1s_2s_3s_1s_0 \cdot [-2,1][-4,1][-1,1] &= s_1s_0 \\
s_2s_0s_3s_1s_0 \cdot [-4,1][-1,2][-1,1] &= s_1s_0 \\
s_0s_3s_2s_1s_0 \cdot [0,6][0,5][0,3] &= s_1s_0.
\end{align*}
\]
By applying Theorem 6.2 repeatedly from $v = id$, one can write p_X in terms of linear combination of the affine Schur functions \tilde{F}_v. By taking dual, one can write a k-Schur function $s_u^{(k)}$ in terms of power sum symmetric functions p_μ. Note that the k-Schur function $s_u^{(k)}$ is known to be Schur-positive \cite{LLMST13}, so there exists a S_n-representation whose Frobenius image is $s_u^{(k)}$. Therefore the description of k-Schur function in terms of p_μ provides the character table of the representation. Note that Chen and Haiman \cite{CH08} conjectured $H^{*}(\tilde{F}_v)$ is related to the combinatorics studied in this paper. Therefore the description of k-Schur function in terms of p_μ provides the character table of the representation. Note that Chen and Haiman \cite{CH08} conjectured $H^{*}(\tilde{F}_v)$ is related to the combinatorics studied in this paper.

7 Affine Schubert Polynomials

In this section, we provide the definition of the affine Schubert polynomials, polynomial representatives of the Schubert class in the cohomology of the affine flag variety \tilde{F}_v. We start with the following theorem proved in \cite{Lee14}.

Theorem 7.1 The cohomology of the affine flag variety \tilde{F}_v is generated by $\xi(m)$ for $m < n$ and $\xi^{s_i} - \xi^{s_i-1}$ for $i \in \mathbb{Z}/n\mathbb{Z}$, and the subalgebra generated by $\xi(m)$ (resp. $\xi^{s_i} - \xi^{s_i-1}$) is isomorphic to the cohomology of the affine Grassmannian (resp. finite flag variety). Moreover, under the isomorphisms we have $H^{*}(\tilde{F}_v) \cong H^{*}(Gr) \otimes H^{*}(\tilde{F}_v)\hat{\xi}$.

Note that $H^{*}(Gr)$ is isomorphic to $\Lambda(k) \cong \mathbb{Q}[p_1, \ldots, p_k]$ and $H^{*}(\tilde{F}_v)$ is isomorphic to $\mathbb{Q}[x_1, \ldots, x_n]$ modulo an ideal $J = (h_i(x) = 0 \:\forall \:i)$ where h_i is the homogeneous symmetric function of degree i. For $w \in \tilde{S}_n$, the affine Schubert polynomial \tilde{S}_w for w is defined as an element in $\mathbb{Q}[p_1, \ldots, p_k, x_1, \ldots, x_n]/J$ corresponding to the Schubert basis ξ^w in $H^{*}(\tilde{F}_v)$. One can explicitly define the affine Schubert polynomial in terms of divided difference operators in the following way.

Definition 7.2 For $i \in \mathbb{Z}/n\mathbb{Z}$, the Weyl group action s_i and the divided difference operator $\partial_i := \frac{1-s_i}{x_i-x_{i+1}}$ on R_n can be uniquely defined by the following rules.

1. For $f, g \in H^{*}(\tilde{F}_v)$, we have $s_i(fg) = s_i(f)s_i(g)$. Therefore ∂_i satisfies the Leibniz’s rule: for $f, g \in H^{*}(\tilde{F}_v)$, we have $\partial_i(fg) = \partial_i(f)g + s_i(f)\partial_i(g)$.

2. For nonzero i and for all m, we have $s_i(p_m) = p_m$ and $\partial_i(p_m) = 0$.

3. For $i = 0$, we have $s_0(p_m) = p_m + x_1^{m-1} - x_0^m$ and $\partial_0(p_m) = \sum_{j=0}^{m-1} x_1^{m-1-j} x_0^j$.

4. For all $i, j \in \mathbb{Z}/n\mathbb{Z}$, we have $s_i(x_j) = x_{s_i(j)}$ and $\partial_i(x_j) = \delta_{ij} - \delta_{i,j+1}$.

Definition 7.3 For $w \in \tilde{S}_n$, the affine Schubert polynomial \tilde{S}_w is the unique homogeneous element of degree $\ell(w)$ in R_n satisfying

$$\partial_i \tilde{S}_w = \begin{cases} \tilde{S}_{ws_i} & \text{if } \ell(ws_i) = \ell(w) - 1 \\ 0 & \text{otherwise.} \end{cases}$$

for $i \in \mathbb{Z}/n\mathbb{Z}$, with the initial condition $\tilde{S}_{id} = 1$.
The affine Schubert polynomials behave surprisingly well with the affine Stanley symmetric functions \tilde{F}_w [Lam08] for $w \in \tilde{S}_n$ and the Schubert polynomials \tilde{S}_v for $v \in S_n$. First note that the divided difference operators ∂_i for nonzero i on the subalgebra of R_n generated by x_i’s are the same as the divided difference operators defined by Lascoux and Schützenberger [LS82], so that \tilde{S}_w for $w \in S_n$ is the Schubert polynomial \tilde{S}_w. Moreover the affine Schubert polynomial \hat{S}_w for 0-Grassmannian element w is the same as the affine Schur functions, and for $w \in S_n$ the projection from R_n to $\mathbb{Q}[p_1, \ldots, p_{n-1}]$ sends \hat{S}_w to the affine Stanley symmetric functions \tilde{F}_w [Lam08].

The affine Schubert polynomials can be computed from the affine Stanley functions. For $w \in \tilde{S}_n$, let v be an element in \tilde{S}_n such that wv is 0-Grassmannian with $\ell(wv) = \ell(w) + \ell(v)$. There is always such a v for any w. Let \hat{F}_{uv} be the affine Schur function for wv. Then we have

$$\hat{S}_w = \partial_{v^{-1}} \hat{F}_{wv} = \partial_{v^{-1}} \hat{F}_{wv}.$$

Note that there is a formula for the expansion of the affine Schur functions in terms of power sum symmetric functions [BSZ11], so that one can compute the affine Schubert polynomials from Definition 7.2.

Acknowledgments

I thank Thomas Lam, Leonardo Mihalcea, Mark Shimozono for helpful discussions.

References

