On $q$-integrals over order polytopes (extended abstract)

Jang Soo Kim and Dennis Stanton

Abstract. A $q$-integral over an order polytope coming from a poset is interpreted as a generating function of linear extensions of the poset. As an application, the $q$-beta integral and a $q$-analog of Dirichlet’s integral are computed. A combinatorial interpretation of a $q$-Selberg integral is also obtained.

Résumé. Une $q$-intégrale sur un polytope provenant d’un poset est interprétée comme une série génératrice d’extensions linéaires de la poset. En application, l’intégrale $q$-bêta et un $q$-analogue de l’intégrale de Dirichlet sont calculés. Une interprétation combinatoire de une intégrale $q$-Selberg est également obtenue.

Keywords. $q$-integral, order polytope, $q$-Selberg integral

1 Introduction

In this extended abstract we give a combinatorial interpretation of $q$-integrals over order polytopes. The motivation of this extended abstract is to generalize Stanley’s combinatorial interpretation of the Selberg integral.

The Selberg integral is the following integral first evaluated by Selberg [8] in 1944:

$$S_n(\alpha, \beta, \gamma) = \int_0^1 \cdots \int_0^1 \prod_{i=1}^n x_i^{\alpha-1} (1-x_i)^{\beta-1} \prod_{1 \leq i < j \leq n} |x_i - x_j|^{2\gamma} dx_1 \cdots dx_n$$

$$= \prod_{j=1}^n \frac{\Gamma(\alpha + (j-1)\gamma)\Gamma(\beta + (j-1)\gamma)\Gamma(1 + j\gamma)}{\Gamma(\alpha + \beta + (n+j-2)\gamma)\Gamma(1 + \gamma)},$$

where $n$ is a positive integer and $\alpha, \beta, \gamma$ are complex numbers such that $\text{Re}(\alpha) > 0$, $\text{Re}(\beta) > 0$, and $\text{Re}(\gamma) > -\min\{1/n, \text{Re}(\alpha)/(n-1), \text{Re}(\beta)/(n-1)\}$. Stanley [9] Exercise 1.10 (b) found a combinatorial interpretation of the above integral when $\alpha - 1, \beta - 1$ and $2\gamma$ are nonnegative integers in terms of permutations. His idea is to interpret the integral as the probability that a random permutation satisfies

†The first author was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2061006).
‡The second author was supported by NSF grant DMS-1148634.
certain properties. This idea uses the fact that a real number \( x \in (0, 1) \) can be understood as the probability that a random number selected from \((0, 1)\) lies on an interval of length \( x \) is equal to \( x \). Generalizing this fact to \( q \)-integrals is not obvious. We instead consider a different approach by interpreting \( q \)-integrals as generating functions in \( q \).

Throughout this extended abstract we assume \( 0 < q < 1 \). We will use the following notation for \( q \)-series:

\[
[n]_q = \frac{1 - q^n}{1 - q}, \quad [n]_q! = [1]_q [2]_q \cdots [n]_q, \quad (a; q)_n = (1 - a)(1 - aq)\cdots(1 - aq^{n-1}).
\]

We also use the notation \( [n] := \{1, 2, \ldots, n\} \). We denote by \( \mathcal{S}_n \) the set of permutations on \([n]\).

In order to state our main results, we need several definitions. First, recall that the \( q \)-integral of a function \( f \) over \((a, b)\) is

\[
\int_a^b f(x) \, dq = (1 - q) \sum_{i=0}^\infty \left( f(bq^i) - f(aq^i) \right) q^i.
\]

Note that the limit as \( q \to 1 \), the \( q \)-integral becomes the usual integral. It is well known that

\[
\int_a^b x^nf(x) \, dq = \frac{b^{n+1} - a^{n+1}}{[n+1]_q}.
\]

For a permutation \( \pi = \pi_1 \ldots \pi_n \in \mathcal{S}_n \) we will denote the region

\[
\{(x_1, \ldots, x_n) : a \leq x_{\pi_1} \leq \cdots \leq x_{\pi_n} \leq b\}
\]

by \( a \leq x_{\pi_1} \leq \cdots \leq x_{\pi_n} \leq b \). The \( q \)-integral over this region is defined as follows.

**Definition 1.1.** For a permutation \( \pi = \pi_1 \ldots \pi_n \in \mathcal{S}_n \), we define

\[
\int_{a}^{b} f(x_1, \ldots, x_n) \, dq x_1 \cdots dq x_n = \int_{s_1}^{t_1} \cdots \int_{s_n}^{t_n} f(x_1, \ldots, x_n) \, dq x_1 \cdots dq x_n,
\]

where

\[
s_i = s_i(x_{i+1}, \ldots, x_n) = \max \left( \{x_j : j > i, \pi_j < \pi_i\} \cup \{a\} \right),
\]

\[
t_i = t_i(x_{i+1}, \ldots, x_n) = \min \left( \{x_j : j > i, \pi_j > \pi_i\} \cup \{b\} \right).
\]

For example,

\[
\int_{a \leq x_3 \leq x_1 \leq x_5 \leq x_2 \leq x_4 \leq x_6 \leq b} f(x_1, \ldots, x_6) \, dq x_1 \cdots dq x_6
\]

\[
= \int_{a}^{b} \int_{a}^{x_6} \int_{x_6}^{x_5} \int_{x_5}^{x_4} \int_{x_4}^{x_3} \int_{x_3}^{x_2} f(x_1, \ldots, x_6) \, dq x_1 \cdots dq x_6.
\]

Note that since \( s_i \) and \( t_i \) are constants when \( x_{i+1}, \ldots, x_n \) and \( q \) are fixed, the above definition makes sense as a \( q \)-integral.
Let $P$ be a poset on a set $\{x_1, x_2, \ldots, x_n\}$. By abuse of notation, we will consider $x_i$ as an element of $P$ and also as a variable. For $i \in [n]$, we denote by $P_i$ the subposet of $P$ consisting of $x_i, x_{i+1}, \ldots, x_n$. Let $O^b(P)$ be the polytope

$$O^b(P) = \{(x_1, \ldots, x_n) \in [a, b]^n : x_i \leq x_j \text{ if } x_i \leq_{P} x_j\}.$$ 

We will also use $O(P)$ in place of $O^b(P)$.

**Definition 1.2.** The $q$-integral of $f(x_1, \ldots, x_n)$ over the polytope $O^b(P)$ is defined by

$$\int_{O^b(P)} f(x_1, \ldots, x_n) dx_1 \cdots dx_n = \int_{O^b(P)} f(x_1, \ldots, x_n) dx_1 \cdots dx_n,$$

where

$$s_i = s_i(x_{i+1}, \ldots, x_n) = \max \{\{a\} \cup \{x_k : x_k \leq_{P} x_i\}\}, \quad (2)$$

$$t_i = t_i(x_{i+1}, \ldots, x_n) = \min \{\{b\} \cup \{x_k : x_i \leq_{P} x_k\}\}. \quad (3)$$

By definition we have

$$\lim_{q \to 1} \int_{O^b(P)} f(x_1, \ldots, x_n) dx_1 \cdots dx_n = \int_{O^b(P)} f(x_1, \ldots, x_n) dx_1 \cdots dx_n.$$

Note that if $P$ is the chain $x_{\pi_1} < x_{\pi_2} < \cdots < x_{\pi_n}$ for a permutation $\pi \in S_n$, then $O^b(P)$ is the simplex $\{x \in [a, b]^n : a \leq x_1 \leq \cdots \leq x_n \leq b\}$ and

$$\int_{O^b(P)} f(x_1, \ldots, x_n) dx_1 \cdots dx_n = \int_{a \leq x_{\pi_1} \leq \cdots \leq x_{\pi_n} \leq b} f(x_1, \ldots, x_n) dx_1 \cdots dx_n.$$

The remainder of this extended abstract is organised as follows. In Section 2 we will find a formula for the $q$-integral over a simplex. In Section 3 we show that the $q$-volume of the order polytope $O(P)$ can be written as a generating function for linear extensions of the poset $P$. In Section 4 we find a relation between $q$-integrals over order polytopes $O(P)$ and $O(Q)$ for two posets $P$ and $Q$ such that $Q$ is obtained from $P$ by adding a chain. In Section 5 we show that the $q$-beta integral and a $q$-analog of Dirichlet’s integral can be computed using our methods. We also discuss a connection with the general $q$-beta integral of Andrews and Askey [2]. In Section 6 we express a $q$-Selberg integral in terms of the $q$-volume of certain order polytope and find a combinatorial interpretation for it.

## 2 $q$-integrals over simplices

In this section we compute $q$-integrals of a multivariate function over the simplex $\{(x_1, \ldots, x_n) : a \leq x_{\pi_1} \leq \cdots \leq x_{\pi_n} \leq b\}$.

Let $\pi = \pi_1 \pi_2 \cdots \pi_n \in S_n$. An integer $i \in [n-1]$ is called a descent of $\pi$ if $\pi_i > \pi_{i+1}$. Let $\text{Des}(\pi)$ be the set of descents of $\pi$. We define $\text{des}(\pi)$ and $\text{maj}(\pi)$ to be the number of descents of $\pi$ and the sum of descents of $\pi$, respectively.
Lemma 2.1. For $\pi \in \mathfrak{S}_n$ and $r, s \in \{0, 1, 2, \ldots \} \cup \{\infty\}$, we have
\[
\int_{q^r \leq x_{i_1} \leq \cdots \leq x_{i_n} \leq q^s} f(x_{i_1}, \ldots, x_{i_n}) d_q x_1 \cdots d_q x_n = (1 - q)^n \sum_{r > i_1 \geq \cdots \geq i_n \geq s \atop i_j > i_{j+1} \text{ if } j \in \text{Des}(\pi)} f(q^{i_1}, \ldots, q^{i_n}) q^{i_1 + \cdots + i_n}.
\]

The following theorem gives a formula for the volume of the simplex.

Theorem 2.2. For $\pi \in \mathfrak{S}_n$ and real numbers $a < b$, we have
\[
\int_{a \leq x_1 \leq \cdots \leq x_n \leq b} d_q x_1 \cdots d_q x_n = \frac{b^n q^{\text{maj}(\pi)}}{[n]_q^n} (aq - \text{des}(\pi)/b; q)_n.
\]

When $a = 0$ and $b = 1$ in Theorem 2.2, we obtain the following corollary.

Corollary 2.3. For $\pi \in \mathfrak{S}_n$,
\[
\int_{0 \leq x_1 \leq \cdots \leq x_n \leq 1} d_q x_1 \cdots d_q x_n = \frac{q^{\text{maj}(\pi)}}{[n]_q^n}.
\]

3 $q$-integrals over order polytopes

In this section we consider $q$-integrals over order polytopes. We need some of the $P$-partition theory in [9, Chapter 3].

Let $\pi \in \mathfrak{S}_n$. A function $f : [n] \to \mathbb{N}$ is called $\pi$-compatible if $f(\pi_1) \geq f(\pi_2) \geq \cdots \geq f(\pi_n)$ and $f(\pi_i) > f(\pi_{i+1})$ for all $i \in \text{Des}(\pi)$. Then for any function $f : [n] \to \mathbb{N}$, there is a unique $\pi \in \mathfrak{S}_n$ for which $f$ is $\pi$-compatible.

Let $P$ be a poset with $n$ elements. A labeling of $P$ is a bijection $\omega : P \to [n]$. A $(P, \omega)$-partition is a function $\sigma : P \to \mathbb{N}$ such that

- $\sigma(x) \geq \sigma(y)$ if $x \leq_P y$,
- $\sigma(x) > \sigma(y)$ if $x \leq_P y$ and $\omega(x) > \omega(y)$.

A linear extension of $P$ is an arrangement $(t_1, t_2, \ldots, t_n)$ of the elements in $P$ such that if $t_i <_P t_j$ then $i < j$. The Jordan-Hölder set $\mathcal{L}(P, \omega)$ is the set of permutations of the form $\omega(t_1)\omega(t_2)\cdots\omega(t_n)$ for some linear extension $(t_1, t_2, \ldots, t_n)$ of $P$. Let $A(P, \omega)$ denote the set of $(P, \omega)$-partitions. For a permutation $\pi \in \mathfrak{S}_n$, we denote by $S_{\pi}(P, \omega)$ the set of functions $\sigma : P \to \mathbb{N}$ such that $\sigma \circ \omega^{-1}$ is $\pi$-compatible. Notice that in the definition of $S_{\pi}(P, \omega)$ we only need the underlying set of $P$. Thus we can consider $S_{\pi}(P, \omega)$ when $P$ is a set with $n$ elements and $\omega : P \to [n]$ is a bijection. We will use the following facts [9, Lemma 3.15.3, Theorem 3.15.7]:

\[
A(P, \omega) = \bigcup_{\pi \in \mathcal{L}(P, \omega)} S_{\pi}(P, \omega),
\]

(4)
Let $\sigma \in A(P, \omega)$ where the sum is over all $\sigma \in A(P, \omega)$. Moreover, if $r > s \geq 0$ and a permutation $\pi \in S_n$, we have
\[
\int_{q^r \leq x_1 \leq \cdots \leq x_n \leq q^s} f(x_1, \ldots, x_n) d_q x_1 \cdots d_q x_n = (1-q)^n \sum_{\sigma \in S_n} \int_{0 \leq x_1 \leq \cdots \leq x_n \leq 1} f(q^{\sigma(x_1)}, \ldots, q^{\sigma(x_n)}) q^{\mid \sigma \mid}. \tag{5}
\]
In particular, when $r \to \infty$ and $s = 0$, we have
\[
\int_{q^r \leq x_1 \leq \cdots \leq x_n} f(x_1, \ldots, x_n) d_q x_1 \cdots d_q x_n = (1-q)^n \sum_{\sigma \in S_n} f(q^{\sigma(x_1)}, \ldots, q^{\sigma(x_n)}) q^{\mid \sigma \mid}. \tag{5}
\]

**Proposition 3.1.** Let $P = \{x_1, \ldots, x_n\}$ with a bijection $\omega : P \to [n]$ defined by $\omega(x_i) = i$. Then for integers $r > s \geq 0$ and a permutation $\pi \in S_n$, we have
\[
\int_{q^r \leq x_1 \leq \cdots \leq x_n \leq q^s} f(x_1, \ldots, x_n) d_q x_1 \cdots d_q x_n = (1-q)^n \sum_{\sigma \in S_n} \int_{0 \leq x_1 \leq \cdots \leq x_n \leq 1} f(q^{\sigma(x_1)}, \ldots, q^{\sigma(x_n)}) q^{\mid \sigma \mid}. \tag{5}
\]

**Proposition 3.2.** Let $P$ be a poset on $\{x_1, \ldots, x_n\}$ with labeling $\omega : P \to [n]$ given by $\omega(x_i) = i$ for all $i \in [n]$. Then for real numbers $a < b$, we have
\[
\int_{\mathcal{O}_b(P)} f(x_1, \ldots, x_n) d_q x_1 \cdots d_q x_n = \sum_{\pi \in \mathcal{L}(P, \omega)} \int_{a \leq x_1 \leq \cdots \leq x_n \leq b} f(x_1, \ldots, x_n) d_q x_1 \cdots d_q x_n. \tag{5}
\]

**Theorem 3.3.** Let $P$ be a poset on $\{x_1, \ldots, x_n\}$ with labeling $\omega : P \to [n]$ given by $\omega(x_i) = i$ for all $i \in [n]$. Then, we have
\[
\int_{\mathcal{O}(P)} f(x_1, \ldots, x_n) d_q x_1 \cdots d_q x_n = (1-q)^n \sum_{\sigma \in A(P, \omega)} f(q^{\sigma(x_1)}, \ldots, q^{\sigma(x_n)}) q^{\mid \sigma \mid}. \tag{5}
\]
Moreover, if $Q = \mathcal{O}(P) \cap ([q^{r_1}, q^{s_1}] \times \cdots \times [q^{r_n}, q^{s_n}])$ for $r_i, s_i \in \{0, 1, 2, \ldots\} \cup \{\infty\}$, then
\[
\int_{Q} f(x_1, \ldots, x_n) d_q x_1 \cdots d_q x_n = (1-q)^n \sum_{\sigma} f(q^{\sigma(x_1)}, \ldots, q^{\sigma(x_n)}) q^{\mid \sigma \mid}, \tag{5}
\]
where the sum is over all $\sigma \in A(P, \omega)$ with $s_i \leq \sigma(x_i) < r_i$ for every $i \in \{1, 2, \ldots, n\}$.

Thus, when $f(x_1, x_2, \ldots, x_n) = 1$ in Theorem 3.3 we obtain the following corollary.

**Corollary 3.4.** Let $P$ be a poset on $\{x_1, \ldots, x_n\}$ with labeling $\omega : P \to [n]$ given by $\omega(x_i) = i$ for all $i \in [n]$. Then
\[
\int_{\mathcal{O}(P)} d_q x_1 \cdots d_q x_n = \frac{1}{\lceil n \rceil q!} \sum_{\pi \in \mathcal{L}(P, \omega)} q^{\text{maj}(\pi)}. \tag{5}
\]
4 Changing posets

In this section we consider two posets $P$ and $Q$ where $Q$ is obtained from $P$ by adding a chain. The results in this section will be used for the next two sections.

**Lemma 4.1.** Let $\rho \in S_m$. Let $P$ be a poset on $\{x_1, \ldots, x_n\}$ with $x_s \leq_P x_t$. Define $Q$ to be the poset on $\{x_1, \ldots, x_n, y_1, y_2, \ldots, y_m\}$ with relations $x_i \leq_Q x_j$ if and only if $x_i \leq_P x_j$, and $x_s \leq_Q y_{p_1} \leq_Q \cdots \leq_Q y_{p_m} \leq_Q x_t$. Then, we have

\[
\int_{\mathcal{O}(P)} q^\text{maj}(\rho) x_t^m (q^{-\text{des}(\rho)} x_s/x_t; q)_m f(x_1, \ldots, x_n) dq x_1 \cdots dq x_n
\]

\[= [m]_q! \int_{\mathcal{O}(Q)} f(x_1, \ldots, x_n) dq y_1 \cdots dq y_m dq x_1 \cdots dq x_n, \tag{8}\]

\[
\int_{\mathcal{O}(P)} q^\text{maj}(\rho) x_t^m (q^{1-\text{des}(\rho)} x_s/x_t; q)_m f(x_1, \ldots, x_n) dq x_1 \cdots dq x_n
\]

\[= [m]_q! \int_{\mathcal{O}(Q)} f(x_1, \ldots, x_n) dq x_1 \cdots dq x_s dq y_1 \cdots dq y_m dq x_{s+1} \cdots dq x_n. \tag{9}\]

Moreover, (9) holds if the order of integration is obtained from $dq x_1 \cdots dq x_n$ by inserting $dq y_1 \cdots dq y_m$ anywhere between $x_s$ and $x_t$.

Similarly we can prove the following lemma.

**Lemma 4.2.** Let $\rho \in S_m$ and $s, t \in [m]$. Let $P$ be a poset on $\{x_1, \ldots, x_n\}$. Define $Q_1$ to be the poset on $\{x_1, \ldots, x_n, y_1, y_2, \ldots, y_m\}$ with relations $x_i \leq_{Q_1} x_j$ if and only if $x_i \leq_P x_j$, and $x_s \leq_{Q_1} y_{p_1} \leq_{Q_1} \cdots \leq_{Q_1} y_{p_m} \leq_{Q_1} x_t$. Define $Q_2$ to be the poset on $\{x_1, \ldots, x_n, y_1, y_2, \ldots, y_m\}$ with relations $x_i \leq_{Q_2} x_j$ if and only if $x_i \leq_P x_j$, and $y_{p_1} \leq_{Q_2} \cdots \leq_{Q_2} y_{p_m} \leq_{Q_2} x_t$. Then, we have

\[
\int_{\mathcal{O}(P)} q^\text{maj}(\rho) (q^{1-\text{des}(\rho)} x_s/x_t; q)_m f(x_1, \ldots, x_n) dq x_1 \cdots dq x_n
\]

\[= [m]_q! \int_{\mathcal{O}(Q_1)} f(x_1, \ldots, x_n) dq x_1 \cdots dq x_s dq y_1 \cdots dq y_m, \tag{10}\]

\[
\int_{\mathcal{O}(P)} q^\text{maj}(\rho) x_t^m f(x_1, \ldots, x_n) dq x_1 \cdots dq x_n
\]

\[= [m]_q! \int_{\mathcal{O}(Q_2)} f(x_1, \ldots, x_n) dq y_1 \cdots dq y_m dq x_1 \cdots dq x_n. \tag{11}\]

5 Examples

In this section we will compute the $q$-beta integral and a $q$-analogue of Dirichlet’s integral using our results. We will then find a connection with the general $q$-beta integral due to Andrews and Askey [2].
5.1 The \(q\)-beta integral

The following is the well known integral called the \(q\)-beta integral. We can prove this using our methods.

**Corollary 5.1.** We have
\[
\int_0^1 x^n(xq; q)_m dx_q = \frac{[n]_q! [m]_q!}{[n + m + 1]_q!}.
\]

**Proof.** By (10) and (11) we have
\[
\int_0^1 x^n(xq; q)_m dx_q = [n]_q! [m]_q! \int_{0 \leq y_1 \leq \cdots \leq y_m \leq x \leq \cdots \leq z_m \leq 1} d_q y_1 \cdots d_q y_m x_d q z_1 \cdots d_q z_m.
\]

By Corollary 2.3 we get the \(q\)-beta integral formula. \(\square\)

**Corollary 5.2.** Let \(\pi\) be a permutation on \([n]\). Let \(T\) be the poset obtained from the chain \(\{\pi_1 < \pi_2 < \cdots < \pi_n\}\) by adding \(k_i\) elements covered by \(\pi_i\). Then \(T\) becomes a tree and for each element \(v\) we define the hook length \(h_v\) of \(v\) to be the number of elements \(u\) with \(u \leq_T v\). Let \(\text{maj}(T) = \sum_{i \in \text{Des}(\pi)} h_{\pi_i}\). Then
\[
\int_{0 \leq x_{\pi_1} \leq \cdots \leq x_{\pi_n} \leq 1} x_1^{k_1} \cdots x_n^{k_n} dx_1 \cdots dx_n = \frac{q^{\text{maj}(T)}}{\prod_{v \in T} [h_v]_q}.
\]

**Proof.** This can be shown by applying (11) to each factor \(x_i^{k_i}\). \(\square\)

5.2 A \(q\)-analog of Dirichlet integral

We now consider the simplex
\[
\Omega_n = \{(x_1, \ldots, x_n) \in [0, 1]^n : x_1 + \cdots + x_n \leq 1\}.
\]

Dirichlet’s integral is the following, see [1] Theorem 1.8.1:
\[
\int_{\Omega_n} x_1^{\alpha_1-1} \cdots x_n^{\alpha_n-1} dx_1 \cdots dx_n = \frac{\Gamma(\alpha_1) \cdots \Gamma(\alpha_n)}{\Gamma(1 + \alpha_1 + \cdots + \alpha_n)}.
\]  

(12)

By introducing new variables \(y_i = x_1 + \cdots + x_i\) and integers \(k_i = \alpha_i + 1\), we get an equivalent version of (12)
\[
\int_{0 \leq y_1 \leq y_2 \leq \cdots \leq y_n \leq 1} y_1^{k_1} (y_2 - y_1)^{k_2} \cdots (y_n - y_{n-1})^{k_n} dy_1 \cdots dy_n = \frac{k_1! \cdots k_n!}{(n + k_1 + \cdots + k_n)!}.
\]  

(13)

We obtain a \(q\)-analog of (13) as follows.

**Corollary 5.3.** For nonnegative integers \(k_1, \ldots, k_n\), we have
\[
\int_{0 \leq y_1 \leq y_2 \leq \cdots \leq y_n \leq 1} y_1^{k_1} (qy_1/y_2; q)_{k_2} y_2^{k_2} \cdots (qy_{n-1}/y_n; q)_{k_n} y_n^{k_n} d_q y_1 \cdots d_q y_n = \frac{[k_1]_q! \cdots [k_n]_q!}{[n + k_1 + \cdots + k_n]_q!}.
\]
Proof. By applying (11) to the factor $y_i^{(k_i)}$ and (9) to the factors $(qy_{i-1}/y_i; q)_k y_i^{(k_i)}$ for $2 \leq i \leq n$, the left hand side is equal to

$$[k_1]q[k_2]q \cdots [k_n]q! \int_Q d_q x_1,1 \cdots d_q x_1, k_1 d_q y_1 d_q x_2,1 \cdots d_q x_2, k_2 d_q y_2 \cdots d_q x_n,1 \cdots d_q x_n, k_n d_q y_n,$$

where $Q = \{0 \leq x_1,1 \leq \cdots \leq x_1, k_1 \leq y_1 \leq x_2,1 \leq \cdots \leq x_2, k_2 \leq y_2 \leq \cdots \leq x_n,1 \leq \cdots \leq \cdots \leq x_n, k_n \leq y_n \leq 1\}$. By Corollary 2.3 we obtain the right hand side. □

5.3 The general $q$-beta integral of Andrews and Askey

In this subsection, we will show that Theorem 2.2 is related to the following result of Andrews and Askey on a generalization of the $q$-beta integral: for $|q| < 1$,

$$\int_a^b \frac{(qx/a; q)_\infty (qx/b; q)_\infty}{(Ax/a; q)_\infty (Bx/b; q)_\infty} d_q x = \frac{(1-q)(q; q)_\infty (ABq)_\infty (ab/q; q)_\infty (b/a; q)_\infty}{(Aq; q)_\infty (Bq; q)_\infty (a-b)(Ba/b; q)_\infty (Ab/a; q)_\infty}. \quad (14)$$

Let $\pi \in S_n$. We will compute the integral in Theorem 2.2 in a different way. First we decompose $\pi$ into $\pi = \sigma \tau$ using the largest integer $n$. Suppose that $\sigma$ and $\tau$ have $r$ and $s$ letters respectively and $\text{des}(\pi) = k_1, \text{des}(\tau) = k_2$. Then $n = r + s + 1$ and $k = k_1 + k_2 + 1$ if $k_2 \geq 1$ and $k = k_1$ if $k_2 = 0$.

The integral in Theorem 2.2 can be written as

$$\int_a^b \left( \int_{a \leq x_{r_1} \leq \cdots \leq x_{r_r} \leq x_n} d_q y_1 \cdots d_q y_r \int_{x_n \leq x_{r_1} \leq \cdots \leq x_{r_s} \leq b} d_q z_1 \cdots d_q z_s \right) d_q x_n,$$

where $y_1, \ldots, y_r$ and $z_1, \ldots, z_s$ are obtained by rearranging $x_{r_1}, \ldots, x_{r_r}$ and $x_{r_1}, \ldots, x_{r_s}$ respectively so that subscripts are increasing. By applying Theorem 2.2 to the two inside integrals, the above is equal to

$$\int_a^b \frac{x^r q^{\text{maj}(\sigma)}}{[r]q!} \frac{q^{\text{maj}(\tau)}}{[s]q!} (aq^{-k_1}/x; q)_r (aq^{-k_2}/b; q)_s d_q x. \quad (15)$$

Note that $\text{maj}(\pi) = \text{maj}(\sigma) + \text{maj}(\tau) + (r + 1)(k_2 - 1)$ if $s \geq 1$ and $\text{maj}(\pi) = \text{maj}(\sigma)$ if $s = 0$. In either case we can write $\text{maj}(\pi) = \text{maj}(\sigma) + \text{maj}(\tau) + (r + 1)(k - k_1)$. Since (15) is equal to the integral in Theorem 2.2 we obtain the following.

Proposition 5.4. Let $n, r, s, k_1, k_2$ be nonnegative integers such that $n = r + s + 1$, $k_1 \leq r$, $k_2 \leq s$, and $k = k_1 + k_2 + 1$ if $s \geq 1$ and $k = k_1$ if $s = 0$. Then

$$\int_a^b x^r (aq^{-k_1}/x; q)_r (aq^{-k_2}/b; q)_s d_q x = \frac{[r]q!{[s]q!}^r}{[n]q!} \frac{b^s q^{\text{maj}(\tau)}}{[s]q!} (aq^{-k_2}/b; q)_s d_q x.$$

We now consider the case $s \geq 1$ in Proposition 5.4 so that $k = k_1 + k_2 + 1$. One can rewrite the integral in Proposition 5.4 as

$$(-1)^r a^r q^{\text{maj}(\sigma)} (z)^{k_1 r} \int_a^b \frac{(x q^{-r+k_1}/a; q)_\infty (x q^{-k_2}/b; q)_\infty}{(x q^{k_1+1}/a; q)_\infty (x q^{k_2+1}/b; q)_\infty} d_q x \quad \text{and} \quad \text{maj}(\sigma) = k_1.$$
where the equality follows from the fact that the integrand is 0 if \( x = bq_1 \) for \( 0 \leq j \leq k_2 \) and \( x = aq_1 \) for \( 0 \leq j \leq r - k_1 - 1 \). Thus Proposition 5.4 is equivalent to

\[
\int_{aq_1^{-k_1}}^{bq_1^{k_2+1}} \frac{\Delta(q_1^{-r+k_1}/a)}{(aq_1^{-k_2}/b)_\infty} \frac{dx}{x} = \frac{(-1)^r b^{r+1} \Gamma_r \Gamma_s q l_{r+k-k_1} \Gamma(2)(aq_1^{-k}/b)_\infty}{a^r [n]_q}.
\]

One can check that the above equation is the special case of (14) with substitution

\[(a, b, A, B) \mapsto (aq_1^{-k_1}, bq_1^{k_2+1}, q^{r+1}, q^{s+1}).\]

6  \( q \)-Selberg integrals

In this section we will find a combinatorial interpretation for a \( q \)-Selberg integral.

For a set of variables \( x = (x_1, \ldots, x_n) \) we denote

\[
\Delta(x) = \prod_{1 \leq i < j \leq n} (x_i - x_j).
\]

There are many generalizations of the Selberg integral, see [4]. In this section we consider the following two \( q \)-Selberg integrals:

\[
\begin{align*}
\text{AS}_n(\alpha, \beta, m) &= \int_0^1 \cdots \int_0^1 \prod_{i=1}^n x_i^{\alpha-1} (qx_i; q)_\infty \prod_{1 \leq i < j \leq n} x_j^{2m} (q^{1-m}x_i/x_j; q)_{2m} \, dq_1 \cdots dq_n, \\
\text{KS}_n(\alpha, \beta, m) &= \int_0^1 \cdots \int_0^1 \prod_{i=1}^n x_i^{\alpha-1} (qx_i; q)_\infty \Delta_{n,m}(x) \, dq_1 \cdots dq_n,
\end{align*}
\]

where

\[
\Delta_{n,m}(x) = \prod_{1 \leq i < j \leq n} x_j^{m} (q^{1-m}x_i/x_j; q)_{m} x_j^{m} (x_i/x_j; q)_{m} = \Delta(x) \prod_{1 \leq i < j \leq n} x_j^{2m-1} (q^{1-m}x_i/x_j; q)_{2m-1}.
\]

It is easy to check that \( \Delta_{n,m}(x) \) is symmetric in the variables \( x_1, x_2, \ldots, x_n \).

Askey [5] conjectured that

\[
\text{AS}_n(\alpha, \beta, m) = q^{\alpha m + \beta m} \prod_{j=1}^n \frac{\Gamma_q(\alpha + (j-1)m) \Gamma_q(\beta + (j-1)m) \Gamma_q(1 + jm)}{\Gamma_q(\alpha + \beta + (n + j - 2)m) \Gamma_q(1 + m)},
\]

which has been proved by Habsieger [5] and Kadell [6] independently. Kadell [7, Eq. (4.11)] showed that

\[
\text{AS}_n(\alpha, \beta, m) = [n]_q^{m-1} \text{KS}_n(\alpha, \beta, m).
\]

Since the integrand of \( \text{KS}_n(\alpha, \beta, m) \) is symmetric under any permutation of \( x_1, \ldots, x_n \) and zero whenever \( x_i = x_j \), we have

\[
\text{KS}_n(\alpha, \beta, m) = n! \int_{0 \leq x_1 \leq \ldots \leq x_n \leq 1} \prod_{i=1}^n x_i^{\alpha-1} (qx_i; q)_\infty \Delta_{n,m}(x) \, dq_1 \cdots dq_n.
\]
Thus we have
\[
\text{AS}_n(\alpha, \beta, m) = \int_0^1 \cdots \int_0^1 \prod_{i=1}^n x_i^{\alpha-1} (qx_i; q)_{\beta-1} \prod_{1 \leq i < j \leq n} x_i^{2m} (q^{1-m} x_i/x_j; q)_{2m} d_q x_1 \cdots d_q x_n
\]
\[= [n]_{q,m}! \int_{0 \leq x_1 \leq \cdots \leq x_n \leq 1} \prod_{i=1}^n x_i^{\alpha-1} (qx_i; q)_{\beta-1} \Delta_n(x) d_q x_1 \cdots d_q x_n.\]

By (16) and (17), we have
\[
\int_{0 \leq x_1 \leq \cdots \leq x_n \leq 1} \prod_{i=1}^n x_i^{\alpha-1} (qx_i; q)_{\beta-1} \prod_{1 \leq i < j \leq n} x_j^{2m-1} (q^{1-m} x_i/x_j; q)_{2m-1} \Delta(x) d_q x_1 \cdots d_q x_n
\]
\[= q^{\alpha n(n^2+1)/2+2m^2} \prod_{j=1}^n \frac{\Gamma_q(\alpha + (j-1)m) \Gamma_q(\beta + (j-1)m) \Gamma_q(jm)}{\Gamma_q(\alpha + \beta + (n+j-2)m) \Gamma_q(m)}. \tag{18}\]

We define the Selberg poset \( P(n, r, s, m) \) to be the poset in which the elements are \( x_i, y_i^{(a)}, z_i^{(b)}, w_{i,j}^{(k)} \) for \( i,j \in [n], a \in [r], b \in [s], k \in [m] \) with \( i \neq j \), and the covering relations are as follows:

- \( x_i < w_{i,j}^{(1)} < \cdots < w_{i,j}^{(m)} < x_j \) for \( 1 \leq i < j \leq n \),
- \( x_i < w_{j,i}^{(m)} < \cdots < w_{j,i}^{(1)} < x_j \) for \( 1 \leq i < j \leq n \),
- \( y_i^{(1)} < \cdots < y_i^{(r)} < x_i < z_i^{(1)} < \cdots < z_i^{(s)} \) for \( 1 \leq i \leq n \).

For an example of \( P(n, r, s, m) \), see Figure 1.

The following theorem implies that the \( q \)-Selberg integral is the \( q \)-volume of an order polytope up to a certain factor.

**Theorem 6.1.** We have
\[
\int_{0 \leq x_1 \leq \cdots \leq x_n \leq 1} \prod_{i=1}^n x_i^{\alpha-1} (qx_i; q)_{\beta-1} \prod_{1 \leq i < j \leq n} x_j^{m} (q^{1-m} x_i/x_j; q)_{m} x_j^{m} (x_i/x_j; q)_{m} d_q x_1 \cdots d_q x_n
\]
\[= q^{\binom{n}{2}} \binom{n}{2}! \int_{\mathcal{O}(P(n,r,s,m))} d_q W d_q Y d_q X d_q Z, \]

where the order of integration \( d_q W d_q Y d_q X d_q Z \) is given by
\[
\left( \prod_{1 \leq i \neq j \leq n} d_q u_{i,j}^{(1)} \cdots d_q u_{i,j}^{(m)} \right) \left( \prod_{i=1}^n d_q y_i^{(1)} \cdots d_q y_i^{(r)} \right) \left( \prod_{i=1}^n d_q x_i \right) \left( \prod_{i=1}^n d_q z_i^{(1)} \cdots d_q z_i^{(s)} \right). \tag{19}\]

In the order of integration (19), the order of \( d_q w_{i,j}^{(k)} \) and \( d_q w_{i,j}^{(k)}' \) for \( (i,j) \neq (i', j') \) does not matter.

The following corollary gives a combinatorial interpretation for the \( q \)-Selberg integral in terms of linear extensions.
Fig. 1: The Selberg poset $P(n, r, s, m)$ for $n = 4, r = 2, s = 1, m = 3$ with labeling.
Corollary 6.2. We have
\[
\int_{0 \leq x_1 \leq \cdots \leq x_n \leq 1} \prod_{i=1}^{n} x_i^r (qx_i; q)_s \prod_{1 \leq i < j \leq n} x_j^m (q^{1-m}x_i/x_j; q)_m x_j^m (x_i/x_j; q)_m \, dq_1 \cdots dq_n
\]
\[
= \frac{q^{-\binom{n}{2}} \binom{[r]_q!}{[s]_q!} \binom{[m]_q!}{[2]_q!}}{[N]_q!} \sum_{\pi \in \mathcal{L}(P(n,r,s,m),\omega)} q^{\text{maj}(\pi)},
\]
where
\[
N = n(r + s + 1) + 2m \binom{n}{2},
\]
and, \(\omega\) is the labeling of the Selberg poset \(P(n, r, s, m)\) as shown in Figure 1.

Corollary 6.3. We have
\[
\sum_{\pi \in \mathcal{L}(P(n,r,s,m),\omega)} q^{\text{maj}(\pi)} = \frac{q^{\binom{n}{2}} \binom{[r]_q!}{[s]_q!} \binom{[m]_q!}{[2]_q!} [N]_q! \prod_{j=1}^{n} \frac{[r + (j-1)m]_q! [s + (j-1)m]_q! [jm - 1]_q!}{[r + s + 1 + (n + j - 2)m]_q! [m-1]_q!}},
\]
where \(N\) and \(\omega\) are the same as in Corollary 6.2.

References