Commented bibliographical references
1 Two posthumous papers
2 Manuscripts
3 Later works
4 Affectation problem
5 Jacobi's biography
6 Translations from latin
3.1 The xixth century
3.2 The beginning of the xxth century
3.3 The end of the xxth century
3.4 xxith siècle
1 Two posthumous papers
The main sources are the two papers [20, 21]. The first
introduces the bound and gives a sketch of a proof. It then describes
an algorithm allowing to solve the affectation problem.
After having recalled the bound and the algorithmm, the second
shows how one may compute a normal form using as few derivatives of
each equation as possible and then how to eliminate all variables
except one, using again as few derivatives of each equation as possible.
2 Manuscrits
A letter from Sigismund Cohn [II/13 a)], who initiated the editing
work, pursued after his death by Borchardt, gives us details about the
manuscripts left by Jacobi.
He used parts of various fragmentary versions, gathered in
[II/13 b)] in order to make a text as coherent as possible, that
was later modified by Borchardt [II/13 c)]. The manuscript [I/63] is the
final version intended to the typographer.
The paper [21] has been derived from the manuscript
[II/23 b)]. There should have been a beginning of a transcription
by Cohn, later pursued by Borchardt. One finds in [II/25] an
abstract from Borchardt's hand and an index with references to pages
in both transcription. There is also a part in latin, from Borchardt's
hand, that may be a sketch for a transition text not retained in the
final version.
The manuscript [II/24], from an unknown hand, mixes the texts of
both papers. The latin is of a lower quality, but the writing is
fine. A copist work for a synthesis of both texts?
The manuscripts [II/22, II/23 a)] consider the problem of computing
a normal form in view of the determination of multipliers. That is in
the second part of the paper [23], initialement published in
[Crelle29] that jacobi mentioned for the first time his method
foor the computation of a normal form. The manuscript [I/58 a)],
dated from Roma December 27th, 1843 corresponds to the first
part of this paper, initially published in [Crelle27].
3 Later works
3.1 The XIXth century
Edward John Nanson (1850-1936) [46] and Camille Jordan
[30] have claimed to bring more rigorous proofs, the
arguments of which are only generically true. George Chrystal
[4] considered the linear case with constant
coefficients. the famous paper of Sofya Kovalevskaya
[38] is the only one for the best of my knowledge,
with that of Ritt [53], to quote [21].
3.2 First half of the XXth century. Ritt
Joseph fels Ritt proved the bound in the linear case in [53]
and the non linear case for two variables in [54].
3.3 Second half of the XXth century
The paper [57] of Leonid Romanovich Volevich contains a
proof of the bound, rediscovered independently of Jacobi's work, for a
non degenerated linear system, I.e. a system such that the truncated
determinant is non vanishing.
In the framework of differential algebra, the main works in this
period are those of Richard M. Cohn's students. Bernard Greenspan
[15, 16] proved for a system defining
components being all of dimension 0 a bound that is weaker than
Jacobi's but better than Bézout's analog in the case of difference
equations. Barbara Lando [39, 40] proved the weak
bound1 for order 1 difference
system, a result generalized to differential systems
[41]. Richard Cohn a proved Greenspan's bound for arbitrary
differential systems [5] and shown that Jacobi's bound
implies the dimensional conjecture2 [6].
Marina Vladimirovna Kondratieva et al.
[32, 33] have proved the bound under
some regularity hypotheses allowing to reduce to the linear
case. Under similar hypotheses, Joseph Johnson proved Maurice Janet's
conjecture [29]. About linearizing differential systems
and Kaehler's differential in differential algebra, see
[27, 28].
Let us mention an attempt to generalize the bound to partial
differential systems, due to Joseph S. Tomasovic, Jr.
[56], a student of Ellis Robert Kolchin.
Outside the circle of differential algebar, Jacobi's bound is not very
well known. We may signal the works of Robert J. Magnus in the case of
linear differential operators that refer to Jacobi and Chrystal
[42, 43].
3.4 The XXIth century
Ehud Hrushovski gave in [19] a proof of the bound
for difference systems.
4 The affectation problem
The excellent paper of Alexander Schrijver [55] gives a
quite complete historical overview, to the exception of Jacobi's
work, unknow to that scientific community when the paper has been
written. The problem considered by Monge in
[44] may be considered as a special case.
Dénes Kőnig gave a pollynomial time algorithm for searching a
maximal matching in a bipartite graph, that is equivalent to consieder
a matrix of 0 and 1 [34].
See [18] for a faster method. See also
[7] for more details.
A footnote in [35] indicated a generalization to the case of
weighted graphs by Jeno Egerváry [8]. This
result allowed H. Kuhn to develop is de développer sa “Hungarian
method” [36, 37, 45, 10].
See also [9].
5 Jacobi's biography
The book [31] is a useful reference, despite his
hagiographical style. Hebert Pieper gives in
[49] an historical study and precious indications on
sources locations. The very complete list [1] provides
all the publication by and about Jacobi available at the library of
the science academy in Berlin.
6 Other translations of Jacobi's texts in latin
The paper of N. Gauthier [12] contains a translation of a
short passage of [26] that gives an original solution to
the problem of the motion of a point subject to a gravitational force.
The memoire of Laure Buhry [2] on the sur le theorem AF + BG
of Noether contains a full translation of [25].
References
-
6.1 Manuscrits
[I/58 a)]- Theoria novi multiplicatoris systemati aequationum
differentialium vulgarium applicandi, arbeit von Schreibers Hand,
Ergänzungen und Korrekturen von Jacobi und Crelle. 1843. 71
S. (unvollständig) [Correspond aux deux premiers chapitres de
[23], p. 317–394 de [GW4] et [C27 p. 199–268 Heft III].
La page 1 du manuscrit est datée “Roma d. 27
Dec. 1843”. Cursives latines. Indications typographiques
marginales en Kurrentschrift (p. 1, 5...).]
- [I/63]
- De investigando ordine systematis aequationum
differentialum vulgarium cujuscunque. (Nach dem Tode Jacobis von
C.W. Borchardt herausgegeben.) Manuscript von Bochardts Hand;
Fragment. 20 S. [P. 9–28 (soit les 20 dernières pages) du
manuscrit de [20] destiné au typographe. En cursives
latines pour le texte, en Kurrentschrift pour les indications
typographiques marginales.]
- [I/67a]
- Vorlesungen über Dynamik. von C.G.J. Jacobi. Berlin
1866. Titelblatt, Vorwort und Inhaltsverzeichnis. (Durchschoss. Druck
mit Korrekturen von fremder Hand. Nicht in G.W. abgedruckt.)
anschließend:
- [I/67b]
- De aequationum differentialum systemate non normali ad
formam normalem revocando. Druck aus dem von Clebsch herausgegeben
Vorlesungen über Dynamik von C.G.J. Jacobi Berlin
1866. S. 550–578, mit Korrekturen von Weierstraßund
vermutl. Borchardt. [cf[21]]
- [II/10]
- 1 Umschlag, enthaltend: Papiere zu meiner [Borschardts] und
Cohns Abschrift von Jacobis Abhandlungen über Reduktion simultaner
Differentialgleichungen in die canonische Form gehörtig, die aber
ungeeignet sind, an Clebsch gesandt zu werden
- [II/11 b)]
- Fragment. 37 S. Von Jacobis Hand. Auf Beiblatt zu S.15 ist
die Jareszahl 1848 vermerkt.
- [II/13 a)]
- Cohn: Schreiben, vermutlich an C.W. Borchardt. Hirschberg,
25.8.1859. 3 S.
- [II/13 b)]
- Jacobisches Manuscript: De ordine systematis
aequationum differentialium canonici variisque formis quas inducre
potest. Rote Zahl: 2186–96, 2200–2206. 35 S. Grundlage der von Cohn
abgeschriebene Abhandlung.
- [II/13 c)]
- Cohn [Sigismund]; Abschrift der Bll. 2205, 2206, 2204, 2203,
2202, 2201, 2200, 2187, 2188, 2189, 2196, 2195, 2191, 2192, 2193,
2194, Mit einem von Borchardt versehenen Inhaltsregister. 39 S.
- [II/22]
- Jacobi: De reductione simplicissima systematis
aequationum differentialium ad formam canonicam. Rote Zahl:
2182–2213. Darin enthalten die Seiten 2182–2185, 2197–2199,
2207–2213. Das Manuskript ist von Jacobis Hand. 14 Bll.
- [II/23]
- De multiplicatore systematis aequationum differentialium
forma normali non gaudentes. Rote Zahl: 2214–2251. Drin enthalten:
- [II/23 a)]
- Reduction simultaner Differentialgleichungen in ihre
canonische Form und Multiplicator derselben. Rote Zahl: 2214–2237.
Manuskript von Jacobi. 43 S. Umschlagvermerk: “Wahrscheinlich
unbrauchbar, wenigs vorläufig” von Borchardt.
- [II/23 b)]
- Titel wie auf dem Umsclag bzw. De aequationum differentialium
systemate non normali ad formam normalem revocando. Bll. 2238,
2239–2241, 2242–2251. 25 S. Ms. von Jacobi, Umschlag von Borchardt.
- [II/24]
- De aequationum differentialium systemate non normali ad
formam normalem revocando.
Anschließend : De investigando ordine systematis aequationum
differentialum vulgarium cujuscunque.
[Fragment] von fremder Hand. 11 S.
- [II/25]
- De aequationum differentialium systemate non normali ad
formam normalem revocando. Notizen von Borchardts Hand. 8 S.
- [V/6]
- Cohn. S[igismund]: Ueber confocale Flächen 2ten grades.
- [V/6 a1)]
- Manuscript von Cohn Entwurf. 24 S. mit 2 Abb.
- [V/6 a2)]
- Beginn der Reinschrift von Cohns Hand. 2 S. mit
2 Skizzen. Mit Vermerk von Freyer.
- [V/6 b)]
- Abschrift des Manuskriptes von Freyers Hand. Datiert: Schweidnitz,
März 1864, nach dem Tode Cohns. 14 S. ohne Abb.
6.2 OEuvres complètes
- [FD]
- Vorlesungen über Dynamik von C. G. J. Jacobi
nebstes fünf hinterlassenen Abhandlungen desselben, herausegegeben
von A. Clesch, Berlin, Druck und Verlag von Georg Reimer, 1866.
- [GWIV]
- C.G.J. Jacobi's gesammelte
Werke, vierter Band, herausgegeben von K. Weierstrass, Berlin,
Druck und Verlag von Georg Reimer, 1890.
- [GWV]
- C.G.J. Jacobi's
gesammelte Werke, fünfter Band, herausgegeben von K. Weierstrass,
Berlin, Druck und Verlag von Georg Reimer, 1890.
6.3 Journal de Crelle
- [Crelle27]
- Crelle Journal für die reine und
angewandte mathematik, Bd. 27, 1844.
- [Crelle29]
- Crelle Journal für die reine und
angewandte mathematik, Bd. 29, 1845.
- [Crelle64]
- Borchardt Journal für die reine und angewandte Mathematik,
Bd LXIV, Heft 4, p. 297-320, Berlin, Druck und Verlag von Georg
Reimer, 1865
6.4 Publications
- [1]
- Karl Gustav Jacob Jacobi, Mathematiker,
Ausgewählte literaturnachweise aus dem Bestand der Akademiebibliothek,
Berlin-Brandenburgische Akademie der Wissenschaften,
Akademiebibliothek, 2002.
- [2]
- Buhry (Laure), Le théorème AF + BG de
Noether, Mémoire de Master recherche, université Bordeaux 1, 2006.
- [3]
- Buium (Alexandru),
Differential algebra and diophantine geometry,
Actualités Mathématiques, Hermann, Paris, 1994.
- [4]
- Chrystal, Transactions of the Royal
Society of Edinburgh, vol. 38, p. 163, 1895.
- [5]
- Cohn (Richard M.), “The Greenspan bound for
the order of differential systems”, Proc. Amer. Math. Soc.
79 (1980), n∘ 4, 523–526.
- [6]
- Cohn (Richard M.), “Order and
dimension”, Proc. Amer. Math. Soc. 87 (1983),
n∘ 1, 1–6.
- [7]
- Cormen (Thomas H.), Leierson
(Charles E.), Rivest (Ronald L.) et Stein
(Clifford), Introduction to algorithms, second edition, The MIT
Press, Cambridge, 2001.
- [8]
- Egerváry (Jenő) [Eugène],
“Matrixok kombinatorius tulajdonságairól” [En Hongrois:
Sur les propriétés combinatoires des matrices], Matematikai és
Fizikai Lapok, vol. 38, 1931, 16–28; traduit en américain par H. W. Kuhn as
Paper 4, Issue 11 of Logistik Papers, Georges Washington
University Research Project, 1955.
- [9]
- Ford, Jr. (L.R.) et
Fulkerson (D.R.), “Solving the transportation problem”, Management Sci.,
3, 24–32.
- [10]
- Franck (András), On Kuhn's
Hungarian method — A tribute from Hungary, Egerváry Research
Group on Combinatorial Optimization, Technical reports, TR-2004-14,
Budapest, 2004, 7 p. ISSN 1587-4451.
- [11]
- Gaffiot (Félix), Dictionnaire illustré
Latin Français, Librairie Hachette, Paris, 1934. Réédition
complétée, 1978, ISBN 2.01.000535.X
- [12]
- Gauthier (N.), “Jacobi's 1842 solution
of the inverse-square problem”, AM. J. Phys. 72,
Mars 2004.
- [13]
- Gourin (E.), “??? ”, Bulletin of
the Am. Math. Soc, vol. 39 (1933), p. 593.
- [14]
- Grévisse (Maurice), Le bon
usage. Grammaire française, refondue par André Goose,
treizième édition revue, Duculot, Paris, Louvain-la-Neuve, 1993.
- [15]
- Greenspan (Bernard), A bound on the
order of the Zero dimensional components of a system of algebraic
difference equations, Ph.D. dissertation, Rutgers University, New
Brunswick, 1959.
- [16]
- Greenspan (Bernard), “A bound for the
orders of components of a system of algebraic difference
equations”, Pacific J. Math., 9, 1959, 473–486.
- [17]
- Hoe (John), Les systèmes d'équations
polynômes dans le siyuan yujian (1303), Mémoires de l'institut des
hautes études chinoises, vol. VI, Collège de France, Institut des
hautes études chinoises, [Paris 1977 ?]. ISBN 2-85757-004-X.
- [18]
- Hopcroft (John E.) et
Karp (Richard M.), “An n5/2 algorithm for maximum
matchings in bipartite graphs”, SIAM Journal on Computing,
2 (4), 225–231, 1973.
- [19]
- Hrushovski (Ehud), The
Elementary Theory of the Frobenius Automorphisms, preprint,http://arXiv.org/abs/math/0406514, 2004.
- [20]
- Jacobi (Carl Gustav Jacob),“De
investigando ordine systematis aequationum differentialum
vulgarium cujuscunque ”, publié par C. W. Borchardt, Borchardt Journal für die reine und angewandte Mathematik,
Bd LXIV, Heft 4, p. 297-320, Berlin, Druck und Verlag von Georg
Reimer, 1865, reproduit dans C.G.J. Jacobi's gesammelte
Werke, fünfter Band, herausgegeben von K. Weierstrass,
Berlin, Druck und Verlag von Georg Reimer, 1890, p. 193-216. (cf[I/63])
- [21]
- Jacobi (Carl Gustav Jacob), “De
aequationum differentialum systemate non normali ad formam normalem
revocando”, Vorlesungen über Dynamik von
C. G. J. Jacobi nebstes fünf hinterlassenen Abhandlungen
desselben, herausegegeben von A. Clesch, Berlin, Druck und Verlag
von Georg Reimer, 1866, p. 550–578 et C.G.J. Jacobi's
gesammelte Werke, fünfter Band, herausgegeben von
K. Weierstrass, Berlin, Druck und Verlag von Georg Reimer, 1890,
p. 485-513. (cf[I/67 a) et b)])
- [22]
- Jacobi (Carl Gustav Jacob), “Theoria novi
multiplicatoris systemati aequationum differentialium vulgarium
applicandi”, Crelle Journal für die reine und
angewandte Mathematik, Bd. 27 Heft III, p. 199–268 [chap. I et II]
(1844), Bd. 29 Heft III p. 213–279 [chap. III sections 14 à 25],
Heft IV 333–376 [chap. III sections 26 à 32] (1845) [Daté “Berol. d. 26 Julii 1845”], C.G.J. Jacobi's gesammelte
Werke, vierter Band, herausgegeben von K. Weierstrass, Berlin,
Druck und Verlag von Georg Reimer, 1886, p. 495–509. (cf[I/58a])
- [23]
- Jacobi (Carl Gustav Jacob), “Sul principo
dell'ultimo moltiplicatore e suo uso come nuovo principo generale di
meccanica”, Giornale arcadico, Tomo XCIX, p. 129–146, C.G.J. Jacobi's gesammelte Werke, vierter Band, herausgegeben von
K. Weierstrass, Berlin, Druck und Verlag von Georg Reimer, 1886,
p. 513–522.
- [24]
- Jacobi (Carl Gustav Jacob), “Geometrische
Theoreme”, [Fragments publiés par O. Hermes], Crelle Journal
für die reine und angewandte mathematik, Bd. 73, p. 179–206.
- [25]
- Jacobi (Carl Gustav Jacob),
“De relationibus, quae locum habere debent
inter puncta intersectionis duarum curvarum vel trium superficierum
algebraicarum dati ordinis, simul cum enodatione paradoxi
algebraici”, Crelle Journal für die reine und
angewandte Mathematik, Bd. 15, 1836, p. 285–308, reproduit dans
C.G.J. Jacobi's gesammelte Werke, dritter Band hrsg. von
K. Weierstrass, Berlin, Druck und Verlag von Georg Reimer, 1884,
329–354.
- [26]
- Jacobi (Carl Gustav Jacob),
“De motu puncti singularis”, C.G.J. Jacobi's gesammelte
Werke, vierter Band, herausgegeben von K. Weierstrass, Berlin,
Druck und Verlag von Georg Reimer, 1886, p. 495–509.
- [27]
- Johnson (Joseph), “Differential
dimension polynomials and a fundamental theorem on differential
modules”, Amer. J. Math. 91, 239–248, 1969.
- [28]
- Johnson (Joseph), “Kähler
differentials and differential algebra”, Ann. of Math.
89, 92–98, 1969.
- [29]
- Johnson (Joseph), “Systems of n
partial differential equations in n unknown functions: the
conjecture of M. Janet”, Trans. of the AMS, vol. 242,
Aug. 1978.
- [30]
- Jordan (Camille), “Sur l'ordre d'un
système d'équations différentielles ”, Annales de
la société scientifique de Bruxelles, vol. 7, B., 127–130,
1883.
- [31]
-
Koenigsberger (Leo), Carl
Gustav Jacob Jacobi. Festschrift zur Feier der hundertsten Wiederkehr
seines Geburstages, B. G. Teubner, Leipzig, 1904, xviii,
554 p.
- [32]
-
Кондратьева (Марина
Владимровна), «О границе Якоби системы
обыкновенных дифференциальных уравнений», Y Всесоюзный симпозиум по теории
колец, алгебр и модулей (21-23 сентября 1982г.): Тезисы сооб. Новосибирск:
Институт математики СО АН СССР, 1982, с. 74.
- [33]
-
Кондратьева (Марина
Владимровна), (Михалев Алеандр
Васильевич), Панкратьев (Евгени
Васильевич), «О границе Якоби для
систем обыкновенных дифференциальных многочленов», Алгебра. М.:
МГУ, 1982, с. 79-85.
- [34]
- Konig (Dénes), “Graphok és
matrixok”, Matematikai és Fizikai Lapok, 38 (1931),
116–119.
- [35]
- Konig (Dénes), Theorie der endlichen und
unendlichen Graphen, (1936), Chelsey, New-York, 1950.
- [36]
- Kuhn (Harold H.), “The Hungarian method
for the assignment problem”, Naval res. Logist. Quart. 2 (1955), 83–97.
- [37]
- Kuhn (Harold H.), “Variants of the
Hungarian method for assignment problems”, Naval res. Logist.
Quart. 3 (1956), 253–258.
- [38]
- Kowalevsky (Sophie von) [Sofya
Kovalevskaya], “Zur Theorie der partiellen
Differentialgleichungen”, Journal für die reine ound
angewandte Mathematik, 80, 1875, 1–32.
- [39]
- Lando (Barbara A.), Jacobi's bound
for the order of systems of first order differential equations,
Ph.D. dissertation, Rutgers University, New Brunswick, 1969.
- [40]
- Lando (Barbara A.), “Jacobi's bound
for the order of systems of first order differential equations”,
Trans. Amer. Math. Soc. 152 1970,
119–135.
- [41]
- Lando (Barbara A.), “Jacobi's bound
for first order difference equations”, Proc. Amer. Math. Soc. 32 1972, 8–12.
- [42]
- Magnus (Robert J.), “Operator-valued
functions, multiplicity and systems of linear differential
equations”, skýrsla RH-20-2001, Raunvísindastofnun
Háskólans, 2001.
- [43]
- Magnus (Robert J.), “Línuleg
diffurjöfnuhneppi og setningar Jacobis og Chrystals”, Tímarit um
raunvísindi og stærðfræði, 1. árg. 2 hefti, 2003.
- [44]
- Monge (Gaspard), “Mémoire sur la
théorie des déblais et des remblais”, Histoire de
l'Académie royale des Sciences, [année 1781. Avec les Mémoires
de Mathématique & de Physique pour la même Année] (2e partie)
(1784) [Histoire: 3438, Mémoire :] 666704.
- [45]
- Munkres (James), “Algorithms for the
assignment and transportation problems”, J. Soc.
Industr. Appl. Math., 5 (1957), 32–38.
- [46]
- Nanson (E.J.), “On the number of arbitrary
constants in the complete solution of ordinary simultaneous
differential equations”, Messenger of mathematics (2),
vol. 6, 77–81, 1876.
- [47]
- Ollivier (François) et
Sadik (Brahim), La borne de Jacobi pour une
diffiété définie par un système régulier,
prépublication, 2006.
- [48]
- Pascal (Blaise), OEuvres complètes,
Bibliothèque de la Pléiade n∘ 34, Gallimard, Paris, 1954.
- [49]
- Correspondenz Adrien-Marie Legendre – Carl
Gustav Jacob Jacobi, éditée par Herbert Pieper, avec une
étude “C. G. J. Jacobi in Berlin”, B. G. Teubner Stuttgart,
Leipzig, 1998, 245 p.
- [50]
- Ritt, (Joseph Fels), “On the
differentiability of a differential equation with respect to a
parameter”, Ann. of Math. (2) 20 (1919),
n∘ 4, 289–291.
- [51]
- Ritt, (Joseph Fels), Differential
Equations from the Algebraic Standpoint,
Amer. Math. Soc. Colloq. Publ., vol. 14, A.M.S., New-York, 1932.
- [52]
- Ritt, (Joseph Fels), “Systems of
algebraic differential equations”,
Annals of Mathematics, vol. 36, 1935, 293–302.
- [53]
- Ritt, (Joseph Fels), “Jacobi's
problem on the order of a system of differential equations ”,
Annals of Mathematics, vol. 36, 1935, 303–312.
- [54]
- Ritt, (Joseph Fels), 1950. Differential
Algebra, Amer. Math. Soc. Colloq. Publ., vol. 33, A.M.S., New-York.
- [55]
- Schrijver (Alexander), “On the
history of combinatorial optimization (till 1960)”, Handbook
of Discrete Optimization, K. Aardal, G.L. Nemhauser, R. Weismantel,
eds., Elsevier, Amsterdam, 2005, pp. 1–68.
- [56]
- Tomasovic, Jr., (Joseph S.), A
generalized Jacobi conjecture for arbitrary systems of differential
equations, Dissertation, Columbia University, 1976. [52 feuillets,
29 cm. Columbia University Rare Books and Manuscript Library, Butler
Library, New-York, LD1237.5D 1976 T552]
- [57]
- Volevich
(Leonid Romanovich), <Ob obshchikh sistemax differentsial'nykh
uravnenui>, Doklady AN SSSR, 1960, t. 132, N0 1, 20–23.
Traduction anglaise:
“On general systems of differential equations”, Soviet. Math. 1, 1960, 458–465.
- 1
- With the convention ordxjPi=0 if Pi
does not contain xj and its derivatives. With the convention
ordxjPi=−∞ in such a case it is the strong
bound. Proving the strong bound for order 1 systems imply the
general case (see [56]).
- 2
- The components defined by
r equations have codimension at most r.
This document was translated from LATEX by
HEVEA.