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Abstract. Many image processing algorithms rely on nearest neighbor
(NN) or on the k nearest neighbor (kNN) search problem. Several meth-
ods have been proposed to reduce the computation time, for instance
using space partitionning. However, these methods are very slow in high
dimensional space. In this paper, we propose a fast implementation of
the brute-force algorithm using GPU (Graphics Processing Units) pro-
gramming. We show that our implementation is up to 150 times faster
than the classical approaches on synthetic data, and up to 75 times faster
on real image processing algorithms (finding similar patches in images
and texture synthesis).

Keywords: kNN, GPU programming, NVIDIA CUDA, image process-
ing, finding similar patches, texture synthesis.

1 Introduction

Many image processing algorithms rely on nearest neighbor (NN) or on the k
nearest neighbor (kNN) search problem. Typical applications are for instance
finding similar patches in images [12], texture synthesis [8], object tracking [5],
content based image indexing [15], deblurring [3,2], image filtering, etc.

The simplest way to solve the kNN search problem is the brute-force algo-
rithm, also known as exhaustive search. However, the main issue of this algo-
rithm is its huge complexity. Several methods have been proposed to reduce the
computation time. For instance, a kd-tree [4] creates a partition of the point
sets using a tree structure. The kNN search problem can take advantage of this
structure by computing the distances between a given query point and a sub-
set of the reference points. Another famous approach, named LSH (for Locality
Sensitive Hashing) [11,9,6,1], uses hash functions to compute the distances be-
tween a given query point and a subset of the reference points. However, both of
these approaches are inefficient (in terms of computation time) in many image
processing algorithms because they still are very slow in high-dimensional space.

In this paper, we propose a fast implementation of the brute-force algorithm
using GPU (Graphics Processing Units) programming. We show first that our
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implementation is up to 150 times faster than classical approaches (tree based) on
synthetic data. Second, we apply our GPU implementation to two different image
processing algorithms: finding similar patches in images and texture synthesis.
These algorithms both use points in high-dimensional spaces (respectively up
to 1323 and 660). In comparison to classical approaches (tree based), our GPU
implementation is up to 75 times faster for finding similar patches in images,
and up to 50 times faster for texture synthesis.

2 K Nearest Neighbor Search

2.1 Problem Definition

Let R = {r1, r2, · · · , rm} be a set of m reference points with values in �d, and
let Q = {q1, q2, · · · , qn} be a set of n query points in the same space. The kNN
search problem consists in finding the k nearest neighbors of each query point
qi ∈ Q in the reference set R given a specific distance. Commonly, the Euclidean
or the Manhattan distance is used but any other distance can be used instead
such as the Chebyshev norm or the Mahalanobis distance. Figure 1 illustrates
the kNN problem with k = 3 and for a point set with values in �2.

Fig. 1. Illustration of the kNN search problem for k = 3. The blue points correspond
to the reference points and the red cross corresponds to the query point. The circle
gives the distance between the query point and the third closest reference point.

2.2 Classical Approaches

Brute force The kNN search problem can be solved using the basic brute force
algorithm (noted BF) and also called exhaustive search. Basically, for a given
query point qi, this algorithm consists in computing all the distances between
qi and the reference points and to select the k reference points providing the
smallest distances. To be more precise, the BF algorithm is the following:

1. Compute all the distances between qi and rj , ∀j ∈ [1, m].
2. Sort the computed distances.
3. Select the k reference points corresponding to the k smallest distances.
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The main issue of this algorithm is its huge complexity: O(nmd) for the nm
distances computed (approximately 2nmd additions/subtractions and nmd mul-
tiplications) and O(nm log m) for the n sorts performed (mean number of com-
parisons).

Space partitionning Several kNN algorithms have been proposed in order to
reduce the computation time. Generally, the idea is to reduce the number of
distances computed [13]. A kd-tree [4] is a partition of the point sets using a
tree structure. The kNN search problem can take advantage of this structure
by computing the distances between a given query point and a subset of the
reference points: only distances within nearby volumes are computed. Mount
and Arya propose [14] a highly optimized implementation (written in C++)
of the kNN search using a kd-tree structure. Their library, nammed ANN (for
Approximate Nearest Neighbor) supports both exact and approximate nearest
neighbor searching in spaces of various dimensions. ANN is currently one of the
fastest kNN search using space partionning.

Locality-Sensitive Hashing (LSH) For methods based on space partition-
ning (e.g. using kd-tree), it has been shown [16] that the kNN search in a high
dimensional space was comparable to the BF algorithm. Andoni et al. have
proposed [11,9,6,1] a kNN search method, nammed LSH (for Locality Sensitive
Hashing), very efficient for such a dimension. The basic idea is the following:
two closed points are hashed in the same bucket (collision) with high probabil-
ity. Basically, the authors propose to use a set of hash functions to compute the
buckets related to the reference points. Then, the hash functions are applied
for each query point. A simple hash table allows to find quickly the reference
points closed to the considered query point. Finally, the distances are computed
only between the current query point and the selected reference points. LSH is
known to be faster than ANN in high dimensional space. Indeed, the computa-
tion of hash function value is very fast. However, the construction of the buckets
should be preprocessed due to its slowness. However, in many image processing
applications, buckets cannot be preprocessed.

3 GPU Programming and Application to kNN Search

Through the C-based API CUDA (Compute Unified Device Architecture),
NVIDIA1 recently brought the power of parallel computing on Graphics
Processing Units (GPU) to general-purpose algorithmic [7,10]. This opportunity
represents a promising alternative to solve the kNN problem in reasonable time.
In this paper, we propose a CUDA implementation for solving the brute force
kNN search problem. We compared its performances to several CPU-based im-
plementations. Besides being faster by up to two orders of magnitude, we noticed

1 http://www.nvidia.com/page/home.html

http://www.nvidia.com/object/cuda home.html
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that the dimension of the sample points has only a small impact on the compu-
tation time with the proposed CUDA implementation, contrary to the C-based
implementations.

The BF method is by nature highly-parallelizable. This property makes the
BF method perfectly suitable for a GPU implementation. Let us remind that
the BF method has two steps: the distance computation and the sorting. For
simplicity, let us assume here that the reference and query sets both contain n
points.

The computation of the n2 distances can be fully parallelized since the dis-
tances between pairs of points are independent. Two kinds of memory are used:
global memory and texture memory. The global memory has a huge bandwith
but the performances decrease if the memory accesses are non-coalesced. In such
a case, the texture memory is a good option because there are less penalties for
non-coalesced readings. As a consequence, we use global memory for storing the
query set (coalesced readings), and texture memory for the reference set (non-
coalesced readings). Therefore, we obtain better performances than when using
global memory and shared memory2 as proposed in the matrix multiplication
example provided in the CUDA SDK.

The n sortings can also be parallelized while the operations performed during
a given sorting of n values are clearly not independent of each other. Each thread
sorts all the distances computed for a given query point. The sorting consists in
comparing and exchanging many distances in a non-predictable order. Therefore,
the memory accesses are not coalesced, indicating that the texture memory could
be appropriate. However, it is a read-only memory. Only the global memory
allows readings and writings. This penalizes the sorting performance.

The Quicksort is a popular algorithm because it is one of the fastest algo-
rithms. However, it is recursive and CUDA does not allow recursive functions.
As a consequence, it cannot be used in our implementation. The comb sort com-
plexity is O(n log n) both in the worst and average cases. It is also among the
fastest algorithms and simple to implement. Nevertheless, keeping in mind that
we are only interested in the k smallest elements, k being usually very small
compared to n, we consider an insertion sort variant which only outputs the k
smallest elements. As illustrated in figure 2, this algorithm is faster than the
comb sort for small values of parameter k. For this experiment, n = 4800 points
(both reference and query sets) drawn uniformly in a 64 dimensional space were
used. Using the comb sort, the computation time is constant whatever the value
k because all the distances are sorted. On the contrary, using the insertion sort,
the computation time linearly increases with k. We define k0 as follow: the comb
sort and the insertion sort are performed in the same computation time for
k = k0. k0 is the abscissa value of the intersection of the two straight lines
shown in figure 2. For k < k0, the insertion sort is faster than comb sort. Beyond
k0, the comb sort is the fastest. Figure 3 shows the value of k0 as a function of the

2 Memory shared by a set of threads with high bandwidth and no penalties for random
memory accesses.
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size of sets. k0 approximately increases linearly. According to our experiments,
the affine function approximating this increase, computed by linear regression,
is given by:

k0(n) = 0.0247n + 1.3404 (1)

where n is the size of the reference and query sets. The judicious choice of the
sorting algorithm used depends both on the size of sets and on the parameter k.
In our experiments, we used the insertion sort because it provided the smallest
computation time due to the value of k and the size of point sets used.

Fig. 2. Evolution of the computation time for comb sort (blue line) and insertion sort
(red line) algorithms as a function of parameter k. For this experiment, 4800 points
(reference and query sets) are used in a 64 dimensional space. The computation time
is constant for the comb sort and linearly increases for the insertion sort.

4 Experimental Results

In this section, we consider two sets of n points (reference and query points) in
a d dimensional space. These points are drawn uniformly in [0, 1]d. The values
n and d are specified bellow.

The initial goal of our work was to speed up the kNN search process in a Mat-
lab program. In order to speed up computations, Matlab allows to use external
C functions (Mex functions). Likewise, a recent Matlab plug-in allows to use
external CUDA functions. In this section, we show, through a computation time
comparison, that CUDA greatly accelerates the kNN search process. We com-
pare three different implementations of the BF method and one method based
on kd-tree (ANN). The methods compared are:

– BF method implemented in Matlab (noted BF-Matlab)
– BF method implemented in C (noted BF-C)
– BF method implemented in CUDA (noted BF-CUDA)
– ANN C++ library (noted ANN-C++)
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Fig. 3. Evolution of k0 as a function of the size of sets in a 64 dimensional space. The
red dashed line is the linear approximation of the experimental curve (blue solid line)
computed by linear regression. Bellow this line, the insertion sort is faster than the
comb sort algorithm, and above this line, comb sort is the fastest algorithm.

The computer used to do these experimentations is a Pentium 4 3.4 GHz with
2GB of DDR2 memory PC2-5300 (4×512MB dual-channel memory). The
graphic card used is a NVIDIA GeForce 8800 GTX with 768MB of DDR3 mem-
ory and 16 multiprocessors (128 processors) interfaced with a PCI-express 1.1
port.

The table 1 presents the computation time of the kNN search process for
each method and implementation listed before. This time depends on the size
of the point sets (reference and query sets), on the space dimension, and on
the parameter k. In this paper, k was set to 20. The computation time, given
in seconds, corresponds respectively to the methods BF-Matlab, BF-C, ANN-
C++, and BF-CUDA. The chosen values for n and d are typical values that can
be found in papers using the kNN search.

The main result of this paper is that CUDA allows to greatly reduce the
time needed to resolve the kNN search problem. According to the table 1, BF-
CUDA is up to 407 times faster than BF-Matlab, 295 times faster than BF-C,
and 148 times faster than ANN-C++. For instance, with 38400 reference and
query points in a 96 dimensional space, the computation time is 57 minutes for
BF-Matlab, 44 minutes for BF-C, 22 minutes for the ANN-C++, and less than
10 seconds for the BF-CUDA. The considerable speed up we obtain comes from
the highly-parallelizable property of the BF method.

The figure 4 shows the evolution of the computation time as a function of
the dimension d for sets of n = 4800 points. The dimension d influences only
the duration of the distance computation process. The computation time seems
to increase linearly with the dimension of the points. The major difference be-
tween these methods is the slope of the increase. For sets of 4800 points, the
slope is 0.54 for BF-Matlab method, 0.45 for BF-C method, 0.20 for ANN-C++
method, and quasi-null (actually 0.001) for BF-CUDA method. In other words,
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Table 1. Comparison of the computation time, given in seconds, of the methods BF-
Matlab, BF-C, ANN-C++, and BF-CUDA. BF-CUDA is up to 407 times faster than
BF-Matlab, 295 times faster than BF-C, and 148 times faster than ANN-C++.

Methods n=1200 n=2400 n=4800 n=9600 n=19200 n=38400

d=8 BF-Matlab 0.51 1.69 7.84 35.08 148.01 629.90
BF-C 0.13 0.49 1.90 7.53 29.21 127.16
ANN-C++ 0.13 0.33 0.81 2.43 6.82 18.38
BF-CUDA 0.01 0.02 0.04 0.13 0.43 1.89

d=16 BF-Matlab 0.74 2.98 12.60 51.64 210.90 893.61
BF-C 0.22 0.87 3.45 13.82 56.29 233.88
ANN-C++ 0.26 1.06 5.04 23.97 91.33 319.01
BF-CUDA 0.01 0.02 0.06 0.17 0.60 2.51

d=32 BF-Matlab 1.03 5.00 21.00 84.33 323.47 1400.61
BF-C 0.45 1.79 7.51 30.23 116.35 568.53
ANN-C++ 0.39 1.78 9.21 39.37 166.98 688.55
BF-CUDA 0.01 0.03 0.08 0.24 0.94 3.89

d=64 BF-Matlab 2.24 9.37 38.16 149.76 606.71 2353.40
BF-C 1.71 7.28 26.11 111.91 455.49 1680.37
ANN-C++ 0.78 3.56 14.66 59.28 242.98 1008.84
BF-CUDA 0.02 0.04 0.11 0.40 1.57 6.65

d=80 BF-Matlab 2.35 11.53 47.11 188.10 729.52 2852.68
BF-C 2.13 8.43 33.40 145.07 530.44 2127.08
ANN-C++ 0.98 4.29 17.22 73.22 302.44 1176.39
BF-CUDA 0.02 0.04 0.13 0.48 1.98 8.17

d=96 BF-Matlab 3.30 13.89 55.77 231.69 901.38 3390.45
BF-C 2.54 10.56 39.26 168.58 674.88 2649.24
ANN-C++ 1.20 4.96 19.68 82.45 339.81 1334.35
BF-CUDA 0.02 0.05 0.15 0.57 2.29 9.61

all the methods are sensitive to the space dimension in term of computation time.
However, regarding to the tested methods, the impact of the dimension on the
performances is quasi-negligible for the method BF-CUDA. This characteristic
is particularly useful for applications using high dimensional space.

The figure 5 shows the evolution of the computation time as a function of
the number of points n in a d = 32 dimensional space. The number of points
n influences the duration of both the distance computation process and the
sorting process. The computation time increases polynomially with n. Indeed,
n2 distances are computed. However, the impact of n is one more time quasi-
negligible for the method BF-CUDA in comparison to other tested methods.

The figure 6 shows the evolution of the computation time as a function of
the parameter k for sets of n = 4800 points in a d = 32 dimensional space. The
parameter k influences the duration of the sorting process. The computation
time increases linearly with k. BF-CUDA is less sensitive to k than other tested
methods.
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Fig. 4. Evolution of the computation time as a function of the point dimension for
methods BF-Matlab, BF-C, BF-CUDA, and ANN-C++ for a set of 4800 points, k = 20.
The computation time linearly increases with the dimension of the points whatever the
method used. However, the increase is quasi-null with the BF-CUDA.

Fig. 5. Evolution of the computation time as a function of the number of points for
methods BF-Matlab, BF-C, BF-CUDA, and ANN-C++ for a set in a d = 32 dimen-
sional space, k = 20. The computation time polynomially increases with n whatever
the method used. However, the increase is negligible with the BF-CUDA in comparison
to other tested methods.

5 Application to Image Processing Problems

5.1 Finding Similar Patches in Images

The search of similar patches in images is a crucial problem in many computer
vision algoriths. Given an initial hand edited patch in a image, the problem
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consists in finding the k most similar patches in the considered image. By treat-
ing each image patch as a point in a high-dimensional space, we can use a
kNN algorithm to find the k most similar patches. In this context, Kumar et
al. [12] study many different kNN search algorithms. They conclude that the
tree based algorithms (vantage point trees [17]) have the best overall construc-
tion and search performance.

In this part, we compare our CUDA implementation of the BF method to
ANN-C++. The initial patch size is 21× 21 and the image size is 128× 128. So,
the problem of finding similar patches consists in finding the k nearest neighbors
among 16384 points in a 441 dimensional space for gray level images and in
a 1323 dimensional space for color images. Note that k is set at k = 10. For
gray level images (dimension=441), the kNN search process takes 3.55 seconds
with ANN-C++ and 0.06 seconds with BF-CUDA. In this case, BF-CUDA is
60 times faster than ANN-C++. For color images (dimension=1323), the kNN
search process takes 11.03 seconds with ANN-C++ and 0.15 seconds with BF-
CUDA. In this case, BF-CUDA is 75 times faster than ANN-C++.

Fig. 6. Evolution of the computation time as a function of the parameter k for methods
BF-Matlab, BF-C, BF-CUDA, and ANN-C++ for a set of 4800 points in a d = 32 di-
mensional space. The computation time linearly increases with k whatever the method
used. However, BF-CUDA is less sensitive to k than other tested methods.

5.2 Texture Synthesis

Efros and Leung proposed in [8] a very simple but very efficient texture synthe-
sis algorithm. Consider the problem of synthesizing a large picture It (of size
wt × ht) given a small texture sample Is (of size ws × hs). The synthesis algo-
rithm first starts by filling the target image by random-colored pixels, and then
synthesis the target image It by (re)assigning pixel colors, pixel by pixel, follow-
ing the horizontal scaline order. For a given pixel position (x, y) ∈ It, we consider
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a square window centered at (x, y) of side 2s + 1 where s denotes an integer pa-
rameter defining the neighborhood size and related to texture synthesis quality.
In that window, note that 2s2 + 2s pixels have already been synthesized. These
pixels form an L-shape. For assigning the color of the pixel (x, y) in the It, we
search for the best match of the current L-shape in the image Is (see figure 7).
The best match is defined as the matching position in Is that minimizes the sum
of square differences. Each L-shape can be map into a high dimensional vector
where d = 2s2 + 2s (see figure 8).

We consider small texture samples (Is) of size 64 × 64 pixels and we want to
create a large picture (It) of size 128×128 pixels. The window size used is 21×21
pixels (s = 10). For gray level images (dimension=220), the kNN search process
takes 0.72 seconds with ANN-C++ and 0.018 seconds with BF-CUDA. In this
case, BF-CUDA is 40 faster than ANN-C++. For color images (dimension=660),
the kNN search process takes 2.00 seconds with ANN-C++ and 0.04 seconds with
BF-CUDA. In this case, BF-CUDA is 50 faster than ANN-C++.

Source Image Is Target Image It

Scanline

s

2s + 1
L-shape window

Fig. 7. Synthesis of a 2D texture image

2s + 1 = 5

c−1,0c−2,0

c−2,−2 c−1,−2 c0,−2 c1,−2 c2,−2

c−2,−1 c−1,−1 c0,−1 c1,−1 c2,−1

Linearization d = 2(s2 + s).

c−2,−2 c−1,−2 c0,−2 c1,−2 c2,−2 c−2,−1 c−1,−1 c0,−1 c1,−1 c2,−1 c−2,0 c−1,0

Fig. 8. Linearization of a L-shape into a high dimensional vector

6 Conclusion

In this paper, we have proposed a fast, parallel k nearest neighbor (kNN) search
implementation using a graphics processing units (GPU). We have shown that
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the use of the NVIDIA CUDA API accelerates the kNN search by up to a factor
of 150 compared to a classical tree-based approach on synthetic data. Likewise,
our implementation is up to 75 times faster on real image processing algorithms
(finding similar patches in images and texture synthesis).
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