
2
Conditional Structures and Loops

2.1 Instruction workflow

In this chapter, we start by describing how programmers can control the
execution paths of programs using various branching conditionals and looping
structures. These branching/looping statements act on blocks of instructions
that are sequential sets of instructions. We first explain the single choice if

else and multiple choice switch case branching statements, and then describe
the structural syntaxes for repeating sequences of instructions using either the
for, while or do while loop statements. We illustrate these key conceptual
programming notions using numerous sample programs that emphasize the
program workflow outcomes. Throughout this chapter, the leitmotiv is that
the execution of a program yields a workflow of instructions. That is, for short:

Program runtime = Instruction workflow

F. Nielsen, A Concise and Practical Introduction to Programming Algorithms in Java,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-84882-339-6 2,
c© Springer-Verlag London Limited, 2009

32 2. Conditional Structures and Loops

2.2 Conditional structures: Simple and multiple
choices

2.2.1 Branching conditions: if ... else ...

Programs are not always as simple as plain sequences of instructions that are
executed step by step, one at a time on the processor. In other words, programs
are not usually mere monolithic blocks of instructions, but rather compact
structured sets of instruction blocks whose executions are decided on the fly.
This gives a program a rich set of different instruction workflows depending on
initial conditions.
Programmers often need to check the status of a computed intermediate
result to branch the program to such or such another block of instructions
to pursue the computation. The elementary branching condition structure in
many imperative languages, including Java, is the following if else instruction
statement:

if (booleanExpression)
{BlockA}
else
{BlockB}

The boolean expression booleanExpression in the if structure is first
evaluated to either true or false. If the outcome is true then BlockA is
executed, otherwise it is BlockB that is selected (boolean expression evaluated
to false). Blocks of instructions are delimited using braces {...}. Although the
curly brackets are optional if there is only a single instruction, we recommend
you set them in order to improve code readibility. Thus, using a simple if

else statement, we observe that the same program can have different execution
paths depending on its initial conditions. For example, consider the following
code that takes two given dates to compare their order. We use the branching
condition to display the appropriate console message as follows:

int h1 = . . . , m1 = . . . , s1 = . . . ; // initial conditions
int h2 = . . . , m2 = . . . , s2 = . . . ; // initial conditions
int hs1 = 3600∗h1 + 60∗m1 + s1 ;
int hs2 = 3600∗h2 + 60∗m2 + s2 ;
int d=hs2−hs1 ;

i f (d>0) System . out . p r i n t l n ("larger") ;
else

System . out . p r i n t l n ("smaller or identical") ;

Note that there is no then keyword in the syntax of Java. Furthermore, the
else part in the conditional statement is optional:

2.2 Conditional structures: Simple and multiple choices 33

if (booleanExpression)
{BlockA}

Conditional structures allow one to perform various status checks on variables
to branch to the appropriate subsequent block of instructions. Let us revisit
the quadratic equation solver:

Program 2.1 Quadratic equation solver with user input
import java . u t i l . ∗ ;
class Quadrat icEquat ionRevis i ted
{
public stat ic void main (St r ing [] arg)
{
Scanner keyboard=new Scanner (System . in) ;

System . out . p r i n t ("Enter a,b,c of equation ax^2+bx+c=0:") ;
double a=keyboard . nextDouble () ;
double b=keyboard . nextDouble () ;
double c=keyboard . nextDouble () ;

double de l t a=b∗b−4.0∗a∗c ;
double root1 , root2 ;

i f (de l ta >=0)
{
root1= (−b−Math . sq r t (d e l t a)) / (2 . 0∗ a) ;
root2= (−b+Math . s q r t (d e l t a)) / (2 . 0∗ a) ;
System . out . p r i n t l n ("Two real roots:"+root1+" "+root2) ;
}
else
{System . out . p r i n t l n ("No real roots") ;}

}
}

In this example, we asserted that the computations of the roots root1 and
root2 are possible using the fact that the discriminant delta>=0 in the block
of instructions executed when expression delta>=0 is true. Running this
program twice with respective user keyboard input 1 2 3 and -1 2 3 yields
the following session:

Enter a,b,c of equation ax^2+bx+c=0:1 2 3
No real roots
Enter a,b,c of equation ax^2+bx+c=0:-1 2 3
Two real roots:3.0 -1.0

In the if else conditionals, the boolean expressions used to select the
appropriate branchings are also called boolean predicates.

34 2. Conditional Structures and Loops

2.2.2 Ternary operator for branching instructions:
Predicate ? A : B

In Java, there is also a special compact form of the if else conditional
used for variable assignments called a ternary operator. This ternary operator
Predicate ? A : B provided for branching assignments is illustrated in the
sample code below:

double x1=Math . PI ; // constants defined in the Math class
double x2=Math .E;
double min=(x1>x2) ? x2 : x1 ; // min value
double d i f f= (x1>x2) ? x1−x2 : x2−x1 ; // absolute value
System . out . p r i n t l n (min+" difference with max="+d i f f) ;

Executing this code, we get:

2.718281828459045 difference with max=0.423310825130748

The compact instruction

double min=(x1>x2)? x2 : x1;

...is therefore equivalent to:

double min;
if (x1>x2) min=x2;
else min=x1;

Figure 2.1 depicts the schema for unary, binary and ternary operators.

++

a

*

a b

? :

Predicate a b

Unary operator Binary operator Ternary operator

a++ a*b (Predicate? a : b)

post-incrementation multiplication compact branching

Figure 2.1 Visualizing unary, binary and ternary operators

2.2 Conditional structures: Simple and multiple choices 35

2.2.3 Nested conditionals

Conditional structures may also be nested yielding various complex program
workflows. For example, we may further enhance the output message of our
former date comparison as follows:

int h1 = . . . , m1 = . . . , s1 = . . . ;
int h2 = . . . , m2 = . . . , s2 = . . . ;
int hs1 = 3600∗h1 + 60∗m1 + s1 ;
int hs2 = 3600∗h2 + 60∗m2 + s2 ;
int d=hs2−hs1 ;

i f (d>0) {System . out . p r i n t l n ("larger") ;}
else

{ i f (d<0)
{System . out . p r i n t l n ("smaller") ;}
else

{System . out . p r i n t l n ("identical") ;}
}

Since these branching statements are all single instruction blocks, we can also
choose to remove the braces as follows:

if (d>0) System.out.println("larger");
else
if (d<0)
System.out.println("smaller");
else
System.out.println("identical");

However, we do not recommend it as it is a main source of errors to novice
programmers. Note that in Java there is no shortcut1 for else if. In Java, we
need to write plainly else if. There can be any arbitrary level of nested if

else conditional statements, as shown in the generic form below:

i f (p r ed i ca t e1)
{Block1}
else
{

i f (p r ed i ca t e2)
{Block2}
else
{
i f (p r ed i ca t e3)

{Block3}
else

{
. . .

}
}

1 In some languages such as Maple R©, there exists a dedicated keyword like elif.

36 2. Conditional Structures and Loops

}

In general, we advise to always take care with boolean predicates that use
the equality tests == since there can be numerical round-off errors. Indeed,
remember that machine computations on reals are done using single or double
precision, and thus the result may be truncated to fit the formatting of numbers.
Consider for example the following tiny example that illustrates numerical
imprecisions of programs:

class RoundOff
{
public stat ic void main (St r ing [] arg)
{
double a=1.0d ;
double b=3.14d ;
double c=a+b ;

i f (c==4.14) // Equality tests are dangerous!
{
System . out . p r i n t l n ("Correct") ;
}
else
{
System . out . p r i n t l n ("Incorrect. I branched on the wrong

block!!!") ;
System . out . p r i n t l n ("a="+a+" b="+b+" a+b=c="+c) ;
// unexpected behavior may follow...
}

}
}

Running this program, we get the surprising result caused by numerical
precision problems:

Incorrect. I branched on the wrong block!!!
a=1.0 b=3.14 a+b=c=4.140000000000001

This clearly demonstrates that equality tests == in predicates may be harmful.

2.2.4 Relational and logical operators for comparisons

The relational operators (also called comparison operators) that evaluate to
either true or false are the following ones:

2.2 Conditional structures: Simple and multiple choices 37

< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
!= not equal to

One of the most frequent programming errors is to use the equality symbol =
instead of the relational operator == to test for equalities:

int x=0;

if (x=1) System.out.println("x equals 1");
else System.out.println("x is different from 1");

Fortunately, the compiler generates an error message since in that case types
boolean/int are incompatible when performing type checking in the expression
x=1. But beware that this will not be detected by the compiler in the case of
boolean variables:

boolean x=false;
if (x=true) System.out.println("x is true");
else System.out.println("x is false");

In that case the predicate x=true contains an assignment x=true and the
evaluated value of the “expression” yields true, so that the program branches
on the instruction System.out.println("x is true");.
A boolean predicate may consist of several relation operators connected using
logical operators from the table:

&& and
|| or
! not

The logic truth tables of these connectors are given as:

&& true false

true true false

false false false

|| true false

true true true

false true false

Whenever logical operators are used in predicates, the boolean expressions are
evaluated in a lazy fashion as follows:

– For the && connector, in Expr1 && Expr2 do not evaluate Expr2 if Expr1
is evaluated to false since we alreaady know that in that case that Expr1

&& Expr2 = false whatever the true/false outcome value of expression
Expr2.

38 2. Conditional Structures and Loops

– Similarly, for the || connector, in Expr1 || Expr2 do not evaluate Expr2 if
Expr1 is evaluated to true since we already know that in that case Expr1

|| Expr2 = true whatever the true/false value of expression Expr2.

The lazy evaluation of boolean predicates will become helpful when manipu-
lating arrays later on. For now, let us illustrate these notions with a simple
example:

Program 2.2 Lazy evaluation of boolean predicates
class LazyEvaluation {

public stat ic void main (St r ing [] a rgs)
{

double x=3.14 , y=0.0 ;
boolean t e s t1 , t e s t 2 ;

// Here division by zero yields a problem
// But this is prevented in the && by first checking

whether the denominator is
// zero or not
i f ((y !=0 .0) && (x/y>2.0))

{// Do nothing
; }

else
{// Block
t e s t 1=(y !=0 .0) ;
t e s t 2=(x/y>2.0) ;

System . out . p r i n t l n ("Test1:"+te s t 1+" Test2:"+te s t 2) ;
System . out . p r i n t l n ("We did not evaluate x/y that is

equal to "+(x/y)) ;
}

// Here , again we do not compute x/y since the first term
is true

i f ((y==0.0) | | (x/y>2.0))
{// Block
System . out . p r i n t l n ("Actually , again , we did not

evaluate x/y that is equal to "+(x/y)) ;
}

}
}

Running this program, we get the following console output:

Test1:false Test2:true
We did not evaluate x/y that is equal to Infinity
Actually, again, we did not evaluate x/y that is equal to Infinity

2.2 Conditional structures: Simple and multiple choices 39

2.2.5 Multiple choices: switch case

The nested if else conditional instructions presented in § 2.2.3 are somehow
difficult to use in case one would like to check that a given variable is equal
to such or such a value. Indeed, nested blocks of instructions are difficult to
properly visualize on the screen. In the case of multiple choices, it is better
to use the switch case structure that branches on the appropriate set of
instructions depending on the value of a given expression. For example, consider
the code:

class ProgSwitch
{public stat ic void main (St r ing arg []) {
System . out . p r i n t ("Input a digit in [0..9]:") ;
Scanner keyboard=new Scanner (System . in) ;
int n=keyboard . next Int () ;
switch (n)
{
case 0 : System . out . p r i n t l n ("zero") ; break ;
case 1 : System . out . p r i n t l n ("one") ; break ;
case 2 : System . out . p r i n t l n ("two") ; break ;
case 3 : System . out . p r i n t l n ("three") ; break ;
default : System . out . p r i n t l n ("Above three!") ;
break ;
}}}

The conditional statement switch consider the elementary expression n of type
int and compare it successively with the first case: case 0. This means that
if (n==0)Block1 else \{ ... \}. The set of instructions in a case should end
with the keyword break. Note that there is also the default case that contains
the set of instructions to execute when none of the former cases were met. The
formal syntax of the multiple choice switch case is thus:

switch (TypedExpression)
{
case C1 :

Se tO f In s t ruc t i on s1 ;
break ;

case C2 :
Se tO f In s t ruc t i on s2 ;
break ;

. . .
case Cn:

Se tOf In s t ruc t i on sn ;
break ;

default :
S e tO fDe f au l t In s t ru c t i on s ;

}
}

40 2. Conditional Structures and Loops

Multiple choice switch conditionals are often used by programmers for
displaying messages2:

Program 2.3 Demonstration of the switch case statement
int dd=3; // 0 for Monday , 6 for Sunday

switch (dd)
{
case 0 :

System . out . p r i n t l n ("Monday") ; break ;
case 1 :

System . out . p r i n t l n ("Tuesday") ; break ;
case 2 :

System . out . p r i n t l n ("Wednesday") ; break ;
case 3 :

System . out . p r i n t l n ("Thursday") ; break ;
case 4 :

System . out . p r i n t l n ("Friday") ; break ;
case 5 :

System . out . p r i n t l n ("Saturday") ; break ;
case 6 :

System . out . p r i n t l n ("Sunday") ; break ;
default :

System . out . p r i n t l n ("Out of scope!") ;

}

2.3 Blocks and scopes of variables

2.3.1 Blocks of instructions

A block of instructions is a set of instructions that is executed sequentially.
Blocks of instructions are delimited by braces, as shown below:

{
// This is a block
// (There are no control structures inside it)
Instruction1;
Instruction2;
...
}

A block is semantically interpreted as an atomic instruction at a macroscopic
level when parsing.
2 Or used for translating one type to another when used in functions

2.4 Looping structures 41

2.3.2 Nested blocks and variable scopes

Blocks can be nested. This naturally occurs in the case of if-else structures
that may internally contain other conditional structures. But this may also be
possible without conditional structures for controlling the scope of variables.
Indeed, variables defined in a block are defined for all its sub-blocks. Thus
a variable cannot be redefined in a sub-block. Moreover variables defined in
sub-blocks cannot be accessed by parent blocks as illustrated by the following
example:

class NestedBlock
{
public stat ic void main (St r ing [] arg)
{
int i =3;
int j =4;

System . out . p r i n t l n ("i="+i+" j="+j) ;

{
// Cannot redefine a variable i here
int i i =5;
j++;
i −−;
}

System . out . p r i n t l n ("i="+i+" j="+j) ;
// Cannot access variable ii here
}
}

i=3 j=4
i=2 j=5

Finally note that single instructions in control structures such as if-else are
interpreted as implicit blocks where braces are omitted for code readibility.

2.4 Looping structures

Loop statements are fundamental structures for iterating a given sequence of
instructions, repeating a block of instructions. Java provides three kinds of
constructions for ease of programming, namely: while, for and do-while.
Theoretically speaking, these three different constructions can all be emulated
with a while statement. We describe the semantic of each structure by
illustrating it with concrete examples.

42 2. Conditional Structures and Loops

2.4.1 Loop statement: while

The syntax of a while loop statement is as follows:

while (boolean_expression)
{block_instruction;}

This means that while the boolean expression is evaluated to true, the
sequence of instructions contained in the block instruction is executed.
Consider calculating the greatest common divisor (gcd for short) of two integers
a and b. That is, the largest common divisor c such that both a and b can be
divided by c. For example, the GCD of a = 30 and b = 105 is 15 since a = 2×3×
5 and b = 5×3×7. Euclid came up with a simple algorithm published for solving
this task. The algorithm was reported in his books Elements around3 300 BC.
Computing the GCD is an essential number operation that requires quite a
large amount of computation for large numbers. The GCD problem is related
to many hot topics of cryptographic systems nowadays. Euclid’s algorithm is
quite simple: If a = b then clearly the GCD of a and b is c = a = b. Otherwise,
consider the largest integer, say a without loss of generality, and observe the
important property that

GCD(a, b) = GCD(a − b, b).

Therefore, applying this equality reduces the total sum a + b, and at some
point, after k iterations, we will necessarily have ak = bk. Let us prove a
stronger result: GCD(a, b) = GCD(b, a mod b).

Proof

To see this, let us write a = qb + r where q is the quotient of the Euclidean
division and r its reminder. Any common divisor c of a and b is also a common
divisor of r: Indeed, suppose we have a = ca′ and b = cb′, then r = a − qb =
(a′ − qb′)c. Since all these numbers are integers, this implies that r is divisible
by c. It follows that the greatest common divisor g or a and b is also the greatest
common divisor of b and r.

Let us implement this routine using the while loop statement. The terminating
state is when a = b. Therefore, while a �= b (written in Java as a!=b), we retrieve
that smaller number to the larger number using a if conditional structure. This
gives the following source code:
3 It is alleged that the algorithm was likely already known in 500 BC.

2.4 Looping structures 43

Program 2.4 Euclid’s Greatest Common Divisor (GCD)
class GCD {
public stat ic void main (St r ing [] arg)
{
int a ;
int b ;
while (a!=b)

{
i f (a>b) a=a−b ;

else b=b−a ;
}

System . out . p r i n t l n (a) ; // or b since a=b
}
}

Running this program for a = 30 and b = 105 yields GCD(a, b) = 15.
Euclid’s algorithm has a nice geometric interpretation: Consider an initial
rectangle of width a and height b. Bisect this rectangle as follows: Choose
the smallest side, and remove a square of that side from the current rectangle.
Repeat this process until we get a square: The side length of that square is the
GCD of the initial numbers. Figure 2.2 depicts this “squaring” process.

Figure 2.2 A ge-
ometric interpretation
of Euclid’s algorithm.
Here, illustrated for
a = 65 and b = 25
(GCD(a, b) = 5)

2.4.2 Loop statement: do-while

Java provides another slightly different syntax for making iterations: the do

loop statement. The difference with a while statement is that we execute at
least once the sequence of instructions in a do statement, whereas this might not
be the case of a while statement, depending on the evaluation of the boolean
predicate. The syntax of a do structure is as follows:

44 2. Conditional Structures and Loops

do
{block_instruction;}
while (boolean_expression);

That is, the boolean expression is evaluated after the block of instructions,
and not prior to its execution, as it is the case for while structures. Consider
computing the square root

√
a of a non-negative number a using Newton’s

method. Newton’s method finds the closest root to a given initial condition x0

of a smooth function by iterating the following process: Evaluate the tangent
equation of the function at x0, and intersect this tangent line with the x-axis:
This gives the new value x1. Repeat this process until the difference between
two successive steps go beyond a prescribed threshold (or alternatively, repeat
k times this process). For a given value xn, we thus find the next value xn+1

by setting the y-ordinate of the tangent line at (xn, f(xn)) to 0:

y = f ′(xn)(x − xn) + f(xn) = 0.

x

y = f(x) f

xnxn+1

xn+1 = xn − f(x)
f ′(xn)

f(xn)

y = f ′(xn)(x − xn) + f(xn)

Tangent line

xn+2

Figure 2.3 Newton’s method for finding the root of a function

It follows that we get:

xn+1 = xn − f(x)
f ′(xn)

.

Figure 2.3 illustrates this root finding process. Let us use Newton’s method to
calculate the square root function of a by finding the root of equation f(x) =
x2 − a. We implement the loop using a do structure as follows:

2.4 Looping structures 45

Program 2.5 Newton’s approximation algorithm
double a = 2 . 0 , x , xold ;
x = a ;
do{
xold = x ;
// compute one iteration
x = (xold+a/xold) / 2 . 0 ;
System . out . p r i n t l n (x) ;
} while (Math . abs (x−xold) > 1e−10) ;

1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.4142135623730949

Netwon’s method is provably converging very fast under mild assumptions.

2.4.3 Loop statement: for

Often programmers need to repeat a sequence of instructions by changing some
variables by a given increment step. Although this can be done using the former
while/do structures, Java provides a more convenient structure: the for loop.
The generic syntax of a for structure is as follows:

for(initialCondition; booleanPredicate; update)
{
block_instructions;
}

For example, consider computing the cumulative sum Sn of the first n integers:

Sn =
n−1∑

i=0

i =
n(n − 1)

2
.

We have the recurrence equation: Sn = n− 1+Sn−1 with S0 = 0. Therefore to
compute this cumulative sum, we start in reverse from S0 and get Si by adding
i − 1 to Si−1 for all i ∈ {1, ..., n}. Let us use the for structure as follows:

Program 2.6 Cumulative sum
class ForLoop
{
public stat ic void main (St r ing args [])
{
int i , n=10;
int cumulLoop=0;
for (i =0; i<n ; i++) {cumulLoop+=i ;}

46 2. Conditional Structures and Loops

int cumul=(n∗(n−1)) /2 ; // closed -form solution
System . out . p r i n t l n (cumulLoop+" closed -form:"+cumul) ;
}
}

To give yet another usage of the for loop, consider computing an approximation
of π by a Monte-Carlo simulation. We draw uniformly random points in a unit
square, and count the number of points falling inside the unit disk centered
inside the square. The ratio of the points falling inside this square to the overall
number of points gives a good approximation of π

4 . We draw a uniform random
number in [0, 1) in Java using the function random() of the Math class. This kind
of Monte-Carlo simulation is extremely useful to compute complex integrals,
and is often used in the finance industry. Let us give the code for approaching
π:

Program 2.7 Approaching π by Monte-Carlo simulation
class MonteCarloPI
{
public stat ic void main (St r ing [] a rgs)
{
int i t e r = 10000000; // # iterations
int h i t s = 0 ;
for (int i = 0 ; i < i t e r ; i++)
{
double rX = 2∗Math . random () − 1 . 0 ;
double rY = 2∗Math . random () − 1 . 0 ;
double d i s t = rX∗rX + rY∗rY ;
i f (d i s t <= 1 . 0) // falls inside the disk
h i t s++;
}
double r a t i o = (double) h i t s / i t e r ; // Ratio of areas
double area = r a t i o ∗ 4 . 0 ;
System . out . p r i n t l n ("Estimation of PI: " + area+ " versus

library PI "+Math . PI) ;
}
}

Unfortunately running this code gives a poor approximation of π since we get
only a few correct digits, even after drawing 107 points.

Estimation of PI: 3.1413544 versus library PI 3.141592653589793

2.4.4 Boolean arithmetic expressions

A category of arithmetic expressions that are especially useful for writing
predicates in loop structures are boolean expressions. Although they are not

2.5 Unfolding loops and program termination 47

usually used in plain assignments, they also make perfect sense as illustrated
by the program below:

Program 2.8 Boolean arithmetic expression
class Boolean{
public stat ic void main (St r ing [] a rgs)
{
boolean b1 = (6−2) == 4 ;
boolean b2 = 22/7 == 3+1/7.0 ;
boolean b3 = 22/7 == 3+ 1/7 ;
System . out . p r i n t l n (b1) ; // true
System . out . p r i n t l n (b2) ; // false
System . out . p r i n t l n (b3) ; // true
}
}

2.5 Unfolding loops and program termination

2.5.1 Unfolding loops

When executing a program that contains loop structures, we can unroll these
loops manually. Compilers actually do it sometimes to optimize the generated
bytecode.

2.5.2 Never ending programs

Once programmers first experience loops, a major issue arises: Does the
program terminate? It is indeed quite easy to write never ending programs
by writing loops that execute forever as illustrated below:

int i=0;
while (true)
i++;

Always make sure when you write a for structure that the boolean expression
will evaluate to false at some stage. Take care to avoid mistyping problems
such as:

for(i=0;i>=0;i++)
; // common mistyping error in the boolean predicate

... and prefer to use curly brackets instead of the semi-colon for single-
instruction blocks:

48 2. Conditional Structures and Loops

for(i=0;i>=0;i++)
{ }

2.5.3 Loop equivalence to universal while structures

As mentioned earlier, the three loop structures in Java are all equivalent to a
universal while structure. These different loop syntaxes are provided to help
programmers quickly write code.
for(instructionInit; booleanCondition; instructionUpdate) block instruction;

instructionInit;
while (booleanCondition)
block instruction3; instructionUpdate;

2.5.4 Breaking loops at any time with break

We can voluntarily escape loops at any time by using the keyword break. This
special instruction is useful for example when we ask users to input any given
number of data.

2.5.5 Loops and program termination

Consider the following sequence {ui}i of integers numbers as follows:

un+1 =
{

un/2 if n is even,
3un + 1 otherwise.

,

initialized for any given u0 ∈ N.
For example, let u0 = 14. Then u1 = 14, u2 = 7, u3 = 22, u4 = 11, u5 = 34,
u6 = 17, u7 = 52, u8 = 26, u9 = 13, u10 = 40, u11 = 20, u12 = 10, u13 = 5,
u14 = 16, u15 = 8, u16 = 4, u17 =2, u18 = 1. Once 1 is reached the sequence
cycles 1, 4, 2, 1, 4, 2 It is conjectured but not yet proved that for any u0 ≥ 1
the sequence reaches in a finite step number 1. We can numerically check that
this conjecture holds for a given number u0 = n using the following do loop
structure:

Program 2.9 Syracuse’s conjecture
do{
i f ((n%2)==0)

2.6 Certifying programs: Syntax, compilation and numerical bugs 49

n/=2;// divide by 2
else
n=3∗n+1;
} while (n>1) ;

However one has not yet managed to successfully prove that this program will
eventually stop for any given n. It is a hard mathematical problem that is known
in the literature by the name of Syracuse’s conjecture or 3x + 1 problem.4

This simple toy problem raises the fundamental halting problem famous in
theoretical computer science. Loosely speaking, Gödel proved that there is no
program that can decide whether any given program will stop after a finite
number of instructions or not. This important theoretical result, which is one
of the pillars of computer science, will be further explained using a simple
contradiction argument in Chapter 3.8.

2.6 Certifying programs: Syntax, compilation
and numerical bugs

A program that compiles without reporting any error message is a syntactically
correct program. Beware that because of the language flexibility provided by
its high-level semantic, some obscure codes5 compile. These obscure codes are
often very difficult for humans to understand. To get a flavor, consider for
example the snippet:

Program 2.10 Syntactically correct program
int i =3;
// syntax below is valid! guess its result?
int var=i+++i ;

This program compiles and is valid since the expression i+++i is well-formed.
How did the compiler interpret it? Well, first the compiler put parenthesis from
the operator priority rule: (i++)+i. Then it first evaluated this expression by
performing the post-incrementation i++ (so that it returns 3 for this expression
but now i stores value 4). Finally, it adds to the value of i 3 so that we get
3 + 4 = 7.
Even when a simple human-readable program compiles, it becomes complex
for humans to check whether the input fits all branching conditions. In other
words, are all input cases considered so that the program does not have to
4 See http://arxiv.org/abs/math/0608208/ for some annotated bibliographic

notes.
5 Hackers love them.

50 2. Conditional Structures and Loops

process “unexpected” data? This can turn out to be very difficult to assert for
moderate-size programs. For example, consider the quadratic equation solver:

Program 2.11 Quadratic equation solver
import java . u t i l . ∗ ;
class QuadraticEquationScanner
{
public stat ic void main (St r ing [] arg)
{
double a , b , c ; // choose a=1, b=1, c=1
Scanner input=new Scanner (System . in) ; input . useLoca le (Locale .

US) ;
a=input . nextDouble () ;
b=input . nextDouble () ;
c=input . nextDouble () ;
double de l t a=b∗b−4.0∗a∗c ;
double root1 , root2 ;
// BEWARE: potentially Not a Number (NaN) for neg.

discriminant!
root1= (−b−Math . sq r t (de l t a)) / (2 . 0∗ a) ;
root2= (−b+Math . s q r t (de l t a)) / (2 . 0∗ a) ;
System . out . p r i n t l n ("root1="+root1+" root2="+root2) ;
}
}

The problem with that program is that we may compute roots of negative
numbers. Although mathematically this makes sense with imaginary numbers
C, this is not the case for the function Math.sqrt(). The function returns a
special number called NaN (standing for Not a Number) so that the two roots
may be equal to NaN. It is much better to avoid that case by ensuring with a
condition that delta is greater or equal to zero:

i f (de l ta >=0.0d)
{
root1= (−b−Math . sq r t (d e l t a)) / (2 . 0∗ a) ;
root2= (−b+Math . s q r t (d e l t a)) / (2 . 0∗ a) ;
System . out . p r i n t l n ("root1="+root1+" root2="+root2) ;
}
else
{System . out . p r i n t l n ("Imaginary roots!") ;}

The rule of thumb is to write easy-to-read code and adopt conventions once and
for all. For example, always put a semi-colon at the end of instructions, even
if it is not required (atomic blocks). Always indent the source code to better
visualize nested structures with braces {}. Take particular care of equality test
== with assignment equal symbol = (type checking helps find some anomalous
situations but not all of them).
Finally, let us insist that even if we considered all possible input cases and
wrote our codes keeping in mind that they must also be human-readable, it

2.7 Parsing program arguments from the command line 51

is impossible for us to consider all numerical imprecisions that can occur.6

Consider the following example:

Program 2.12 A simple numerical bug
// Constant
f ina l double PI = 3 . 1 4 ;
int a=1;
double b=a+PI ;
i f (b==4.14) // Equality test are dangerous!!!

System . out . p r i n t l n ("Correct result") ;
else
{System . out . p r i n t l n ("Incorrect result") ;
System . out . p r i n t l n ("a="+a+" b="+b+" PI="+PI) ;
}

This code is dangerous because, mathematically speaking, it is obvious that
a+b = 4.14 but because of the finite representation of numbers in machine (and
their various formatting), this simple addition yields an approximate result. In
practice, the first lesson we learn is that we always need to very cautiously use
equality tests on reals. The second lesson is that proofs of programs should be
fully automated. This is a very active domain of theoretical computer science
that will bring novel solutions in the 21st century.

2.7 Parsing program arguments from the
command line

So far we have initialized programs either by interactively asking users to enter
initial values at the console, or by plugging these initial values directly into the
source code. The former approach means that we have high-latency programs
since user input is “slow.” The latter means that programs lack flexibility since
we need to recompile the code every time we would like to test other initial
parameter conditions.
Fortunately, programs in Java can be executed with arguments given in the
command line. These arguments are stored in the array arg of the main

function:

public static void main (String[] args)

These arguments are stored as strings args[0], args[1], etc. Thus even if we
enter numbers like ”120” and ”28” in the command line:

6 Some software packages such as Astrée used in the airplane industry do that
automatically to certify code robustness. See http://www.astree.ens.fr/

52 2. Conditional Structures and Loops

prompt gcd 120 28

These numbers are in fact plain sequences of characters that are stored in
Java strings. Thus the program needs at first to reinterpret these strings
into appropriate numbers (integers or reals), prior to assigning them to
variables. To parse a string and get its equivalent integer (int), one uses
Integer.parseInt(stringname);. For reals, to parse and create the cor-
responding float or double from a given string str, use the following
functions: Float.parseFloat(str) or Double.parseDouble(str). Let us
revisit Euclid’s GCD program by taking the two numbers a and b from the
program arguments:

class gcd {
public stat ic void main (St r ing [] arg)
{
// Parse arguments into integer parameters
int a= In t ege r . pa r s e In t (arg [0]) ;
int b= In t ege r . pa r s e In t (arg [1]) ;
System . out . p r i n t l n ("Computing GCD("+a+","+b+")") ;

while (a!=b)
{
i f (a>b) a=a−b ;
else b=b−a ;
}
// Display to console
System . out . p r i n t l n ("Greatest common divisor is "+a) ;
}
}

Compiling and running this program yields:
prompt%java gcd 234652 3456222
Computing GCD(234652,3456222)
Greatest common divisor is 22

But there is more. In Chapter 1.8, we explained the basic mechanism of
input/output redirections (I/O redirections). Using I/O redirections with
program arguments yields an efficient framework for executing and testing
programs. Let us export the result to a text file named result.txt:

prompt%java gcd 234652 3456222 >result.txt

Then we saved the texts previously written on the console to that file. We can
visualize its contents as follows:
prompt%more result.txt
Computing GCD(234652,3456222)
Greatest common divisor is 22

We are now ready to proceed to the next chapter concentrating on functions
and procedures.

2.8 Exercises 53

2.8 Exercises

Exercise 2.1 (Integer parity)

Write a program that interactively asks for an integer at the console
and reports its odd/even parity. Modify the code so that the program
first asks the user how many times it would like to perform parity
computations, and then iteratively asks for a number, compute its parity,
and repeat until it has performed the required number of parity rounds.
Further modify this program so that now both input and output are
redirected into text files, say input.txt and output.txt.

Exercise 2.2 (Leap year)

A leap year is a year with 366 days that has a 29th February in its
calendar. Years whose division by 4 equals an integer are leap years
except for years that are evenly divisible by 100 unless they are also
evenly divisible by 400. Write a program that asks for a year and report
on whether it is a leap year or not. Modify this code so that the program
keeps asking for years, and compute its leap year property until the user
input −1.

Exercise 2.3 (Displaying triangles)

Write a program that asks for an integer n, and write on the output a
triangle as illustrated for the following example (with n = 5):

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

Exercise 2.4 (Approximating a function minimum)

Let f(x) = sin(25
x2−4x+6) − x

3 for x ∈ [0, π] be a given function. Write a
program that takes as argument an integer n and returns the minimum
of f(x) on the range x ∈ [0, π] evenly sampled by steps 1

n . Execute the
program for n = 10, n = 100 and n = 100000 and check that the root is
about −1.84318.

Exercise 2.5 (Computing
√

a numerically)

Consider Newton’s root finding method to compute 1√
a

by choosing
function f(x) = a − 1

x2 . Show that we obtain the following sequence:

54 2. Conditional Structures and Loops

xn+1 = xn

2 (3− ax2
n. Write the corresponding program. Does it converge

faster or slower than Newton’s method for f(x) = a − x2?

Exercise 2.6 (Variable scope)

Consider the following program:

class ScopeExerc i se
{
public stat ic void main (St r ing [] a)
{
int j =5;
for (int i =0; i <10; i++)

System . out . p r i n t l n ("i="+i) ;
j+=i +10;
System . out . p r i n t l n ("j="+j) ;
}
}

Explain what is wrong with this program. How do we change the scope
of variable i in order to compile?

Exercise 2.7 (Chevalier DeMere and the birth of probability **)

In the 17th century, gambler Chevalier De Méré asked the following
question of Blaire Pascal and Pierre de Fermat: How can one compare
the following probabilities

– Getting at least one ace in four rolls of a dice,

– Getting at least one double ace using twenty-four rolls of two dices.

Chevalier De Méré thought that the second chance game was better but
lost constantly. Using the function Math.random() and loop statements,
experiment with the chance of winning for each game. After running
many trials (say, a million of them), observe that the empirical probabil-
ity of winning with the first game is higher. Prove that the probability of
winning for the first and second games are respectively

(
5
6

)4 and
(

35
36

)24.

Exercise 2.8 (Saint Petersburg paradox **)

The following game of chance was introduced by Nicolas Bernoulli: A
gamer pays a fixed fee to play, and then a fair coin is tossed repeatedly
until, say, a tail first appears. This ends the game. The pot starts at 1
euro and is doubled every time a head appears. The gamer wins whatever
is in the pot after the game ends. Show that you win 2k−1 euros if the
coin is tossed k times until the first tail appears. The paradox is that
whatever the initial fee, it is worth playing this game. Indeed, prove that
the expected gain is

∑∞
k=1

1
2k 2k−1 =

∑∞
k=1

1
2 = ∞. Write a program

2.8 Exercises 55

that simulates this game, and try various initial fees and number of
rounds to see whether you are winning or not. (Note that this paradox
is mathematically explained by introducing an expected utility theory.)

http://www.springer.com/978-1-84882-338-9

