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Sided and Symmetrized Bregman Centroids
Frank Nielsen, Member, IEEE, and Richard Nock

Abstract—In this paper, we generalize the notions of centroids
(and barycenters) to the broad class of information-theoretic
distortion measures called Bregman divergences. Bregman di-
vergences form a rich and versatile family of distances that
unifies quadratic Euclidean distances with various well-known
statistical entropic measures. Since besides the squared Euclidean
distance, Bregman divergences are asymmetric, we consider the
left-sided and right-sided centroids and the symmetrized centroids
as minimizers of average Bregman distortions. We prove that
all three centroids are unique and give closed-form solutions for
the sided centroids that are generalized means. Furthermore, we
design a provably fast and efficient arbitrary close approximation
algorithm for the symmetrized centroid based on its exact geo-
metric characterization. The geometric approximation algorithm
requires only to walk on a geodesic linking the two left/right-sided
centroids. We report on our implementation for computing en-
tropic centers of image histogram clusters and entropic centers of
multivariate normal distributions that are useful operations for
processing multimedia information and retrieval. These experi-
ments illustrate that our generic methods compare favorably with
former limited ad hoc methods.

Index Terms—Bregman divergence, Bregman information,
Bregman power divergence, Burbea–Rao divergence, centroid,
Csiszár -divergences, information geometry, information radius,
Kullback–Leibler divergence, Legendre duality.

I. INTRODUCTION AND MOTIVATIONS

C ONTENT-BASED multimedia retrieval applications with
their prominent image retrieval (CBIR) systems are cur-

rently very popular with the broad availability of massive dig-
ital multimedia libraries. CBIR systems spurred an intensive
line of research for better ad hoc feature extractions and ef-
fective yet accurate geometric clustering techniques. In a typ-
ical CBIR system [13], database images are processed offline
during a preprocessing step by various feature extractors com-
puting image characteristics such as color histograms or points
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of interest. These features are aggregated into signature vec-
tors, say , that represent handles to images. At query time,
whenever an online query image is given, the system first com-
putes its signature, and then searches for the first, say , best
matches in the signature space. This image retrieval task re-
quires to define an appropriate similarity (or dissimilarity) mea-
sure between any pair of signatures. Designing an ap-
propriate distance is tricky since the signature space is often
heterogeneous (i.e., Cartesian product of feature spaces com-
bining, for examples, various histograms with other geometric
features) and the usual Euclidean distance or -norms do not
always make sense. For example, it has been shown better to use
the information-theoretic relative entropy, known as the Kull-
back–Leibler divergence (or -divergence for short), to measure
the oriented distance between image histograms [13]. The def-
inition of the Kullback–Leibler divergence [14] for two contin-
uous probability densities1 and is as follows:

The Kullback–Leibler divergence of statistical distributions
and is called the relative entropy since it is equal

to the cross entropy of and minus the entropy
of :

with the cross entropy

The Kullback–Leibler divergence represents the average loss
(measured in bits if the logarithm’s basis is ) of using another
code to encode a random variable . The relative entropy can
also be interpreted as the information gain achieved about
if can be used instead of (see [14] for various interpreta-
tions in information theory). For discrete random variables, the
statistical Kullback–Leibler divergence on two real-valued -di-
mensional probability vectors and encoding the histogram
distributions is defined [6] as

1A formal definition considers probability measures � and � defined
on a measurable space �� ���. These probability measures are assumed
dominated by a �-finite measure � with respective densities � �

and � � . The Kullback–Leibler divergence is then defined as
���� ��� � ���� � �	�. See [6], a recent study on infor-
mation and divergences in statistics.
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where and denote the coordinates of proba-
bility vectors and , respectively (with both be-
longing to the -dimensional probability simplex

and , an open
convex set). The in the notation emphasizes that
the distortion measure is not symmetric (i.e., oriented distance),
since we have .

Notations: Throughout this paper, let de-
note -dimensional real-valued vectors of , and let

denote their coordinates.
Sets are denoted using calligraphic letters.

Efficiency is yet another key issue of CBIR systems since we
do not want to compute the similarity measure (query, image)
for each image in the database. We rather want beforehand to
cluster the signatures efficiently during the preprocessing stage
for fast retrieval of the best matches given query signature
points. A first seminal work by Lloyd in 1957 [15] proposed
the -means iterative clustering algorithm for solving vector
quantization problems. Briefly, the -means algorithm starts
by choosing seeds2 for cluster centers, associating to each
point its “closest” cluster “center,” updating the various cluster
centers, and reiterating until either convergence is met or the
difference of the “loss function” between any two successive
iterations goes below a prescribed threshold. Lloyd chose to
minimize the squared Euclidean distance since the minimum
average intracluster distance yields centroids, the centers of
mass of the respective clusters. Lloyd [15] further proved that
the iterative -means algorithm monotonically converges to a
local optima of the quadratic function loss (minimum variance
loss)

Cluster ’s center is defined by the following minimiza-
tion problem:

(1)

(2)

(3)

where denotes the cardinality of , and the ’s and ’s
are real-valued -dimensional vectors. That is, the minimum av-
erage squared distance of the cluster center to the cluster points
is reached uniquely by the centroid: the center of mass of the
cluster. Note that considering the Euclidean distance instead
of the squared Euclidean distance yields another remarkable
center point of the cluster called the Fermat–Weber point [18].
Although the Fermat–Weber point is also provably unique, it
does not have closed-form solutions. It is thus interesting to
ask oneself what other kinds of distances in (2) (besides the
squared distance) yield simple closed-form solutions that are of

2Forgy’s initialization [16] consists merely in choosing at random the seeds
from the source vectors. Arthur and Vassilvitskii [17] proved that a more careful
initialization yields expected guarantees on the clustering.

Fig. 1. Geometric interpretation of a univariate Bregman divergence.
� �� � �� is the vertical distance between the potential function plot
� � ���� � ���� �� � �� and the hyperplane � tangent to � at ��� � ����.

interests for processing multimedia information. Half a century
later, Banerjee et al. [19] showed in 2004 that the celebrated

-means algorithm extends to and remarkably only works [20]
for a broad family of distortion measures called Bregman diver-
gences [21], [22]. Let denote the nonnegative part of the real
line: . In this paper, we consider only Bregman
divergences defined on vector points in fixed dimen-
sion.3

Bregman divergences form a family of distortion mea-
sures that are defined by a strictly convex and differentiable gen-
erator function on a convex domain

(with ) as

where denotes the inner product (also commonly called the
“dot” product)

and denotes the gradient of at vector point

See Fig. 1 for a geometric interpretation of Bregman diver-
gences. Thus, Bregman divergences define a parameterized
family of distortions measures that unify the squared
Euclidean distance with the statistical Kullback–Leibler diver-
gence.

• Namely, the squared Euclidean distance is a Bregman di-
vergence in disguise obtained for the generator

that represents the paraboloid potential func-
tion (see Fig. 1), or the quadratic loss on vector points in
the -means algorithm.

• The Kullback–Leibler divergence is yet another Bregman
divergence in disguise obtained for the generator

that represents the negative
Shannon entropy on probability vectors [14] (normalized
unit length vectors lying on the -dimensional probability
simplex ).

3See the concluding remarks in Section VI for extensions of Bregman diver-
gences to matrices [23], [3], and recent functional extensions [24] of Bregman
divergences.
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TABLE I
COMMON UNIVARIATE BREGMAN DIVERGENCES � USED FOR CREATING SEPARABLE BREGMAN DIVERGENCES

A Bregman divergence is said to be separable [19], [25]
if its generator can be obtained coordinatewise from a univariate
generator as

Table I reports the generators of common univariate Bregman
divergences (i.e., divergences defined on scalars ).
Multivariate separable Bregman divergences defined on
can be easily constructed piecewise from univariate Bregman
divergences. The generalized quadratic distances4

defined for a positive-definite matrix
are the only symmetric Bregman divergences5 obtained from

the nonseparable generator ; see [25] and [23].
Thus, in [19], the original -means algorithm is extended into

a meta-algorithm, called the Bregman -means, that works for
any given Bregman divergence. Furthermore, Barnerjee et al.
[20], [19] proved the property that the mean is the minimizer of
the expected Bregman divergence. The fundamental underlying
primitive for these center-based clustering algorithms is to find
the intrinsic best single representative of a cluster with respect
to a distance function . As mentioned above, the centroid
of a point set (with ) is defined as the
optimizer of the minimum average distance

For oriented distance functions such as aforementioned
Bregman divergences that are not necessarily symmetric, we

4The squared Mahalanobis distance is a generalized quadratic distance ob-
tained by choosing matrix � as the inverse of the variance–covariance matrix
[25].

5Note that the quadratic form of distances ��� �� � ��� �� ���� ��
amounts to compute the squared Euclidean distance on transformed points with
the mapping � �� ��, where � is the triangular matrix of Cholesky decompo-
sition � � � � since ��� �� � ��� �� � ���� �� � ���� ��� .

thus need to distinguish sided and symmetrized centroids as
follows:

The first right-type and left-type centroids and are
called sided centroids (with the superscript standing for left,
and for right), and the third type centroid is called the
symmetrized Bregman centroid. Except for the class of gen-
eralized quadratic distances with generator

is not a Bregman divergence;
see [25] for a proof. Since the three centroids coincide with the
center of mass for symmetric Bregman divergences (generalized
quadratic distances), we consider in the remainder asymmetric
Bregman divergences. For a given point set ,
we write for short the minimum averages as

(4)

(5)

(6)

so that we get, respectively, the three kinds of centroids as

(7)

(8)

(9)

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 1, 2009 at 05:36 from IEEE Xplore.  Restrictions apply. 



NIELSEN AND NOCK: SIDED AND SYMMETRIZED BREGMAN CENTROIDS 2885

TABLE II
BREGMAN OR SYMMETRIZED BREGMAN DIVERGENCES WITH CORRESPONDING CORE APPLICATION DOMAINS

We use the semicolon “;” notation6 in symmetrized di-
vergence and average mean to in-
dicate that it is symmetric: and

. The Jensen–Shannon divergence
[26], [27] (symmetrized Kullback–Leibler divergence obtained
for , the negative Shannon entropy)
and COSH centroids [28], [29] (symmetrized Itakura–Saito
divergence , obtained for the Burg entropy [19], [30]:

) are certainly the most famous sym-
metrized Bregman centroids, widely used in image and sound
processing. These symmetrized centroids play a fundamental
role in information retrieval (IR) applications that require to
handle symmetric information-theoretic distances. Note that
Bregman divergences can also be assembled blockwise for
processing multimedia information and retrieval combining
both auditory and visual signals. Table II presents a table
of common Bregman divergences (or symmetrized Bregman
divergences) in action for processing multimedia signals in
real-world applications. This table is by no means exhaustive.
Banerjee et al. [19] proved a bijection between regular ex-
ponential families and a corresponding subclass of Bregman
divergences called regular Bregman divergences. They experi-
mentally showed that clustering exponential families with the
corresponding Bregman divergences yields better results. This
exponential family/Bregman divergence bijection indicates
why some Bregman divergences are better suited than others.
For example, in sound processing, the speech power spectra can
be modeled by exponential family densities of the form
whose corresponding associated regular Bregman divergence is
no less than the Itakura–Saito divergence. We refer the reader
to the first comprehensive “Dictionary of distances” [9] (espe-
cially, Chapter 21 dealing with “Image and Audio Distances”)
for further hints and explanations for which divergence is useful
for which applications.

A. Kullback–Leibler Divergence of Exponential
Families as Bregman Divergences

In statistics, exponential families [19], [25] represent a large
class of popular discrete and continuous distributions with
prominent members such as Bernoulli, multinomial, beta,

6We reserve the comma notation “,” in divergences to stress out the metric
property.

gamma, normal, Rayleigh, Laplacian, Poisson, Wishart, etc.,
just to name a few. The probability mass/density functions of
exponential families are parametric distributions that can be
written using the following canonical decomposition:

where denotes the sufficient statistics and represents the
natural parameters. Since , we
have . is called the
log normalizer function and fully characterizes the exponential
family . Term ensures density normalization.

It turns out that the Kullback–Leibler divergence of distribu-
tions and belonging to the same exponential
family is equivalent to the Bregman divergence for the
log normalizer function on swapped natural parameters

See [25] for a proof. Thus a left-sided/right-sided/sym-
metrized Kullback–Leibler centroid on a set of distribu-
tions of the same exponential family is a corresponding
right-sided/left-sided/symmetrized Bregman centroid on a set
of vectors of the natural space .

B. Properties of Sided and Symmetrized Centroids

In practice, once the proper Bregman divergence is chosen,
we still need to choose between the left-sided, right-sided, or
symmetrized centroid. These centroids exhibit different charac-
teristics that help choose the proper centroid for the given appli-
cation. Without loss of generality,7 consider the most prominent
asymmetric Bregman divergence: the Kullback–Leibler diver-
gence. Furthermore, for illustrative purposes, consider a set of

normal distributions . Each normal distribution
has probability density function (pdf)

that can be modeled by a corresponding 2-D point
of mean and variance in parameter space

7Indeed, as shown earlier, Bregman divergences can be interpreted as equiv-
alent Kullback–Leibler divergences on corresponding parametric exponential
families in statistics by swapping the argument order [19], [25].
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Fig. 2. Visualizing the fundamental properties of the left-sided, the right-sided,
and the symmetrized centroids (with � � � ���� � � �� and
� � � ��� ��� � ��	��). The right-sided centroid (thin dashed line)
is zero-avoiding and tries to cover the support of both normals. The left-sided
centroid (thick dashed line) is zero-forcing and focuses on the highest mode
(smallest variance). The symmetrized centroid (medium dashed line) exhibits a
tradeoff between these two zero-avoiding/zero-forcing properties.

. The Kullback–Leibler divergence between two
normals has the following closed-form solution8:

Observe that the closed-form formula is computed for 2-D
points in the parameter space .
For identical normal variances , the Kullback–Leibler
divergence amounts to a weighted squared Euclidean distance.

Fig. 2 displays an example of left/right-sided and sym-
metrized centroids of normals for a set that consists of two
normals: and .
We observe the following properties.

• The Kullback–Leibler right-sided centroid is “zero-
avoiding” so that its corresponding density function tries
to cover the support of all input normals.

• The Kullback–Leibler left-sided centroid is “zero-forcing”
so that it focuses on the highest mass mode normal.

That zero-avoiding/zero-forcing terminology is related to the
description of Minka [11, pp. 3–4] that considered Gaussian
mixture simplification of a two-component Gaussian mixture to
a single Gaussian component. The Kullback–Leibler left-sided
centroid prefers to better represent only the highest mode indi-
vidual of the set while the right-sided centroid prefers to stretch
over all individuals. Following yet another terminology of Winn
and Bishop [31], we observe when modeling the “mean” pdf
that the Kullback–Leibler left-sided centroid exhibits an exclu-
sive behavior (ignore modes of the set to select the highest one)

8The Kullback–Leibler divergence of normals is equivalent to a Bregman di-
vergence for a corresponding generator � by swapping argument order. See
[19] and [25].

while the Kullback–Leibler right-sided centroid displays an in-
clusive property.

To get a mathematical flavor of these zero-forcing/
zero-avoiding behaviors, consider without loss of gener-
ality9 the Kullback–Leibler divergence on finite discrete
set of distributions (i.e., multinomial distributions with

outcomes). The right-sided centroid is the minimizer
. That is, we seek

for the -dimensional probability vector that minimizes

. Thus, intuitively whenever

, the minimization process ought to choose .

Otherwise, setting yields (i.e.,
the Kullback–Leibler divergence is unbounded). That is, the
right-sided Kullback–Leibler centroid (that is a left-sided
Bregman centroid) is zero-avoiding. Note that this minimiza-
tion is equivalent to maximizing the average cross entropies

, and thus the right-sided Kull-

back–Leibler centroid is zero-avoiding for all .
Similarly, the left-sided Kullback–Leibler centroid

is obtained by mini-

mizing . This minimization

is zero-forcing since whenever there exists a , the
minimization tasks chooses to set . That means that the
right-sided Bregman centroid (a left-sided Kullback–Leibler
divergence in disguise) is zero-forcing.

The symmetrized Kullback–Leibler centroid is defined as the
minimizer of the Jensen–Shannon divergence (which has al-
ways finite value). That is, the symmetrized centroid minimizes
the total divergence to the average probability density

as follows:

Therefore, the symmetrized centroid strikes a balance between
the two zero-forcing and zero-avoiding properties with respect
to the mean distribution.

C. Related Work, Contributions, and Paper Organization

Prior work in the literature is sparse and disparate. We sum-
marize below main references that will be concisely revisited in
Section III under our notational conventions. Ben-Tal et al. [32]
studied entropic means as the minimum average optimization
for various distortion measures such as the -divergences and
Bregman divergences. Their study is limited to the sided left-
type (generalized means) centroids. Basseville and Cardoso [33]
compared in the one-page paper the generalized/entropic mean
values for two entropy-based classes of divergences: -diver-
gences [34] and Jensen–Shannon divergences [35]. The closest
recent work to our study is Veldhuis’ approximation method
[36], [37] for computing the symmetrical Kullback–Leibler cen-
troid.

We summarize our contributions as follows.

9As explained by Banerjee et al. [19], [25], the Kullback–Leibler divergence
of distributions of the same exponential families is a Bregman divergence on the
natural parameters of these distributions obtained by swapping the order of the
arguments. Arbitrary probability measures can be approximated by multinomial
distributions that belong to the exponential family.
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• In Section III, we show that the two-sided Bregman cen-
troids and with respect to Bregman divergence
are unique and easily obtained as generalized means for
the identity and functions, respectively. We charac-
terize Sibson’ s notion of information radius [38] for these
sided centroids, and show that they are both equal to the

-Jensen difference, a generalized Jensen–Shannon diver-
gence [39] also known as Burbea–Rao divergences [40].

• Section IV proceeds by first showing how to reduce the
symmetrized optimization problem into
a simpler system that depends only on the two-sided cen-
troids and . We then geometrically characterize ex-
actly the symmetrized centroid as the intersection point of
the geodesic linking the sided centroids with a new type of
divergence bisector: the mixed-type bisector. This yields
a simple and efficient dichotomic search procedure that
provably converges fast to the exact symmetrized Bregman
centroid.

• The symmetrized Kullback–Leibler divergence ( -di-
vergence) and symmetrized Itakura–Saito divergence
(COSH distance) are often used in sound/image applica-
tions, where our fast geodesic dichotomic walk algorithm
converging to the unique symmetrized Bregman centroid
comes in handy over former complex ad hoc methods [27],
[28], [26], [41], [42]. Section V considers applications of
the generic geodesic-walk algorithm to two cases.
— The symmetrized Kullback–Leibler for probability

mass functions represented as -dimensional points
lying in the -dimensional simplex . These
discrete distributions are handled as multinomials of the
exponential families [25] with degrees of freedom.
We instantiate the generic geodesic-walk algorithm for
that setting, show how it compares favorably with the
prior convex optimization work of Veldhuis [36], [37],
[41], and validate formally experimental remarks of
Veldhuis.

— The symmetrized Kullback–Leibler of multivariate
normal distributions. We describe the geodesic-walk
for this particular mixed-type exponential family of mul-
tivariate normals, and explain the Legendre mixed-type
vector/matrix dual convex conjugates defining the cor-
responding Bregman divergences. This yields a simple,
fast, and elegant geometric method compared to the
former overly complex method of Myrvoll and Soong
[27] that relies on solving Riccati matrix equations.

But first, we start in Section II by introducing the dually flat
space construction from an arbitrary convex function. This sec-
tion may be skimmed through at first reading since it is devoted
to defining the sided Bregman centroids under the framework of
dually flat spaces of information geometry.

II. GEOMETRY UNDERLYING BREGMAN DIVERGENCES:
DUALLY FLAT MANIFOLDS

We concisely review the construction of dually flat manifolds
from convex functions. This construction lies at the very heart
of information geometry [43]. A full description of this con-
struction is presented in the comprehensive survey chapter of
Amari [10] (see also [44] and [45]). Information geometry [43]

originally emerged from the studies of invariant properties of
a manifold of probability distributions , say the manifold of
univariate normal distributions

Information geometry relies on differential geometry and in par-
ticular on the sophisticated notion of affine connections10 (pio-
neered by Cartan [46]) whose explanation is beyond the scope of
this paper [43]. We rather describe the three most fundamental
items of dually flat manifolds:

• the fundamental convex duality and the dual coordinate
systems arising from Legendre transformation;

• the generalized Pythagorean relation;
• the notion of Bregman projection.

These descriptions will enlighten geometrically the results of
this paper. The point is to show that Bregman divergences form
the canonical distances of dually flat manifolds arising when
studying family of probability distributions. Those flat geome-
tries nicely generalize the familiar Euclidean geometry. Further-
more, these flat geometries reveal a fundamental geometric du-
ality that is hidden when dealing with the regular Euclidean ge-
ometry.

A. Riemannian Metric Associated to a Convex Function

Consider a smooth real-valued convex function defined
in an open set of , where denotes a fixed coordinate
system. Notice that the notion of function convexity depends
on the considered coordinate system

The second derivatives of the function form its Hessian matrix
that is a positive-definite matrix11 depending on

its position

where and . For two infinites-
imally nearby points and , define the square of their
distance by

where denote the inner product. A manifold with such
an infinitesimal distance is called a Riemannian manifold, and
matrix is called the Riemannian metric. Observe that

is obtained from the second-order term of the Taylor expan-
sion of

10Connections relate the vector tangent spaces for infinitesimal displacements
on the manifold. A Riemannian connection (also called Levi–Civita connection)
is such that parallel transport gives an isometry between the tangent planes. To
contrast with, an affine connection uses an affine transformation.

11A matrix� is positive definite iff for all � we have � �� � �. We write
� � � to denote the positive-definiteness of the matrix� .
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TABLE III
TWO EXAMPLES OF LEGENDRE TRANSFORMATIONS WITH THEIR ASSOCIATED DUAL PARAMETERIZATIONS

Fig. 3. Legendre transformation of a strictly convex function� : the �-intercept
����� ���� of the tangent hyperplane � � � � ��� �� � � ��� of the
potential function defines the value of the Legendre transform � for the dual
coordinate �. Any hyperplane passing through another point of the potential
function and parallel to � necessarily intersects the �-axis above �� ���.

A geodesic of manifold is defined by the straight line
connecting two points and (with respective coordinates

and in the -coordinate system)

When is the paraboloid function, we have
, the Krönecker symbol

and the geometry is Euclidean because of the implied squared
distance . In order to retrieve the global geo-
metrical structure of the manifold, we need the geometry to be
independent of the choice of the coordinate system. The fol-
lowing section reveals that the -coordinate system admits a
dual -coordinate system.

B. Convex Duality and Dual Coordinate Systems
From Legendre Transformation

Consider the gradient defined by the following
partial derivatives:

There is a one-to-one correspondence [10] between and
so that we can use as another coordinate system. The transfor-
mation mapping to (with mutually reciprocal to ) is
the Legendre transformation [43] defined for any convex func-
tion as follows:

Fig. 3 visually depicts the Legendre transformation. (The
drawing illustrates why the Legendre transformation is also
sometimes loosely called the “slope transformation.”)

Table III displays two examples of Legendre transformation.
(For the geometry of exponential families in statistics, the
primal -coordinate system is called the natural coordinate
system and the dual -coordinate system is called the expecta-
tion or moment coordinate system.) The dual convex conjugates

and are called potential functions (or contrast functions)
and satisfy the following fundamental equality:

The inverse transformation is given by the gradient of

with . That is, and are coupled and form
a dual coordinate system of the geometry implied by a pair of
Legendre convex function . The dual Riemannian metric
associated with is

and we have the remarkable property that

That is, Riemannian metric is the inverse matrix of the
Riemannian metric . It follows from the construction that
these two metrics are geometrically the same [10], as we have
identical infinitesimal lengths
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Fig. 4. Illustrating the generalized Pythagorean theorem: for � � � ,
we have � �� ��� � � �� ��� �� �� ���.

Fig. 5. Illustrating the sided Bregman projections � and � of a point
� � � for a convex region�: the dual geodesic � connecting � to � and
the geodesic � connecting � to � are orthogonal to the boundary ��.

C. Bregman Divergences From the Dual Coordinate Systems

A distortion measure, called divergence, between two points
and of the geometric manifold (either indexed by or

coordinate system) is defined as

with . We have
. Changing the role of and , or and , we get the dual

divergence

so that

When is close to , we write and get the squared
Riemannian distance as

In particular, this squared Riemmanian approximation means
that the canonical divergence does not satisfy12 the triangle in-
equality. Next, we show that we get a remarkable generalization
of Pythagoras’ theorem.

D. Generalized Pythagoras’ Theorem

Consider two curves and parameterized by a scalar
in the -coordinate system, and assume w.l.o.g that these curves
intersect at : . Using the dual coordinate
system , we similarly have . The tangent vector
of a curve at is the vector

of derivatives with respect to . The two curves are said to be
orthogonal at the intersection point when their inner product
vanishes

Using the two coordinate systems, this is equivalent to

Dually flat manifolds exhibit a generalized Pythagoras’ the-
orem:

Theorem 2.1 (Generalized Pythagoras’ Theorem [43]):
When the dual geodesic connecting and is orthog-
onal to the geodesic connecting and (see Fig. 4),
we have , or dually

.

Notice that when we consider the paraboloid convex function
, the metric is the identity

matrix, and therefore, the primal/dual geodesics coincide.

E. Dual Convexity and Sided Bregman Projections

We say that a region is convex (or -convex) when the
geodesic connecting any two points is fully contained
in . That is

Similarly, region is said dual convex (or -convex) when the
dual geodesic connecting any two points is fully
contained in

Let be the point that minimizes
for , and be the point that minimizes

for . is called
the Bregman projection13 and is called the dual Bregman
projection.

12Indeed, notice that the squared Euclidean distance obtained from the parab-
oloid function does not satisfy the triangle inequality.

13In information geometry [43], � is called the reverse �-projection or the
dual geodesic projection. Dually, � is called the �-projection or geodesic
projection.
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Fig. 6. Interpretation of the sided Bregman centroids on the dually flat manifold.

We have the following projection theorem [43], [10] illus-
trated in Fig. 5.

Theorem 2.2 [43], [10]: When is convex, is unique
and the dual geodesic connecting to is orthogonal to
the boundary of . Similarly, when is dual convex, is
unique and the geodesic connecting to is orthogonal
to the boundary of .

F. Geometry of Symmetrized Bregman Divergences

As mentioned in the introduction, the symmetrized Bregman
divergence is typically not a Bregman divergence14 because
the convexity argument may fail as reported in [25]. Therefore,
the underlying geometry of symmetrized Bregman divergence
does not fit the dually flat manifolds presented above. How-
ever, the symmetrized Bregman divergence can be interpreted
using the framework of Csiszár -divergence [34] (also called
Ali–Silvey divergence [47]). In particular, the geometry implied
by the symmetrized Kullback–Leibler divergence is not flat any-
more [48], [44]. We refer to the work of Vos [48] for explana-
tions.

We now turn to the study of sided and symmetrized Bregman
centroids. In the remainder, we consider computing either in the

or coordinate system. It will be clear that all following re-
sults may be dually interpreted using the coupled dual coordi-
nate system or the dual Legendre convex conjugate.

14Besides the class of symmetric quadratic distances that also bears the name
of Mahalanobis distances [25].

III. THE SIDED BREGMAN CENTROID

A. Right-Type Centroid

We first prove that the right-type centroid is independent
of the considered Bregman divergence

is always the center of mass. Although this result is well known
in disguise in information geometry [43], it was again recently
brought up to the attention of the machine learning commu-
nity by Banerjee et al. [19] who proved that Lloyd’s iterative

-means “centroid” clustering algorithm [15] generalizes to the
class of Bregman divergences. We state the result and give the
proof for completeness and familiarizing us with notations.

Theorem 3.1: The right-type sided Bregman centroid of
a set of points , defined as the minimizer for the
average right divergence

is unique, independent of the selected
divergence , and coincides with the center of mass

.
Proof: For a given point , the right-type average diver-

gence is defined as
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Expanding the terms ’s using the definition of
Bregman divergence, we get

Subtracting and adding to the right-hand side yields

Observe that since is independent
of , minimizing is equivalent to minimizing

. Using the fact that Bregman divergences
are nonnegative, , and equal to zero if and only
if , we conclude that

namely, the center of mass of the point set.

The minimization remainder, representing the “information
radius” (by characterizing for the relative entropy the notion in-
troduced by Sibson [38] for probability measures), is for a point
set

which bears the name of the -Jensen difference15 [40]. For
the negative Shannon

entropy, is known as the Jensen–Shannon divergence [39]

For a multinomial distribution with outcomes, the Shannon
entropy can also be interpreted as an index of diversity [40] of
the distribution. The Jensen difference

is therefore a difference of diversity, namely, the di-
versity of the mixed distribution minus the average diver-
sity of the source distributions. Following Burbea and Rao [40],
the Jensen–Shannon divergence can naturally be extended to a

15In [40], it is used for strictly concave function���� � �� ��� on a weight
distribution vector �: � �� � � � � � � � � �� � � � � � ��� �.
Here, we consider uniform weighting distribution � � � (with � � ).

mixture of distributions with a vector of a priori weights as
follows:

It follows from the concavity of Shannon entropy that
. This generalized Jensen difference is the same

as the mutual information [40]. See also the related definition
of Jensen–Tsallis divergence [49] for nonextensive Tsallis
entropies. Thus, the minimization score of the right-sided
Bregman centroid is the information radius of the population,
a measure of diversity. Note that the information radius is
always bounded. Banerjee et al. [19] called the information
radius the Bregman information (and the sided centroids, the
best Bregman representatives). It is remarkable to notice that
for the squared generator, the information radius turns out to be
the sample variance .
For the Kullback–Leibler Bregman divergence, the information
radius can be interpreted as the mutual information [19, p.
1711].

The information retrieval criterion is continuously
connected with the classical statistical Bayesian criterion

as shown by Liese and Vajda [6] using the notion of
Arimoto entropies [50], [51], where denote the error
of the Bayesian identification of an object from the set of two
objects having distributions and .

B. Dual Divergence and Left-Type Centroid

Using the Legendre convex conjugation twice, we get the fol-
lowing (dual) theorem for the left-sided Bregman centroid:

Theorem 3.2: The left-sided Bregman centroid , de-
fined as the minimizer for the average left divergence

, is the unique point
such that ,
where is the center of mass for the gradient
point set .

Proof: Using the dual Bregman divergence induced
by the convex conjugate of , we observe that the left-type
centroid

is obtained equivalently by minimizing the dual right-type cen-
troid problem on the gradient point set

where we recall that and
denote the gradient point set.

Thus, the left-type Bregman centroid is computed as the
reciprocal gradient of the center of mass of the gradient point
set
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TABLE IV
BIJECTION BETWEEN BREGMAN DIVERGENCES AND GENERALIZED � -MEANS EXPLICIT FOR THE PYTHAGORAS’ MEANS

That is, we get

It follows that the left-type Bregman centroid is unique.

Observe that the duality also proves that the information ra-
dius for the left-type centroid is the same -Jensen difference
(Jensen–Shannon divergence for the convex entropic function

).

Corollary 3.3: The information radius equality

is the -Jensen–Shannon
divergence for the uniform weight distribution.

C. Centers and Barycenters as Generalized Means

We show that two-sided centroids are generalized means also
called quasi-arithmetic or -means. We first recall the basic def-
inition of generalized means16 that generalizes the usual arith-
metic and geometric means. For a strictly continuous and mo-
notonous function , the generalized mean [52], [12], [8] of a
sequence of real positive numbers is de-
fined as

The generalized means include the Pythagoras’ arithmetic, geo-
metric, and harmonic means, obtained, respectively, for func-
tions , and (see Table IV).
Note that since is injective, its reciprocal function is prop-
erly defined. Further, since is monotonous, it is noticed that the
generalized mean is necessarily bounded between the extremal
set elements and

In fact, finding these minimum and maximum set elements can
be treated as a special generalized power mean, another gener-
alized mean for in the limit case .

16Studied independently in 1930 by Kolmogorov and Nagumo; see [52]. A
more detailed account is given in [53, Ch. 3].

Generalized means can be extended to weighted means using
an a priori normalized weight vector (with and

)

By default, we consider the uniform distribution so that
. These means can also be naturally ex-

tended to -dimensional positive vectors
(with ) following (10). For example, the arith-
metic mean of a set of positive vector points (obtained with
generator , where is the identity matrix)
is its center of mass

(In fact, choosing for any positive-definite matrix
yields the center of mass.) In the remainder, we consider gen-

eralized means on vectors although these notions have been in-
terestingly extended to a broader setting like matrices. See, for
example, the axiomatic approach of Petz and Temesi [8] that
defines means17 on matrices using the framework of operator
means via operator monotone functions.

These generalized (vector) means highlight a bijection

Bregman divergence means

The one-to-one mapping holds because Bregman generator
functions are strictly convex and differentiable functions
chosen up to an affine term [25]. This affine invariant property
transposes to generalized means as an offset/scaling invariant
property

for any invertible matrix and vector .
Although we have considered centroids for simplicity to show

the relationship between Bregman centroids and generalized
means (i.e., uniform weight distribution on the input set ), our
approach generalizes straightforwardly to barycenters defined
as solutions of minimum average optimization problems for ar-
bitrary unit weight vector ( with ).

17Following [8], the geometric mean of two positive matrices � and � is
found as � �� �� � � .
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Theorem 3.4: Bregman divergences are in bijection with
generalized means. The right-sided barycenter is in-
dependent of and computed as the weighted arithmetic
mean on the vector point set, a generalized mean for the
identity function: with

. The left-sided Bregman
barycenter is computed as a generalized mean on the
point set for the gradient function : .
The information radius of sided Bregman barycenters is de-
fined by the Jensen divergence of the mixture of vectors:

.

The seminal paper of Burbea and Rao [40] considered multi-
nomial distributions in -dimensional real vector spaces where a

-divergence measure is by means of an arbitrary separable en-
tropic function [40, eq. (13)]. It is interesting to note that Rényi
[54] also made use of generalized means for defining entropies

of order .
A (weighted) mean is said homogeneous if and only if we

have for any nonnegative scalar factor

It is well known [53], [12] that a generalized mean is homoge-
neous (or linear scale free) if and only if the generator function

belongs to the family (for ) of functions defined
by

For , we get . This function is modulo
a constant the -means related to the Kullback–Leibler diver-
gence, since we have

D. Dominance Relationships of Sided Centroid Coordinates

Table IV illustrates the bijection between Bregman diver-
gences and generalized -means for the Pythagoras’ means
(i.e., extend to separable Bregman divergences).

We give a characterization of the coordinates of the
right-type average centroid (center of mass) with respect to
those of the left-type average centroid, the coordinates.

Corollary 3.5: Provided that is convex (e.g., Kull-
back–Leibler divergence), we have for all

. Similarly, for concave gradient function (e.g.,
exponential loss), we have for all .

Proof: Assume is convex and apply Jensen’s in-
equality to . Consider for simplicity without
loss of generality 1D functions. We have

Because is a monotonous function, we get

(10)

(11)

(12)

Thus, we conclude that for
convex (proof performed coordinatewise). For concave
functions (i.e., dual divergences of -convex primal diver-
gences), we simply reverse the inequality (e.g., the exponential
loss dual of the Kullback–Leibler divergence).

Note that Bregman divergences may neither have their
gradient convex nor concave. The bit entropy

yielding the logistic loss is such an example. In that case,
we cannot a priori order the coordinates of and .

IV. SYMMETRIZED BREGMAN CENTROID

A. Revisiting the Optimization Problem

For asymmetric Bregman divergences, the symmetrized
Bregman centroid is defined by the following optimization
problem

We simplify this optimization problem to another constant-
size system relying on only the right-type- and left-type-sided
centroids, and , respectively. This will prove that the sym-
metrized Bregman centroid is uniquely defined as the zeroing
argument of a sided centroid function by generalizing the ap-
proach of Veldhuis [36] that studied the special case of the sym-
metrized discrete Kullback–Leibler divergence, also known as

-divergence.

Lemma 4.1: The symmetrized Bregman centroid is
unique and obtained by minimizing

: .
Proof: We have previously shown that the right-type av-

erage divergence can be rewritten as

Using Legendre transformation, we have similarly
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Fig. 7. Symmetrized Bregman centroid necessarily lies on the geodesic passing
through the two-sided centroids � and � .

But

since and from
Legendre duality. Combining these two sum averages, it comes
that minimizing

boils down to minimizing

after removing all terms independent of . The solution is unique
since the optimization problem

can be itself rewritten as

where is monotonous and and are
both convex in the first argument (but not necessarily in the
second). Therefore, the optimization problem is convex and ad-
mits a unique solution.

B. Geometric Characterization

We now characterize the exact geometric location of the sym-
metrized Bregman centroid by introducing a new type of bi-
sector18 called the mixed-type bisector.

18See [25] for the affine/curved and symmetrized bisectors studied in the con-
text of Bregman–Voronoi diagrams.

Theorem 4.2: The symmetrized Bregman centroid is
uniquely defined as the minimizer of .
It is defined geometrically as ,
where

is the geodesic linking to
, and is the mixed-type Bregman bisector:

.
Proof: First, let us prove by contradiction that necessarily

belongs to the geodesic . Assume does not belong
to that geodesic and consider the point that is the Bregman
perpendicular projection of onto the (convex) geodesic [25]

as depicted in Fig. 7. Using Bregman Pythagoras’ theorem19

twice (see [25]), we have

and

Thus, we get

But since

we reach the contradiction since

Therefore, necessarily belongs to the geodesic .
Second, let us show that necessarily belongs to the
mixed-type bisector. Assume it is not the case. Then,

and suppose without loss
of generality that . Let

and so that

Now move on the geodesic towards by an amount such that
. Clearly, and

contradicting the fact that was not on the mixed-type bi-
sector.

19Bregman Pythagoras’ theorem is also called the generalized Pythagoras’
theorem, and is stated as follows: � �� � �� � ����� ���� �
� �� ���� �� where � ��� � ����	
 � �� � �� is the Bregman
projection of � onto a convex set �, see [19].
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Fig. 8. Bregman centroids for (a) the extended Kullback–Leibler, (b) Itakura–Saito, (c) logistic, and (d) exponential losses (divergences) on the open square
� ���� �� . Right- and left-sided, and symmetrized centroids are displayed, respectively, as thick points. The geodesic linking the right-type centroid to the
left-type one is shown in thick gray line, and the mixed-type bisector is displayed in thin gray line.

The equation of the mixed-type bisector is neither
linear in nor in (nor in ) because of
the term , and can thus only be manipulated implicitly in
the remainder:

. The mixed-type bisector
is not necessarily connected (e.g., extended Kullback–Leibler
divergence), and yields the full space for symmetric Bregman
divergences (i.e., generalized quadratic distances).

Using the fact that the symmetrized Bregman centroid nec-
essarily lies on the geodesic linking the two-sided centroids
and , we get the following corollary.

Corollary 4.3: The symmetrized Bregman divergence mini-
mization problem is both lower and upper bounded as follows:

.

Fig. 8 displays the mixed-type bisector, and sided and
symmetrized Bregman centroids for the extended20 Kull-
back–Leibler (eKL) and Itakura–Saito (IS) divergences.

C. A Simple Geodesic-Walk Dichotomic
Approximation Algorithm

The exact geometric characterization of the symmetrized
Bregman centroid provides us a simple method to approxi-
mately converge to , namely, we perform a dichotomic walk
(bisection search) on the geodesic linking the sided centroids

and . This dichotomic search yields a novel efficient
algorithm that enables us to solve for arbitrary symmetrized

20We relax the probability distributions to belong to the positive orthant
(i.e., unnormalized probability mass function) instead of the open simplex � .
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Bregman centroids, beyond the former Kullback–Leibler case21

of Veldhuis [36]. We initially consider
and repeat the following steps until , for a
prescribed precision threshold.

• Geodesic walk. Compute interval midpoint
and corresponding geodesic point

• Mixed-type bisector side. Evaluate the sign of

• Dichotomy. Branch on if the sign is negative, or
on otherwise.

Note that any point on the geodesic (including the midpoint
) or on the mixed-type bisector provides an upperbound

on the minimization task. Although it was noted
experimentally by Veldhuis [36] for the Leibler divergence that
this midpoint provides “experimentally” a good approximation,
let us emphasize that is not true, in general, as depicted in
Fig. 8(b) for the Itakura–Saito divergence.

Theorem 4.4: The symmetrized Bregman centroid can
be approximated within a prescribed precision by a simple
dichotomic walk on the geodesic helped by the
mixed-type bisector . In general, symmetrized
Bregman centroids do not admit closed-form solutions.

In practice, we can control the stopping criterion by taking
the difference

between two successive iterations since it monotonically de-
creases. The number of iterations can also be theoretically upper
bounded as a function of using the maximum value of the Hes-
sian

along the geodesic by mimicking the analysis in [55]
(see [55, Lemma 3]).

V. APPLICATIONS OF THE DICHOTOMIC GEODESIC-WALK

ALGORITHM

A. Bregman Power Symmetrized Divergences

In sound processing, the Itakura–Saito divergence is often
used as the de facto distortion measure for comparing two
spectra envelopes [29]. That is, a set of discrete all-pole model
coefficients are first extracted so that the distance between any
two sound spectra is later measured at the harmonic peaks ,

21Veldhuis’ method [36] is based on the general purpose Lagrangian multi-
plier method with a normalization step. It requires to set up one threshold for
the outer loop and two prescribed thresholds for the inner loops. For example,
Aradilla et al. [41] set the number of steps of the outer loop and inner loops to
ten and five iterations each, respectively. The Appendix provides a synopsis of
Veldhuis’ method.

for —see [29]. It turns out that the Itakura–Saito
divergence on -dimensional real-valued probability vectors

is yet another separable Bregman divergence in disguise ob-
tained for the strictly convex generator function

where function is commonly called the Burg entropy. Wei
and Gibson [29] showed that the least mean square on the COSH
distance

the symmetrized Itakura–Saito divergence, yields better22 and
smoother discrete all-pole spectral modeling results than by
using the Itakura–Saito divergence. Moreover, in some appli-
cations such as in concatenative speech synthesis, the COSH
distance is considered for minimizing artifacts in speech di-
phone synthesis. However, one may also consider alternatively
the symmetrized Kullback–Leibler distance for the same task
by choosing different feature extractors [26]. Interestingly,
both the Itakura–Saito and the Kullback–Leibler divergences
can be encapsulated into a common parameterized family of
distortions measures , generated by the following set of
strictly convex and differentiable power function generators:

That family of power generators (with and the
limits for and ) yields the corresponding family
of Bregman power divergences for real-valued -dimen-
sional probability vectors and

for

22Refer to [29, Figs. 2 and 3]. It is said that “� � �the COSH distance measure
is the best criterion measure� � �” (dixit)
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The Itakura–Saito and extended23 Kullback–Leibler
divergences represent the two extremities of the generic

family that is axiomatically justificated as the notion of pro-
jection in least mean square problems [35]. This parametric
family of Bregman divergences is the symmetrized
Bregman–Csiszár power divergence that is defined

for . Since our generic symmetrized Bregman cen-
troid procedure allows to compute the centroid for any Bregman
divergence, we can also obviously apply it for this important pa-
rameterized family. This is all the more important for distance
learning algorithms [57] that seek for the best distance represen-
tative (i.e., the best value) to perform24 a given task. Note that
except for the class of generalized quadratic distance with gen-
erators for a positive-definite matrix ,
the symmetrized Bregman divergences are not of Bregman type
[25], [32].

We now consider parameteric family of distributions which
admit a canonical decomposition of their pdfs. We start from
the nonparametric probability mass functions that are in fact
parametric multinomials in disguise.

Historically, Read and Cressie [4], [6] considered that family
of power generators for studying properties of the corresponding
family of Csiszár’s power divergences of order

. Lafferty [58] investigated the Legendra transform properties
of these Bregman power divergences . Csiszár [35] proved
that these divergences arise naturally from axiomatic character-
izations [35, eq. (3.7)]. Notice that Csiszár and Bregman power
divergences differ unless , the Kullback–Leibler diver-
gence.

B. Revisiting the Centroid of Symmetrized
Kullback–Leibler Divergence

Consider a random variable on events
, called the sample space. Its associated dis-

crete distribution (with ) belongs to the
topologically open -dimensional probability simplex

of and .
Distributions arise often in practice from image intensity
histograms.25 To measure the distance between two discrete

23Defined over the positive orthant of unnormalized pdfs. Considering the
extended Kullback–Leibler measure makes a huge difference from the practical
point of view since the left-type centroid � always falls inside the domain.
This is not anymore true if we consider the probability �� � ��-dimensional
probability simplex � where the left-type centroid � falls outside � , and
need to the projected back onto � using a Kullback–Leibler (Bregman) pro-
jection. See Pelletier [56] for details. We show how to bypass this problem in
the next section by considering discrete distribution as multinomials with ���
degrees of freedom.

24Being more efficient while keeping accuracy is a key issue of search engines
as mentioned in the introduction.

25To ensure that all bins of the histograms are nonvoid, we add a small quan-
tity � to each bin, and normalize to unit. This is the same as considering the
random variable �� �� where � is a unit random variable.

distributions and , we use the Kullback–Leibler divergence
also known as relative entropy or discrimination information

Note that this information measure is unbounded whenever
there exists an index such that and
is nonzero. But since we assumed that both and belong to
the open probability simplex , this case does not occur in our
setting

with left-hand side equality if and only if . The sym-
metrized KL divergence

is also called -divergence or SKL divergence, for short.
The random variable can also be interpreted as a regular

exponential family member [25] in statistics of order , gen-
eralizing the Bernoulli random variable. Namely, is a multi-
nomial random variable indexed by a -dimensional pa-
rameter vector . These multinomial distributions belong to the
broad class of exponential families [25] in statistics for which
we have the important property that

see [25]. That is, this property allows us to bypass the fastidious
integral computations of Kullback–Leibler divergences and re-
place it by a simple gradient derivatives for probability distri-
butions belonging to the same exponential families. From the
canonical decomposition

of exponential families [25], it comes out that the natural pa-
rameters associated with the sufficient statistics are

since . The natural parameter space is the
topologically open . The log normalizer is

called the multivariate logistic entropy. It follows that the gra-
dient is

with
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and yields the dual parameterization of the expectation param-
eters

The expectation parameters play an important role in practice
for inferring the distributions from identically and inde-
pendently distributed observations . Indeed, the
maximum-likelihood estimator of exponential families is
simply given by the center of mass of the sufficient statistics
computed on the observations

see [59]. Observe in this case that the log normalizer function is
not separable

Functions and are dual convex conjugates obtained by the
Legendre transformation that maps both domains and functions

It follows by construction from the Legendre transformation that
the gradients of these and functions are reciprocal to each
other

This yields one method to deduce the convex conjugate from
the gradient as the integral primitive of the inverse of the
gradient of

We get the inverse of the gradient as

Thus, it comes that the Legendre convex conjugate is

the -ary entropy. Observe that for , this yields the usual
bit entropy26 function

Further, reinterpreting as the log normalizer of an ex-
ponential family distribution, we get the Dirichlet distribution,

26This generalizes the 1-D case of Kullback–Leibler’s Bernoulli divergence:
� ��� � ������	
� �� is the logistic entropy,� ��� � and� �
��� , and � ��� � � ����� ��� �� ������ ��, is the dual bit entropy.

which is precisely the conjugate prior [60] of multinomial dis-
tributions used in prior–posterior Bayesian updating estimation
procedures. We summarize the chain of duality as follows:

where indicates that the density function follows the dis-
tribution of the exponential family with log normalizer .

To convert back from the multinomial -order nat-
ural parameters to discrete -bin normalized probability mass
functions (e.g., histograms) , we use the following map-
ping:

and

for all . This gives a valid (i.e., normalized)
distribution for any . Note that the coefficients
in may be either positive or negative depending on the ratio of
the probability of the th event with the last one .

As mentioned above, it turns out that the Kullback–Leibler
measure can be computed from the Bregman divergence asso-
ciated to the multinomial by swapping arguments

where the Bregman divergence

is defined for the strictly convex and differentiable
log normalizer

The algorithm is summarized in Fig. 9. We implemented the
geodesic-walk approximation algorithm for that context, and
observed in practice that the SKL centroid deviates much (20%
or more in information radius) from the “middle” point of the
geodesic , thus reflecting the asymmetry of the un-
derlying space. Further, note that our geodesic-walk algorithm
proves the empirical remark of Veldhuis [36] that “ the as-
sumption that the SKL centroid is a linear combination of the
arithmetic and normalized geometric mean must be rejected.”
The Appendix displays Veldhuis’ method for reference.

Computing the centroid of a set of image histograms, a center
robust to outliers, allows one to design novel applications in
information retrieval and image processing. For example, we
can perform simultaneous contrast image enhancement by first
computing the histogram centroid of a group of pictures, and
then performing histogram normalization to that same reference
histogram. The plots of Fig. 10 show the Kullback–Leibler sided
and symmetrized centroids on two distributions taken as the
intensity histograms of the apple images shown below. Ob-
serve that the symmetrized centroid distribution may be above
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Fig. 9. Synopsis of our symmetrized Kullback–Leibler centroid for discrete
distributions. The algorithm first converts the probability mass functions into
multinomials of the exponential families, and then perform a dichotomic walk
on the geodesic linking the sided Kullback–Leibler centroids.

both source distributions, but this is never the case in the nat-
ural parameter domain since the two-sided centroids are gener-
alized means, and that the symmetrized centroid belongs to the
geodesic linking these two centroids (i.e., a barycenter mean of
the two-sided centroids).

Jensen–Shannon divergence (Table II) does not only play an
important role in image processing. In fact, it is also related
to some prominent approaches to supervised classification
throughout its continuous connection with classification-cali-
brated surrogates [61]. More precisely, we have [6]

(13)

with

(14)

Bregman divergences are called Arimoto divergences.
Most notably, we have in addition to (13)

(15)

(16)

Fig. 10. Centroids of image histograms with respect to the relative entropy.
The symmetrized centroid distribution is above both source distributions for
intensity range [100–145], but this is never the case in the natural parameter
space.

Since Bregman divergences are not affected by linear terms,
one can replace (15) and (16), respectively, by

and while guaranteeing
and . These two new genera-

tors are remarkable: the former leads to Hinge loss, while the
latter brings Matsushita’s loss [61], two classification calibrated
surrogates, functions that carry appealing properties for super-
vised learning [62]. Moreover, throughout a duality between
real-valued classification and density estimation which calls to

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 1, 2009 at 05:36 from IEEE Xplore.  Restrictions apply. 



2900 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 6, JUNE 2009

the Arimoto divergence and convex duality [61], the first one
becomes the popular empirical risk, while the second becomes
Schapire–Singer’s renown criterion for boosting pioneered by
Matsushita [61], [63]. Thus, Arimoto divergences make a con-
tinuous connection between Jensen–Shannon divergence and
the empirical risk, throughout classification calibrated surro-
gates. Without going in depth, this is interesting as any Bregman
(symmetrized) centroid defines, from the classification stand-
point, some optimal constant estimation of class labels for a
huge set of proper scoring rules [61].

C. Entropic Means of Multivariate Normal Distributions

The pdf of an arbitary -variate normal with mean
and variance–covariance matrix is given by

with

It is certainly the engineer’s favorite family of distributions that
nevertheless becomes intricate to use as dimension goes beyond
3-D. The density function can be rewritten into the canonical
decomposition to yield an exponential family of order

(the mean vector and the positive-definite matrix
accounting, respectively, for and parameters). The suf-
ficient statistics is stacked onto a two-part -dimensional vector

associated with the natural parameter

Accordingly, the source parameters are denoted by .
The log normalizer specifying the exponential family is

(see [44] and [43]). To compute the Kullback–Leibler diver-
gence of two normal distributions and

, we use the Bregman divergence as follows:

The inner product is a composite inner product ob-
tained as the sum of inner products of vectors and matrices

For matrices, the inner product is defined by the trace
of the matrix product

In this setting, however, computing the gradient, inverse gra-
dient, and finding the Legendre convex conjugates are quite in-
volved operations. Yoshizawa and Tanabe [44] investigated in a
unifying framework the differential geometries of the families
of probability distributions of arbitrary multivariate normals

from both the viewpoint of Riemannian geometry relying on
the corresponding Fisher information metric and from the view-
point of Kullback–Leibler information, yielding the classic tor-
sion-free flat shape geometry with dual affine connections [43].
Yoshizawa and Tanabe [44] carried out computations that yield
the dual natural/expectation coordinate systems arising from the
canonical decomposition of the density function

The strictly convex and differentiable dual Bregman gener-
ator functions (i.e., potential functions in information geometry)
are

and

defined, respectively, both on the topologically open space
. Note that removing constant terms does not change the

Bregman divergences. The coordinate transformations
obtained from the Legendre transformation (with

) are given by

and

This formula simplifies significantly when we restrict ourselves
to diagonal-only variance–covariance matrices , spherical
normals , or univariate normals .

Computing the symmetrized Kullback–Leibler centroid of a
set of normals (Gaussians) is an essential operation for clus-
tering sets of multivariate normal distributions using center-
based -means algorithm [64], [65]. Nock et al. [66] proposed
the framework of mixed Bregman divergences to manipulate
implicitly and efficiently symmetrized Bregman centroids by
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Fig. 11. Entropic sided and symmetrized centroids of bivariate
normal distributions. The two input bivariate normals are
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Fig. 12. Entropic centroids for a set of ten bivariate normals. The figure dis-
plays the entropic sided and symmetrized centroids (points in 5-D shown on the
2-D plane using centered ellipsoids).

pairs of left/right-sided centroids. Myrvoll and Soong [27] de-
scribed the use of multivariate normal clustering in automatic
speech recognition. They derived a numerical local algorithm

for computing the multivariate normal centroid by solving it-
eratively Riccati matrix equations, initializing the solution to
the so-called “expectation centroid” [42]. Their method is com-
plex and costly since it also involves solving for eigensystems.
In comparison, our geometric geodesic dichotomic-walk pro-
cedure for computing the entropic centroid, a Bregman sym-
metrized centroid, yields an extremely fast and simple algorithm
with guaranteed performance.

We report on our implementation for bivariate normal
distributions27 (see Fig. 11). Observe that the right-type Kull-
back–Leibler centroid is a left-type Bregman centroid for the
log normalizer of the exponential family. Our method allowed
us to verify that the simple generalized -mean formula

coincides with that of [64]. Furthermore, we would like to stress
out that our method extends to arbitrary entropic centroids of
members of the same exponential family.

Fig. 12 plots the entropic right- and left-sided and the sym-
metrized centroids for a set that consists of two bivariate nor-
mals . The geodesic midpoint interpolant
(obtained for ) is very close to the symmetrized centroid.

VI. CONCLUDING REMARKS AND DISCUSSION

In this paper, we have considered and shown that the
two-sided and symmetrized Bregman centroids are unique. The
right-type centroid is independent of the considered divergence
and always coincides with the center of mass of the point set.
The left-type centroid is a generalized mean which admits the
same Jensen–Shannon information radius as the right-type
centroid. The symmetrized Bregman centroid is geometrically
characterized as the unique intersection point of the geodesic
linking the sided centroids with the mixed-type bisector, and
can be approximated efficiently by a simple dichotomic walk.
The symmetrized centroid can thus also be interpreted as a gen-
eralized mean on the two-sided centroids. This work extends
straightforwardly to barycenters [56] as well by considering a
normalized weight distribution with . For example,
the left-type-sided barycenter for weight is defined as

is a -mean for weight vector , and has information ra-
dius . Computing the symmetrized Bregman cen-
troids of multinomials (i.e., the SKL centroid of histograms, see
also [67]) was successfully used for segmenting online music
flows [68]. Choosing the most appropriate distortion measure
to define a “center” and minimize nearest neighbor queries is
an important issue of contents-based multimedia retrieval sys-
tems. Spellman et al. [69] carried out preliminary experiments

27Random multivariate distributions are computed as follows. The mean co-
ordinates � has independent uniform random distribution in ��� ��, and the vari-
ance–covariance matrix � is obtained from a Wishart distribution obtained as
� � �� where � is a triangular matrix with entries sampled from a standard
normal distribution.
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Fig. 13. Veldhuis’ approximation algorithm for the �-divergence (sym-
metrized Kullback–Leibler divergence).

to emphasize on the fact that the MINMAX KL center is compu-
tationally more efficient than the centroid for nearest neighbor
queries. The Bregman–Csiszár one-parameter family of -di-
vergences may further provide a flexible framework for tuning
individually the “appropriate” distance function in each cluster.
Note that since the mixture of exponential families is not an ex-
ponential family (e.g., the family of Gaussian mixtures is not an
exponential family), our method does not allow to compute the
centroid of Gaussian mixtures [70]. However, since the product
of exponential families is an exponential family, we can com-
pute the entropic centroids of theses product distributions.

Finally, although Bregman divergences are an important
family of information-theoretic distance measures, there are
by no means covering the full spectrum of distances. Csiszár

-divergences [34] which includes the Bhattacharyya distance
is also another major family of parametrized distances that
intersects with the family of Bregman divergences only for
the Kullback–Leibler representative. It would be interesting to
study the properties of -divergence centroids and barycenters.
Amari [12] fully characterized the centroids with respect to

-divergences, a one-parameter family of Csiszár divergences
parametrized by generators . Namely, Amari proved [12] that
the -means which are the generalized means for the corre-
sponding generator minimize the average sum with respect
to the -divergence. Rigazio et al. [71] presented another work
in that direction by approximating the Bhattacharyya centroid
of multivariate normals with diagonal covariance matrices
using an iterative converging algorithm. The Kullback–Leibler

divergence is the only common divergence member of Bregman
and Csiszár families. Johnson and Sinanovic [72] presented a
symmetric resistor-average distance that does not belong to the
family of -divergences by averaging two Kullback–Leibler
distance using a harmonic mean for which it would be in-
teresting to compute the centroid as well. Teboulle [65]
generalized this Bregman -means algorithm in 2007 by con-
sidering both hard and soft center-based clustering algorithms
designed for both Bregman [21] and Csiszár -divergences
[47], [44].

Although we have considered in this paper Bregman diver-
gences defined on a space , Bregman divergences can
also be extended to handle other elements such as Hermitian
matrices [3]. See also the work on functional Bregman diver-
gences [24] that extends vector Bregman divergences to mea-
sure spaces using Fréchet derivatives. Finally, observe that for
any given Bregman divergence used on a finite vector
set , it is always possible to “metrize” this distortion measure
by first symmetrizing it as and
then finding the largest exponent such that the triangle
inequality on triplets of vectors and of is satisfied

See [51] for related work on metric divergences.28

APPENDIX

SYNOPSIS OF VELDHUIS’ AND THE GENERIC

GEODESIC-WALK METHODS

Fig. 13 summarizes the Veldhuis’ -divergence centroid
convex programming method [36].
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