
Theoretical Computer Science 377 (2007) 139–150
www.elsevier.com/locate/tcs

Self-improved gaps almost everywhere for the agnostic
approximation of monomials

Richard Nocka,∗, Frank Nielsenb

a CEREGMIA-UFR DSE, Université des Antilles-Guyane, Campus de Schoelcher, BP 7209, 97275 Schoelcher, Martinique, France
b SONY CS Labs (FRL), 3-14-13 Higashi Gotanda, Shinagawa-Ku, Tokyo 141-0022, Japan

Received 12 January 2006; received in revised form 5 February 2007; accepted 8 February 2007

Communicated by O. Watanabe

Abstract

Given a learning sample, we focus on the hardness of finding monomials having low error, inside the interval bounded below
by the smallest error achieved by a monomial (the best rule), and bounded above by the error of the default class (the poorest rule).
It is well-known that when its lower bound is zero, it is an easy task to find, in linear time, a monomial with zero error. What we
prove is that when this bound is not zero, regardless of the location of the default class in (0, 1/2), it becomes a huge complexity
burden to beat significantly the default class. In fact, under some complexity-theoretical assumptions, it may already be hard to
beat the trivial approximation ratios, even when relaxing the time complexity constraint to be quasi-polynomial or sub-exponential.
Our results also hold with uniform weights over the examples.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Agnostic learning; Self-improving reductions; Monomials

1. Introduction

Let C be a class of Boolean formulas; any of its elements, c, can be represented as a function c : {0, 1}
n

→ {0, 1},
where n is the number of description variables. Each of the 2n elements of {0, 1}

n are called observations, and the
couples (o, c(o)) are called examples, either “positive” (+) when c(o) = 1, or “negative” (−) when c(o) = 0. The
instance of the problem which interests us is a weighted learning sample consisting of two parts:

• a subset L S of {(o, c(o)) : o ∈ {0, 1}
n, c(o) ∈ {0, 1}}, called the learning sample, in which the labels are given by

an unknown formula c called the target concept;
• a real weight function w : L S → (0, 1], which assigns a weight to each example, such that all weights sum to one

over L S.

∗ Corresponding author. Tel.: +596 596 72 74 28; fax: +596 596 72 74 03.
E-mail addresses: Richard.Nock@martinique.univ-ag.fr (R. Nock), Nielsen@csl.sony.co.jp (F. Nielsen).
URLs: http://www.univ-ag.fr/∼rnock (R. Nock), http://www.csl.sony.co.jp/person/nielsen/ (F. Nielsen).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.02.023

http://www.elsevier.com/locate/tcs
mailto:Richard.Nock@martinique.univ-ag.fr
mailto:Nielsen@csl.sony.co.jp
http://www.univ-ag.fr/~rnock
http://www.univ-ag.fr/~rnock
http://www.univ-ag.fr/~rnock
http://www.univ-ag.fr/~rnock
http://www.univ-ag.fr/~rnock
http://www.csl.sony.co.jp/person/nielsen/
http://www.csl.sony.co.jp/person/nielsen/
http://www.csl.sony.co.jp/person/nielsen/
http://www.csl.sony.co.jp/person/nielsen/
http://www.csl.sony.co.jp/person/nielsen/
http://www.csl.sony.co.jp/person/nielsen/
http://www.csl.sony.co.jp/person/nielsen/
http://www.csl.sony.co.jp/person/nielsen/
http://dx.doi.org/10.1016/j.tcs.2007.02.023

140 R. Nock, F. Nielsen / Theoretical Computer Science 377 (2007) 139–150

We do not know neither c, nor C, yet our objective is to approximate as best possible c on L S using another function
called a hypothesis; more precisely, given L S and a class of Boolean formulas H called the hypothesis class, our
objective is to build some h ∈ H with error errh(L S) as close as possible to the best possible onH,

err∗(L S) = inf
h∈H

errh(L S). (1)

Here, errh(L S) =
∑

(o,c(o))∈L S:h(o)6=c(o) w((o, c(o))) is the sum of weights of the examples of L S on which h
and c disagree. As long as H is powerful enough to express all 22n

concepts, the solutions to (1) are the concepts
of H consistent with L S (making no error). However, seldom are the cases where such an assumption can be
made, either because restrictions are put on h (e.g. for experimental purposes, see [17]), or because H is inherently
small. The task returns then to that of minimizing the error errh(L S), or equivalently maximizing the accuracy,
acch(L S) = 1 − errh(L S), so as to come as close as possible to the optimum (err∗(L S) or acc∗(L S), respectively).
Solving (1), or approximating its solution, is a crucial problem from the standpoints of different learning theories, as it
constitutes the core for learning various classes of Boolean formulasH (including the one we consider in this paper),
[1,2,12,15,17,18].

A class of Boolean formulas H well studied in computational learning theory is the class of monomials, M. A
monomial is a conjunction of literals (i.e. the assignment of Boolean variables). This class is among the simplest in
description, yet it encodes an exponential number of Boolean concepts (in fact, 3n

+ 1 1). It has received extensive
coverage for both theoretical and experimental works related to machine learning and computational learning theory
[16]. The essential positive result, one of the oldest in computational learning theory, states that there exists a
polynomial time algorithm which, whenever err∗(L S) = 0, returns a monomial h with errh(L S) = 0 [16]. This
algorithm turns out to be linear in all parameters, and it even works when fed with the positive examples of L S only.
The simplicity of the task contrasts with its hardness when err∗(L S) 6= 0. Indeed, if P 6= NP, no polynomial time
algorithm can guarantee to find h ∈M satisfying errh(L S) ≤ err∗(L S) + ε, for some ε > 0. This is not exactly the
same formulation as in [15], but this one holds as well. Here, ε is a decreasing function of n, and thus the result might
look not so negative for problems with large number of description variables. Unfortunately, there is more: for any
ε > 0, if P 6= NP, no polynomial time algorithm can guarantee to find h ∈M satisfying

(K − ε)acch(L S) ≥ acc∗(L S), (2)

where K is a constant that has been regularly improved: K = 770/767 in [2], K = 59/58 in [4] and K = 2 in [6].
All these results amount to saying that no polynomial time algorithm can guarantee to find h ∈M satisfying:

errh(L S) ≤ (1 − ε) × err∗(L S) + ε × 1, ∀ε < 1 − 1/K . (3)

(3) brings an intractable region in the interval of errors, [err∗(L S), 1], as a function of its bounds’ weighted arithmetic
average. Since it helps to locate intractability, such a bound is very appealing from the conceptual standpoint. Since
ε cannot be larger than half a percent, the bound is however not really meaningful from the experimental standpoint,
and it leaves room for improvements from the theoretical standpoint as well. From both standpoints, the interval
[err∗(L S), 1] is also not the best to use. Let µ∗(L S) = min{w+, w−

}, with w+ (resp. w−) the sum of weights of the
examples from class + (resp. −). Then, the interval [err∗(L S), µ∗(L S)], where µ∗(L S) turns out to be the error of the
default class, is much more meaningful. Indeed, its lower bound is the theoretical best case, while its upper bound is
the experimental worst case, the reference in machine learning [13]. ProvidedH encodes the default class, and it is the
case forM, any learning algorithm forH whose output would not beat µ∗(L S) would indeed be completely useless.
To see thatM encodes the default class, notice that the empty monomial achieves error w−, while the monomial with
all 2n literals achieves error w+.

In this paper, we focus on the hardness of coming close to err∗(L S) in the interval [err∗(L S), µ∗(L S)], as a
function of err∗(L S) and µ∗(L S). Our results establish a sharp complexity plateau for this approximation. While
finding h ∈ M with errh(L S) = 0 costs almost nothing when err∗(L S) = 0 (it is linear time and only a part of the
examples are sufficient, regardless of µ∗(L S)), we show that when err∗(L S) 6= 0, significantly beating µ∗(L S) is
hard. This hardness should be appreciated in the light of the corresponding consequences of our result:

1 All monomials having at most n literals, plus the false concept, coded e.g. by all 2n variables.

R. Nock, F. Nielsen / Theoretical Computer Science 377 (2007) 139–150 141

Fig. 1. An algorithm for (f, ρ, µ)-approximability outputs a monomial h whose error lies in the grey-shaded area (here, 1 = µ∗(L S) − err∗(L S),
see text for details).

• the result also holds when allowing the induction algorithm to be quasi-polynomial time, or even sub-exponential
time;

• modulo some complexity assumptions, it may even be hard to beat significantly the trivial approximability ratios;
• the result still holds regardless of the location of µ∗(L S) in (0, 1/2);
• the result already holds when the examples have uniform weights: thus, the weights are not the “key” to hardness.

This property is particularly important since skewing the weights is the usual ingredient for obtaining or improving
hardness results in learning [15,17].

It is proven via self-improving reductions, a tool that has been previously used very sparsely in computational learning
theory, yet that is sometimes very helpful to bring strong inapproximability results [10,19,20]. To the best of our
knowledge, our result establishes to date the sharpest complexity-theoretical plateau in settings related to agnostic
approximation – finding low error classifiers when no assumption is made about the target concept to model –. It also
has a consequence on Boosting using monomials as weak classifiers [16]. In this classification setting, moderately
accurate classifiers are sought via an iterative reweighting scheme; all these classifiers bring altogether a combination
of low error. Our results tend to be an advocacy for previous weak learning algorithms, that basically rely on an
exhaustive search in a class of small cardinality, to find its best classifier [8,22].

Section 2 presents our model of agnostic approximation. Section 3 states and proves our main results, and presents
related consequences. A last section concludes the paper. An Appendix contains some proofs and a background on
inapproximability.

2. Agnostic approximation

Before stating our results, we first give some definitions related to approximation and learnability. They are derived
from robust/agnostic learning [12], with a difference with usual learning models in that “learning” in our case is
evaluated with respect to L S only, and not with respect to a potentially much larger domain from which L S is
sampled. This approach evacuates statistical problems inherent to learning [16], yet it does not prevent to cast the
negative results on these larger, unrestricted domains, with standard randomization/simulation arguments [14]. First,
for any weighted learning sample L S, we say that L S is µ-robust as a shorthand for the fact µ∗(L S) = µ. The
following definition presents the approximation of µ-robustness; it makes use of the notation |I |, the general notation
for a problem’s instance size (|.| denotes the size).

Definition 1. We say that H is approximable in time f (|I |) within ρ on µ-robust samples (in short, H is (f, ρ, µ)-
approximable) iff there exists an algorithm A with the following properties:

(1) A runs in time O(f (|I |));
(2) A takes as input a µ-robust weighted learning sample L S, and outputs h ∈M such that:

errh(L S) ≤
1
ρ

err∗(L S) +

(
1 −

1
ρ

)
µ∗(L S). (4)

In this definition, we have not put parameters in f (.), since the complexity can be measured using various instance
parameters. Fig. 1 gives a schematic representation of (f, ρ, µ)-approximability. The “irrelevant” region represents
those monomials whose error would be larger than that of the default class, thus being irrelevant with respect to
learning, while the “impossible” region represents errors unachievable by monomials. A is as better as ρ is close to

142 R. Nock, F. Nielsen / Theoretical Computer Science 377 (2007) 139–150

Fig. 2. Synthesis of the three reductions’ effects on ρ and µ∗(L S) (see text for details).

one, and as worse as ρ increases. To finish up with the definitions, we define Q P as the class of problems admitting
deterministic algorithms running in quasi-polynomial time, i.e. f (|I |) = |I |polylog(|I |), with polylog(|I |) denoting
logO(1)

|I | functions (with “log” the base-2 logarithm throughout this paper). We also consider sub-exponential time
algorithms, for which f (|I |) = 2|I |η (with η < 1, [5]). Such relaxed time constraints are authorized by very strong
complexity assumptions found in various papers [21,5] (among others).

From the results in [2,15,16], it appears that the hardness of (f, ρ, µ)-approximability depends on the location of
err∗(L S). Indeed, whenever err∗(L S) = 0, simple algorithms exist for which ρ = 1, regardless of µ∗(L S). On the
other hand, when err∗(L S) > 0, ρ is strictly greater than one for at least one possible value of µ∗(L S). In what
follows, we make this observation more precise, and prove that when err∗(L S) is non-zero, we can make ρ blow-up
to virtually any intractability ratio, for any µ∗(L S) ∈ (0, 1/2).

3. Main result

Our proof is complexity-theoretic, and relies on the combination of three reductions. The first establishes a
small inapproximability ratio ρ for some particular value of µ∗(L S); the second is a self-improving reduction
(bootstrapping): it combines instances of the same problem to create a new instance that boosts ρ to very large
values, still for some particular value of µ∗(L S); the third is an offset gadget that makes it possible to move µ∗(L S)

everywhere in (0, 1/2), while keeping the boosted inapproximability ratio ρ. Fig. 2 presents a synthesis of the
combined effects of the reductions on the parameters ρ and µ∗(L S), and Fig. 3 presents the learning samples built
throughout the three reductions.

3.1. First reduction: The basic step

The instance of the MAX-INDEPENDENT-SET problem [9] is a simple graph G = (X, E), its feasible solutions
are independent sets of G, i.e. any subset S ⊆ X such that no edge of E has its two endpoints in S. Its objective
is to maximize the size of the independent set built. Our starting point is a well known reduction from the MAX-
INDEPENDENT-SET problem [17]. We briefly state it for the sake of completeness. Let G = (X, E) be the graph
instance of MAX-INDEPENDENT-SET, and s∗ the size of its largest independent set. We create L S over n = |X |

variables, with |X | positive examples and |E | negative examples. Each variable is in one-to-one relationship with a
vertex of G. The positive examples are defined as pi = (0i , 1) for each i ∈ {0, 1, . . . , |X | − 1}, where 0i denotes
the all-1 observation with a zero (negative literal) for variable i . The negative examples are defined as ni, j = (0i, j , 0)

for each edge (i, j) ∈ E , where 0i, j denotes the all-1 observation with zeros in variables i and j . The weight of each
example is 1/(|X | + |E |). This reduction has the following properties. Let T denote any monomial. With respect to
L S, we can suppose without loss of generality that T is monotone (i.e. it does not contain negative literals). Otherwise:

• either it contains at least two negative literals, and no positive example can satisfy it. Replacing T by the all-1
monotone monomial cannot increase its error, since no negative example can satisfy it;

R. Nock, F. Nielsen / Theoretical Computer Science 377 (2007) 139–150 143

Fig. 3. An overview of examples generated through all three reductions (shaded squares denote negative literals; all others are positive. See text for
details).

• either it contains exactly one negative literal, say for variable i . In this case, only pi satisfies T among all positive
examples. Replacing T with the monotone monomial in which only positive literal i is absent still makes T satisfied
by pi , and T cannot be satisfied by any negative example: its error cannot increase.

We can also suppose that T does not make errors over negative examples. Otherwise, if, say, ni, j satisfies T , we
put the positive literal of variable i in T : now, T gives the wrong class to a positive example, but gives the right
class to at least one more negative example; therefore, its error does not increase. Finally, T immediately encodes
an independent set of G: take the set S ⊆ X whose vertices correspond to positive literals absent from T . It
cannot contain both endpoints of some edge (i, j) ∈ E , since otherwise negative example ni, j would satisfy T .
Similarly, given any independent set of size s in G, it is easy to build a monotone monomial making no more than
(|X | − s)/(|X | + |E |) = µ∗(L S) − s/(|X | + |E |) errors, by putting as positive literals all but those corresponding to
vertices in the independent set. Here, we have used the fact that provided |E | ≥ |X |,

µ∗(L S) =
|X |

|X | + |E |
. (5)

Putting this altogether, we see that the minimal error over L S and the size of the largest independent set of G are
related as follows:

err∗(L S) = µ∗(L S) −
s∗

|X | + |E |
. (6)

While this is enough to translate any hard gap (thus, inapproximability ratio, see Appendix A.2) from MAX-
INDEPENDENT-SET to the hardness of (f, ρ, µ)-approximability, this is clearly not enough to obtain large
inapproximability ratios.

3.2. Second reduction: Self improvement

Now, we show how to boost the inapproximability ratio ρ. Fix d > 1 some integer. The reduction starts from the
sample L S of Section 3.1. From this set of examples, we create new examples over d|X | variables (see Fig. 3). This
new set of variables is partitioned into d subsets. Each of these subsets is in bijection with the original |X | variables
of the first step. Any new observation can thus be described as a d-tuple, each tuple corresponding to one of these
subsets, and written over the original |X | variables. Positive and negative examples are created as follows:

• the observation of each new positive example is of the form (0i1 , 0i2 , . . . , 0id), where 0ik is the observation of
positive example pik of the first step. Thus, out of the d|X | variables, the observation of each new positive example

144 R. Nock, F. Nielsen / Theoretical Computer Science 377 (2007) 139–150

contains d negative literals. Making all possible combinations yield |X |
d new positive examples. Let pi1,i2,...,id be

the notation for the new positive examples;

• the observation of each new negative example is obtained via the following transformation: we take some
observation (0i1 , 0i2 , . . . , 0id) of positive example pi1,i2,...,id , and replace 0ik (for some 1 ≤ k ≤ d) by some
0i, j , where 0i, j is the observation of negative example ni, j of the first step. Thus, the observation of this
new negative example, noted (0i1 , 0i2 , . . . , 0ik−1 , 0i, j , 0ik+1 , . . . , 0id), contains exactly d + 1 negative literals.
We let ni1,i2,...,ik−1,(i, j),ik+1,...,id denote this negative example. Making all possible transformations yield exactly
d|E ||X |

d−1 distinct observations, as the observation of any pi1,i2,...,id exactly brings d|E | distinct observations, but
each distinct observation obtained via the transformation can be obtained from |X | distinct new positive example
(pi1,i2,...ik−1,ik ,ik+1,id yield ni1,i2,...,ik−1,(i, j),ik+1,...,id , for any ik = 0, 1, . . . , |X | − 1). Overall, we create all these
d|E ||X |

d−1 new negative examples.

Weights are uniform, i.e. equal to

w =
1

|X |d + d|E ||X |d−1 . (7)

For any monomial T , let (T1, T2, . . . , Td) be a d-tuple to represent T over the partition of variables adopted for the
representation of the examples. Each Ti is thus described over the initial set of |X | variables, and any observation
(o1, o2, . . . , od) satisfies T iff o j satisfies T j , for any j = 1, 2, . . . , d. W.l.o.g., we can suppose that any monomial
T built over this new set of examples is monotone. Otherwise, we can transform it in O(d|X |) time so as to make it
monotone, as follows. Suppose that some Ti is not monotone:

• if Ti contains more than one negative literal, T cannot be satisfied by any positive example. We can thus replace Ti
by the all-1 monomial without increasing the error;

• if Ti contains exactly one negative literal, say for variable j , then we remove this negative literal and complete Ti
with all positive literals for all other variables. This procedure keeps the same number of positive examples that
satisfy T , while it cannot increase the number of negative examples that satisfy T . Thus, the error of T does not
increase.

Lemma 2. Without loss of generality, T does not misclassify any negative example.

(Proof in appendix, Appendix A.1). Now, a glimpse at the structure of T reveals that each of its parts over the |X |

initial variables encodes an independent set on the original graph, which corresponds to the literals absent in the part;
furthermore, while T gives the right classification to all negative examples, its accuracy over the positive examples is
simply the (weighted) product of the number of “holes” (unspecified variables) over each of the d copies of the original
|X | variables. Reciprocally, given a feasible solution to MAX-INDEPENDENT-SET, it is easy to build a monotone
monomial T by concatenating in each of the d copies of the variables the monomial described over the |X | initial
variables in Section 3.1 : T errs only on positive examples, corresponding to those for which at least one of their d
negative literal is not in the unspecified variables of T . We obtain:

err∗(L S) = µ∗(L S) −
sd
∗

|X |d + d|E ||X |d−1 , (8)

where we recall that s∗ is the MAX-INDEPENDENT-SET maximal solution’s size, and, provided |E | ≥ |X |/d:

µ∗(L S) =
|X |

|X | + d|E |
(9)

is the total weight for the positive class. Now, this is enough to boost any hard gap (thus, inapproximability ratio) for
MAX-INDEPENDENT-SET to a power of d for (f, ρ, µ)-approximability. However, since the reduction’s time is also
O(|X |

d), one has to take care of choosing d not too large to make the final time complexity “fit” into the assumption
used. We shall see it later. In the final step, we see how to release µ∗(L S) from (9), and make it shift anywhere into
(0, 1/2).

R. Nock, F. Nielsen / Theoretical Computer Science 377 (2007) 139–150 145

3.3. Third reduction: The offset gadget

Here, we show that the hard gap of Section 3.2 can be kept even when moving the default class error along the
interval (0, 1/2). The principle is to add another gadget construction in the variables and examples after the second
reduction. Let µ0 = µ∗(L S) as defined in (9).

Suppose that we want to increase µ∗(L S) to some µ1 =
a

2a+b ∈ (µ0, 1/2) ∩ Q, where Q denotes the set of
rationals, and a, b ∈ N∗ are any two constants. We suppose without loss of generality that the graph instance of MAX-
INDEPENDENT-SET has |X | and |E | multiples of b. This is not a restriction for hardness results, since making b copies
of the same graph, without adding edges between different copies, satisfies the two conditions while it also multiplies
the size of the maximal independent sets by b. Hence, inapproximability ratios are preserved (see Appendix A.2). Let
us fix:

m = (ad|E ||X |
d−1

− (a + b)|X |
d)/b, (10)

k = dlog(m + 1)e = O(d log |X |). (11)

Notice that the assumption µ1 > µ0 implies m > 0. What we now do is a simple trick that shifts Bayes error for
L S (the minimal error on L S over all possible classifiers, not restricted to monomials). We create k new variables in
addition to the last d|X |. The examples obtained in reduction two (hereafter referred to as “old” examples) all have
the same value for the new variables, namely we put only positive literals for these variables (see Fig. 3). We also
create m ≤ 2k

− 1 new positive examples: each of them contains, for the first d|X | variables, all positive literals,
and we plug for the last k variables one of the m choices for the literals of the last variables except the choice of all
positive literals. We also create m new negative examples, each of which has exactly the same observation of some
new positive example. Again, weights are uniform. We let T = (T1, T2, . . . , Td , T?) denote some optimal monomial
for this last reduction, using the convention of the two last reductions, with T? built over the last k variables.

Lemma 3. Without loss of generality, T is not satisfied by any of the m new positive examples.

The proof of this lemma is immediate once we remark that if any new positive example satisfies T , then so does one
new negative example. Thus, if we replace T? by all positive literals of the last k variables, then we do not increase
the error of T . Since the negative class is still the majority class, we have:

µ1 =
µ0

w
×

1
1
w

+ 2m
+

m
1
w

+ 2m
=

a
2a + b

. (12)

Following the second reduction, since all new positive examples receive the wrong class (Lemma 3), we obtain that
err∗(L S) satisfies:

err∗(L S) = µ1 −
sd
∗

|X |d + d|E ||X |d−1 + 2m
= µ1 −

κsd
∗

|X |d + d|E ||X |d−1 , (13)

with:

κ =
1

1 + 2wm
= θ(1), (14)

while the whole reduction time is no more than O(d|X |
d+1).

Should we have needed to decrease µ0 to some µ1 =
a

2a+b ∈ (0, µ0) ∩ Q, we would only have added the new
negative example for the third reduction (this time without changing Bayes error), with:

m = ((a + b)|X |
d

− ad|E ||X |
d−1)/a, (15)

and k fixed as in (11), this time with the assumption that |X | is a multiple of a.

3.4. Consequences

The most immediate consequence relies on the following theorem, whose proof is postponed to Appendix A.2,
which also contains the necessary background on inapproximability.

146 R. Nock, F. Nielsen / Theoretical Computer Science 377 (2007) 139–150

Theorem 4 (Hardness of (f, ρ, µ)-Approximability). For any µ ∈ (0, 1/2) ∩ Q, M is not (f, ρ, µ)-approximable,
for:

• ρ = nK , for any constant K > 0, unless NP = P (and f is polynomial);
• ρ = nlogK n , for any constant K > 0, unless NP ⊂ Q P (and f is quasi-polynomial);
• ρ = 2nK

, for some constant K < 1, unless NP ⊂ DTIME(2|I |η) for some η < 1 (and f is sub-exponential).

Furthermore, the result holds even with uniform weights over the examples.

Notice that the constraint that µ∗(L S) is rational is not a restriction, since Q is dense into (0, 1/2). Up to what is hidden
in the K , its inapproximability ratio 2nK

may not be far from the trivial ratio, 2n . Indeed, whenever µ∗(L S) = w+,
if we replace false by the observation of the positive example having the largest weight, then the new error is
≤w+

− (1/2n) < w+(1 − (1/2n)) < (1/2n)err∗(L S) + (1 − (1/2n))µ∗(L S).
As a comparison, negative results obtained in the framework of agreements maximization in (2) can be translated

to negative results for (f, ρ, µ)-approximability, but at the expense of a weakening of the inapproximability ratio.
Consider for example the best of these results, in [6]. Here, a hard gap is obtained for monomials with a reduction
which brings a learning sample L S with uniform weights, with µ∗(L S) = 1/2, and for which the error of the optimal
monomial either satisfies err∗(L S) ≤ ε/2, or err∗(L S) > 1/2 − ε/2, for any constant ε > 0. This implies (f, ρ, µ)-
inapproximability for any ρ such that err∗(L S)/ρ + (1/2)(1 − 1/ρ) ≤ 1/2 − ε/2, i.e. such that ρ ≤ 1/ε − 1. Thus,
the best possible inapproximability ratios for (f, ρ, µ)-approximability that follow from [6] are constant. Moreover,
using the inapproximability ratios obtained by [6] with the power of randomized quasi-polynomial time reductions
would only yield sublinear inapproximability ratios for (f, ρ, µ)-inapproximability, i.e. with ρ < n.

A consequence of Theorem 4 is the following:

Corollary 5. unless NP = P, for any δ ∈ (0, 1/2), there does not exist some polynomial time algorithm that, given
learning sample L S and weight function w, returns when there exists one some h ∈ M with errh(L S) ≤ 1/2 − δ.
The result remains true if we pick δ = 1/p(n), for any polynomial p(n).

(Proof in appendix, Appendix A.3). Notice that we can replace the polynomial time complexity by quasi-polynomial
time if we replace the complexity assumption by NP ⊂ Q P , and by sub-exponential time if we replace it by
NP ⊂ DTIME(2|I |η). An interesting application of Corollary 5 lies in the framework of Boosting. Boosting relates to a
breakthrough in learning, that has formalized the idea of combining many moderately accurate weak hypotheses to get
a strong combined classifier [7,16]. Informally, suppose we have a polynomial time algorithm weak learning algorithm
forH, i.e. an algorithm that, given any L S and any weight function w over L S, outputs a hypothesis h ∈ H γ -far from
random, i.e. with |(1/2)−errh(L S)| ≥ γ for some γ ∈ (0, 1/2). Then, there exists a polynomial time strong learning
algorithm that, given the sole access to the weak learning algorithm, takes as input some L S and w, and returns, after
T weak learning calls, a combination hcomb of the T outputs having error errhcomb(L S) ≤ exp(−T γ 2/2). By means
of words, weak learning is enough to obtain, by subtle combinations, an overall error rapidly vanishing with T . So
far, some authors have proned the use of simple weak hypotheses, such as decision stumps [8]. A decision stump is
a decision tree with a single internal node, i.e. it is almost a monomial with a single literal. The interest in using this
simple class is that the brute force approach that explores all hypotheses to find the optimal one on L S with w is
linear, though its drawback is that we cannot hope to have a large γ . Replacing stumps by monomials would be more
convenient from the γ standpoint, since the average error of stumps is 1/2 regardless of µ∗(L S), while the average
error of monomials satisfies:∣∣∣∣∣1

2
−

1
|M|

∑
h∈M

errh(L S)

∣∣∣∣∣ =

(
1
2

+
2n

3n + 1

)
(1 − 2µ∗(L S))

= (1 + o(1)) × ((1/2) − µ∗(L S)), (16)

which is 6=1/2 whenever µ∗(L S) < 1/2, and can even be very far from 1/2 when µ∗(L S) gets small. The proof of
this statement is immediate once we remark that every positive example gets misclassified by exactly 3n

+ 1 − 2n

monomials, while every negative example gets misclassified by exactly 2n monomials. Thus, there almost always
exist monomials γ -far from random, for large γ . The problem is that the brute-force exploration ofM is intractable,
and furthermore Corollary 5 brings that unless widely believed complexity assumptions are false, no weak learning

R. Nock, F. Nielsen / Theoretical Computer Science 377 (2007) 139–150 147

algorithm exists for M, for any γ ∈ (0, 1/2), and we can even pick γ inversely polynomial, thus obtaining negative
results in the original weak learning framework [16]. From the computational standpoint, this is an advocacy for using
in weak learning the largest classes that remain tractable for the brute-force search of their optimal element, such as
classes of classifiers whose elements have size bounded above by a constant [8,22].

We can also refine our hardness results to show that hardness already holds whenever there are only few examples.
Berman and Karpinsky [3] build a MAX-INDEPENDENT-SET instance on a regular graph of degree three, with 284u
nodes, for which the maximum independent set size is either above (140−ε)u or below (139+ε)u (with ε ∈ (0, 1/2)).
This is enough to prove that MAX-INDEPENDENT-SET is not approximable to within 140/139 − ε, for any ε > 0.
In our case, we see that the reduction of Section 3.1 brings a L S having no more than |X | + |E | = 5|X |/2 = 5n/2
examples. Thus, (f, ρ, µ)-approximability (with µ∗(L S) = 2/5 = 40% in this particular case) is already hard
when there are as few examples as |L S| = O(n), for the same inapproximability ratio as [3]. Notice that our
inapproximability ratio is constant in this case, which also follows from the reduction of Feldman [6] (see above),
but even when |L S| = O(n) in Feldman [6], the hidden constant appears to be much larger than ours.

4. Conclusion

The reduction we have used in Section 3.2 is a self-improving reduction. Basically, it can be viewed as a
parameterized reduction from a problem onto itself, for which the inapproximability ratio behaves as an exponential
function of the parameter (d in our proofs). When this parameter increases, the time complexity of the reduction
increases, but the inapproximability ratio is blown up. The point is to obtain the largest possible inapproximability
ratio, while keeping the reduction’s time complexity inside the admissible bounds, given that these bounds are led
by the complexity assumption used. Such self-improving reductions have been previously used very sparsely in
computational learning theory [10,19,20]. With this tool, we have been able to show a quite striking phenomenon.
Beating the majority class with monomials is a huge complexity burden whenever err∗(L S) 6= 0, regardless of
the location of the default class error; it may even be the case for beating the trivial exponential approximability
ratios with sub-exponential time algorithms. In deep contrast, when err∗(L S) = 0, achieving optimal error, with unit
approximability ratio, costs only a linear-time machinery which does not even make use of all examples! To the best of
our knowledge, this is the sharpest complexity plateau that has appeared so far in complexity-theoretical approaches
to computational learning theory.

Acknowledgments

We would like to thank the reviewers for insightful comments that helped to improve significantly the paper.

Appendix A.

A.1. Proof of Lemma 2

We show that we can suppose that T does not misclassify any negative example; otherwise, we transform
it in linear time without increasing the error, as follows. Suppose T = (T1, T2, . . . , Td) is satisfied by n? =

ni1,i2,...,ik−1,(i, j),ik+1,...,id ∈ L S. Let L S+

i , L S−

i ⊂ L S be defined as:

L S−

i =

{
ni ′1,i

′

2,...,i
′

k−1,(i, j ′),i ′k+1,...,i
′
d

∈ L S : ni ′1,i
′

2,...,i
′

k−1,(i, j ′),i ′k+1,...,i
′
d

satisfies T
}

,

L S+

i =

{
pi ′1,i

′

2,...,i
′

k−1,i,i
′

k+1,...,i
′
d

∈ L S : ∃ni ′1,i
′

2,...,i
′

k−1,(i, j ′),i ′k+1,...,i
′
d

∈ L S−

i, j

}
.

It follows that n? ∈ L S−

i , all examples of L S+

i also satisfy T , and any positive example of the form
pi ′1,i

′

2,...,i
′

k−1,i,i
′

k+1,...,i
′
d

that satisfies T is in L S+

i (otherwise, since ni ′1,i
′

2,...,i
′

k−1,(i, j),i ′k+1,...,i
′
d

satisfies T , we would have

missed this example in L S−

i). Now, put in Tk the positive literal of variable i . After the transformation, the only
positive examples that do not satisfy T anymore are those of L S+

i , while the negative examples of L S−

i do not satisfy
T anymore. Since |L S−

i | ≥ |L S+

i | (the map which associates each negative example ni ′1,i
′

2,...,i
′

k−1,(i, j ′),i ′k+1,...,i
′
d

of L S−

i

to the corresponding positive example pi ′1,i
′

2,...,i
′

k−1,i,i
′

k+1,...,i
′
d
, in L S+

i , is surjective), the error of T does not increase
after transformation.

148 R. Nock, F. Nielsen / Theoretical Computer Science 377 (2007) 139–150

A.2. Background on (in)approximability and proof of Theorem 4

The complexity of approximating MAX-INDEPENDENT-SET follows immediately from that of approximating its
dual, MAX-CLIQUE and the PCP characterization of NP [11,23]. Without entering into details, decision problems in
NP have a proof system in which the certificate π can be checked by a randomized verifier with limited resources,
and whose probability of accepting a proof has a “gap”: suppose without loss of generality that π is a proof for a
Boolean formula φ. Then if φ is satisfiable, then the maximum acceptance probability is 1. Otherwise, it is no more
than some s < 1 (thus, even a good approximation of the maximum could help to decide NP-Complete problems).
This hard gap between probabilities can be translated to MAX-INDEPENDENT-SET via a reduction on a graph G
of |X | = 2(1+δ)R vertices (R > 0 is a parameter and 0 < δ < 1 a free parameter of the reduction), such that
whenever φ is satisfiable, there exists a clique of size 2R , while otherwise the cliques of G have size <2δR [23].
In this proof, we have |X | = o(|E |), so that all constraints of Sections 3.1–3.3 for µ∗(L S) are satisfied. The ratio

ρ = 2R/2δR
=

(
2(1+δ)R)1−

(
2δ

1+δ

)
= |X |

1−ε is thus NP-hard to achieve, with ε = 2δ/(1+ δ) > 0. Zuckerman [23] has
derandomized the results of Håstad [11], which allows to remove randomized complexity classes in the complexity
assumptions.

Now, let us shift to (f, ρ, µ)-approximability, and consider (13). Whenever φ is satisfiable, this means that the
optimal monomial satisfies:

err∗(L S) = µ∗(L S) − ∆, (17)

with:

∆ =
κ|X |

1−(ε/2)

|X | + d|E |
(18)

(and κ in (14)), while when φ is not, the optimal monomial satisfies:

err∗(L S) > µ∗(L S) −
∆

|X |d(1−ε)
. (19)

ShouldA be some (f, ρ, µ)-approximability algorithm forM (for some ρ), we would obtain that when φ is satisfiable
(after having carried out all three reductions), the monomial h output by A would satisfy (we use (17)):

errh(L S) ≤
1
ρ

err∗(L S) +

(
1 −

1
ρ

)
µ∗(L S)

≤
1
ρ

(µ∗(L S) − ∆) +

(
1 −

1
ρ

)
µ∗(L S) = µ∗(L S) −

∆
ρ

.

Considering (19), choosing any ρ ≤ |X |
d(1−ε) would allow to solve NP-Complete problems with A, in f (.)-time, a

contradiction if NP 6⊂ DTIME(f (|I |)). Hence, if we wish to prove some inapproximability ratio ρ(n) for (f, ρ, µ)-
approximability, we only have to tune d and k to have (for some ε > 0):

|X |
d(1−ε) > ρ(n). (20)

Because of the third reduction, we know that if we want µ ∈ (0, 1/2) ∩ Q constant (see (12)), then we only need
k = O(d log |X |) in the third reduction (see (11)); thus:

• if we want ρ = nK , then we only need |X |
d(1−ε) > (d(|X | + K ′ log |X |))K , for some constant K ′. Picking

d > d(K + 1)/(1 − ε)e – a constant – is enough for this inapproximability ratio to hold. Note also that the
reduction time is polynomial;

• if we want ρ = nlogK n , it is enough to choose d ≥ d(logK+1
|X |)/(1 − ε)e, thus yielding a quasi-polynomial time

reduction;
• finally, to get a sub-exponential ρ, notice that the overall time complexity for the reductions of Sections 3.1–3.3

is no more than O(|X |
d+2), provided d = O(|X |). While keeping this complexity in O(2|I |η), this authorizes

to pick d as large as d = |X |
η− f (|X |), for some f (|X |) = o(1) function (we can pick e.g. f (|X |) =

(2 log log |X |)/ log |X |). Taking logarithms in (20), the largest inapproximability ratios are then obtained by

R. Nock, F. Nielsen / Theoretical Computer Science 377 (2007) 139–150 149

choosing K constant as large as possible satisfying:

(1 − ε)|X |
η− f (|X |) log |X | = Ω

(
|X |

K (η− f (|X |))(|X | + log |X |)K
)

. (21)

Picking K = η/(2 + 2η), a constant, is enough for this to hold.

A.3. Proof of Corollary 5

We first start with δ constant. By the proof of Theorem 4, no such algorithm could exist that would find, whenever
possible, a monomial h whose error would lie in the “interval gap”:

errh(L S) ∈

[
µ∗(L S) − ∆, µ∗(L S) −

∆
ρ

)
= I, (22)

since otherwise, it could be used to decide NP-Complete problems. What we have to do to prove Corollary 5 is thus
to carry out reduction three to pick µ∗(L S) so that 1/2 − δ ∈ I, which is simple since µ∗(L S), ∆ and ρ are functions
of ε, d, |X |, |E | only, and Q is dense in R.

Similarly, should we want this to hold for δ = 1/p(n) for some polynomial p(n), we would only have to prove that
reduction three still works in polynomial time for shifting µ1 to any 1/2 − 1/q(n) for any polynomial q(n), i.e. prove
that it works for a(n) = q(n) − 1 and b = 2. To prove this, we keep the same expression for m with the additional
dependences on n, as m = (a(d|X | + k)d|E ||X |

d−1
− (a(d|X | + k) + b)|X |

d)/b, for a slightly larger k:

k = d(d + degree(q) + 2) log |X |e, (23)

with degree(q) the degree of polynomial q . A new set of k variables can represent all the m new examples if we
choose m assignments of the k new variables, among the 2k > m possible. The whole reduction time is no more than
O(d|X |

d+1+degree(q)).

References

[1] P. Bartlett, S. Ben-David, Hardness results for neural network approximation problems. in: Proc. of the 4th European Conf. on Computational
Learning Theory, 1999, pp. 50–62.

[2] S. Ben-David, N. Eiron, P. Long, On the difficulty of approximately maximizing agreement, in: Proc. of the 13th International Conference on
Computational Learning Theory, 2000 pp. 266–274.

[3] P. Berman, M. Karpinsky, On some tighter inapproximability results, in: Proc. of the 26th International Colloquium on Automata, Languages
and Programming, 1999, pp. 200–209.

[4] N. Bshouty, L. Burroughs, Maximizing agreements and coagnostic learning, Theoretical Computer Science 350 (2006) 24–39.
[5] U. Feige, A threshold of ln n for approximating set cover, in: Proc. of the 28th ACM STOC, 1996, pp. 314–318.
[6] V. Feldman, Optimal hardness results for maximizing agreements with monomials, in: Proc. of the 21th IEEE International Conference on

Computational Complexity, 2006, pp. 226–236.
[7] Y. Freund, R.E. Schapire, A Decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and

System Sciences 55 (1997) 119–139.
[8] J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: A statistical view of boosting, Annals of Statistics 28 (2000) 337–374.
[9] M. Garey, D. Johnson, Computers and Intractability, a guide to the theory of NP-Completeness. Bell Telephone Laboratories, 1979.

[10] T. Hancock, T. Jiang, M. Li, J. Tromp, Lower bounds on learning decision lists and trees, Information and Computation 126 (1996) 114–122.
[11] J. Håstad, Clique is hard to approximate within n1−ε , Acta Mathematica 182 (1999) 105–142.
[12] K.-U. Höffgen, H. Simon, K.-S.V. Horn, Robust trainability of single neurons, Journal of Computer and System Sciences 50 (1995) 114–125.
[13] R. Holte, Very simple classification rules perform well on most commonly used datasets, Machine Learning 11 (1993) 63–91.
[14] M. Kearns, M. Li, L. Pitt, L. Valiant, On the learnability of boolean formulae, in: Proc. of the 19th ACM Symposium on the Theory of

Computing, 1987, pp. 285–295.
[15] M. Kearns, R.E. Schapire, L.M. Sellie, Toward efficient agnostic learning, Machine Learning 17 (1994) 115–141.
[16] M.J. Kearns, U.V. Vazirani, An Introduction to Computational Learning Theory, M.I.T. Press, 1994.
[17] R. Nock, Complexity in the case against accuracy estimation, Theoretical Computer Science 301 (2003) 143–165.
[18] R. Nock, P. Jappy, Function-free horn clauses are hard to approximate, in: Proc. of the 8th International Conference on Inductive Logic

Programming, in: Lecture Notes in Artificial Intelligence, vol. 1446, Springer-Verlag, 1998, pp. 195–204.
[19] R. Nock, P. Jappy, J. Sallantin, Generalized graph colorability and compressibility of boolean formulae, in: Proc. of the 9th International

Symp. on Algorithms and Computation, in: Lecture Notes in Artificial Intelligence, vol. 1533, Springer-Verlag, 1998, pp. 237–246.
[20] R. Nock, M. Sebban, Sharper bounds for the hardness of prototype and feature selection, in: Proc. of the 11th International Conference on

Algorithmic Learning Theory, in: Lecture Notes in Artificial Intelligence, vol. 1968, Springer-Verlag, 2000, pp. 224–237.

150 R. Nock, F. Nielsen / Theoretical Computer Science 377 (2007) 139–150

[21] K. Pillaipakkamnatt, V. Raghavan, On the limits of proper learnability of subclasses of DNF formulae, in: Proc. of the 7th International
Conference on Computational Learning Theory, 1994, pp. 118–129.

[22] R.E. Schapire, Y. Singer, Improved boosting algorithms using confidence-rated predictions, Machine Learning 37 (1999) 297–336.
[23] D. Zuckerman, Linear degree extractors and the inapproximability of max clique and chromatic number, in: Proc. of the 38th ACM Symposium

on the Theory of Computing, 2006, pp. 681–690.

	Self-improved gaps almost everywhere for the agnostic approximation of monomials
	Introduction
	Agnostic approximation
	Main result
	First reduction: The basic step
	Second reduction: Self improvement
	Third reduction: The offset gadget
	Consequences

	Conclusion
	Acknowledgments
	
	Proof of Lemma 2
	Background on (in)approximability and proof of Theorem 4
	Proof of Corollary 5

	References

