

�

�

“vcbook” — 2006/9/5 — 12:28 — page 1 — #13
�

�

�

�

�

�

Chapter 1.

Introduction

The last decade has attested a tremendous growth in the interaction of computer
graphics with computer vision and computational geometry. Historically, those fields
have emerged and evolved independently. We briefly trace their origins, as follows:

Computer Graphics. Since William Fetter of Boeing Corporation coined the term
“Computer Graphics” (CG) in 1960, there have been major developments
in the field. Historically, Fetter used the expression “computer graphics”
to describe its human factors in aircraft cockpits, not as we use it today.
From the very early work of Sutherland, with his renown Sketchpad system1

(1963), computer graphics was mostly concerned with synthesizing photorealistic
images. Today, CG aims at blurring the frontier between games and movies.
Although this is still the mainstream challenge of CG, there are many other
alternative graphics techniques: non-photo-realistic (NPR) graphics, graphics
for information visualization, 3D graphical user interfaces (3D GUIs), etc.
Traditional reference computer graphics textbooks include [336, 119, 5].

Computational Geometry. Historically, the term “computational geometry” was
first used by Marvin Minsky and Seymour Papert in their book [231] entitled
Perceptrons: An Introduction to Computational Geometry (1969). Actually,
the book handled more pattern recognition problems than algorithms and data
structures for manipulating efficiently geometric data. Computational geometry,
as we know it today, was established as a new field by Professor Preparata and
his then Ph.D. student, Shamos. Shamos defended his Ph.D. in 1978, and the
first edition of the now famous textbook [271] Computational Geometry: An

1See the recent technical report based on Sutherland’s thesis at http://www.cl.cam.ac.uk/
TechReports/UCAM-CL-TR-574.pdf .

�

�

“vcbook” — 2006/9/5 — 12:28 — page 2 — #14
�

�

�

�

�

�

2 Visual Computing: Geometry, Graphics, and Vision

Introduction was published in 1985, seven years later. Since then, other common
computational geometry textbooks [91, 49, 253] have become available.

Computer Vision. It is more difficult to pinpoint the first investigator of computer
vision or to define the field precisely, since it encompasses biological aspects.
Certainly, Professor Rosenfeld’s book [283] Picture Processing by Computer
(1969) and Marr’s book [218] Vision: A Computational Investigation into the
Human Representation and Processing of Visual Information (1982) established
and set the main orientations and challenges of the discipline. In the late 1980s,
computer vision focused on and made significant contributions to multiview
geometry. Today, vision is tackled from a system’s perspective with biologically
inspired studies. Traditional computer vision textbooks include [112, 159, 122].

1.1 What Is Visual Computing?

Visual computing is an emerging discipline born mainly from the intense cross-
pollination of computational geometry, computer graphics, and computer vision that
has been attested over the past few years. Many similar techniques have been
independently discovered in those well-established areas. Yet, there are undeniable
discrepancies in their use: for example, randomization analysis techniques are
extensively studied and deeply involved in computational geometry, but mostly
experimentally designed in computer vision, etc. My goal in writing this book is
to aim at presenting a concise overview of the fundamentals of 3D computing by
highlighting and harmonizing the major concepts of the interdisciplinary aspect of
visual computing. Thus, I will not detail specific recent advances peculiar to one
field such as: computational topology in computational geometry, shading, point-
based graphics in computer graphics, or tensor voting and face detection in computer
vision.

1.2 Target Audience

Visual Computing: Geometry, Graphics, and Vision is a concise introduction to
common notions, methodologies, data structures, and algorithmic techniques arising in
the mature fields of computer graphics, computer vision, and computational geometry.
Some prior basic knowledge of matrices, algorithm syntax, and complexity analysis
are recommended. These preliminary ideas are covered in first-year college computer
science courses. The central theme of the book is to provide a global and somehow
unified view of the rich interdisciplinary visual computing field. The book is primarily
targeted at advanced undergraduate students. The goal is to provide an opportunity
for advanced undergraduate students who have studied one or two of these fields, but

�

�

“vcbook” — 2006/9/5 — 12:28 — page 3 — #15
�

�

�

�

�

�

Chapter 1 Introduction 3

who have not taken all three courses, to survey and complete the picture about how
these three interconnected fields relate to each other. Lecturers in computer graphics
or computer vision may find this book complementary to pure traditional “graphics”
or pure “vision” textbooks.

We take special care to motivate selected embodiments by appropriate real-world
applications so that the book hopefully spurs readers’ interests to related fields to
expand their thinking. Besides, the book provides concise C++ pieces of code,
available on the companion Web site, for common tasks that should be compelling to
a broad audience of C++ practitioners.

Also, gaming or graphics professionals will find this book useful by learning more
recent techniques or trends, and discovering that such methods can be enhanced using
yet another algorithmic procedure. Finally, in the bibliographic notes at the end
of each chapter, researchers will find references to recent papers that complete the
chapter materials.

1.3 Organization of the Book

The book is organized into the following comprehensive and representative chapters
that focus on important common “3D” notions (see Figure 1.1):

Abstract Data Structures. Chapter 2 presents pertinent fundamental data struc-
tures and shows their role as the building blocks of visual computing appli-
cations. First, we briefly recall basics of pointers, arrays, lists, and graphs.
Then we describe key abstract data structures and their uses in some visual
applications: flood-filling, image segmentation, and line segment intersection.
Finally, we explain how these concepts are efficiently programmed using the
C++ Standard Template Library (STL) and the traits class paradigm.

Coordinate Pipelines. Chapter 3 deals with the various transformation pipelines
that occur in visual computing. First we briefly describe the 2D and 3D geometry
pipelines (Euclidean, affine, and projective transformations). Then, we detail
the graphics and vision coordinate pipelines (projections, homographies, and
epipolar geometries) and emphasize their similitude and distinctiveness. Finally,
we mention more advanced coordinate pipelines (log-polar, spherical/cylindrical
and Plücker coordinates) and provide a unifying view of coordinate flow
computation in visual computing.

Images. Chapter 4 discusses the theory and practice of manipulating 2D discrete
images. First, we motivate image interpolation techniques by presenting
warping and morphing applications. Then, we present the firmly established
sampling theory of image processing and describe common reconstruction

�

�

“vcbook” — 2006/9/5 — 12:28 — page 4 — #16
�

�

�

�

�

�

4 Visual Computing: Geometry, Graphics, and Vision

• Voronoi / Delaunay

• Convex Hull
• Linear Programming

R
econstruction

M
od

el
in

g
/

P
er

fo
rm

an
ce

GEOMETRY

VISUAL
COMPUTING

• Shading

• NPR

• Photon Mapping

• Edge Detection

• Stereo Vision

• Recognition

Visual Effects

GRAPHICS VISION

• Robustness

• Higher Dims for “3D”

• Data Structures

• Coordinate Transforms

• Interpolation

• Meshes

• Randomization

• Kinematics

• Color

FIGURE 1.1 Overview of Visual Computing.

filters, geometric interpolators, convolutions, and edge detections. We describe
the main color spaces and high dynamic range imaging techniques. We
present halftoning and dithering algorithms, antialiasing, image pyramids,
superresolution, and other advanced techniques.

Meshes. In Chapter 5 we discuss meshes—the most common and effective geometric
structures used in a wide range of visual applications. First we describe their
basic properties and representations. Then we focus on mesh generation,
interactive modeling techniques, and tessellation and triangulation methods.
Finally, we describe major mesh operations, such as remeshing, fairing,
subdivision, and progressive mesh techniques.

Animation. Chapter 6 covers motion, which is ubiquitous in visual computing.
Computer graphics generate animations, computer vision processes image
sequences (movies), and geometric data structures efficiently store and handle

�

�

“vcbook” — 2006/9/5 — 12:28 — page 5 — #17
�

�

�

�

�

�

Chapter 1 Introduction 5

critical time events. The chapter summarizes how motion has been investigated
in those fields.

Randomization. Chapter 7 covers an elegant, yet effective methodology and its
analysis from the versatile standpoint of visual computing. We present several
randomization techniques in a number of different contexts such as samplings,
algorithms, data structures, and optimizations.

Higher Dimensions for “3D.” Techniques used for efficient 3D are not limited
to straightforward 3D operations. In Chapter 8 we illustrate this point by
presenting data structures, mathematical transformations, and algorithms that
make it easier to build faster or more simple 3D applications.

Robustness. Implementing geometric algorithms is a difficult task prone to many
error sources. In Chapter 9 we identify the weaknesses of programs and describe
a framework for achieving robustness. Next, we present geometric primitives and
predicates, and discuss their underlying arithmetic. Finally, we give concrete
examples of robust implementations in C++ based on open-source libraries.

A glossary of usual acronyms and abbreviations that appear in the book is provided
on page 497.

1.4 Future of Visual Computing

There are two major complementary orientations when studying visual computing:

• The first is to provide a general framework for handling common problems
occurring in computer graphics, computer vision, and geometric computing2:
this is the interdisciplinary approach of visual computing, namely, the primary
purpose of this book.

• The second is to create new pipelines by connecting chunks of theories and
technologies of those fields in an innovative way. This is the multidisciplinary
aspect of visual computing. A traditional pipeline that has been widely used
in the industry is the visual effects (VFX) pipeline. In VFX, computer vision
techniques are mostly used to process sensory input images into geometric data
that are then 3D reconstructed using geometric modeling. Geometric modeling
relies on robust, yet efficient computational geometry techniques. The last part
of the VFX pipeline consists of delivering computer graphics images synthesized,
and eventually composited with input images.

2A recent trend of naming “computational geometry.”

�

�

“vcbook” — 2006/9/5 — 12:28 — page 6 — #18
�

�

�

�

�

�

6 Visual Computing: Geometry, Graphics, and Vision

We further envision many new promising research topics emanating from the
multidisciplinary visual computing field. Let us briefly give two such examples to
spur curiosity:

• Computational Videography deals with extending and redefining the
concept of photos and videos by creating new possibilities offered by
the miniaturization and convergence of electronic appliances: projectors,
mobile and wearable computers, and digital video cameras.

• Media Personalization and Sharing aims to automatically and efficiently
analyze and annotate gigantic media databases using intensive computer vi-
sion techniques and then personalizing those media according to a user’s or
group’s preferences. Those preferences are then shared, compounded, and
experienced in new, versatile ways. Effective personalization is achieved
using machine learning techniques such as support vector machines or
boosting.

1.5 Companion Web Site

We provide supplemental materials to this book at the following Web site:

http://www.charlesriver.com/Books/BookDetail.aspx?productID=117120

Readers will find additional source codes of various algorithmic procedures
described throughout the book. For ease of browsing, the site is organized by chapters.
Each C++ program consists of a single file that should compile on most platforms
without much change. Test data is also supplied. Also, for each chapter, we give
additional pointers to useful resources related to the contents of that chapter.

You can report errors and view the errata at the book’s Web site.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 425 — #19
�

�

�

�

�

�

Chapter 8.

Higher Dimensions for “3D”

Sometimes it happens that for processing inherently 3D data efficiently we should
use algorithms in higher dimensions. The use of a higher dimensional space can be
explicit like a lifting or linearization technique, or somewhat implicit like the auxiliary
call to generic data structures that process data internally in higher dimensions. In
this chapter, we provide a few examples that illustrate those notions either at the
data-structure level (Section 8.1) or at the problem-solving level (Section 8.3.1).

8.1 Nearest Neighbors

In the nearest neighbor problem, we are given a set P of n d-dimensional points
P = {p1, ...,pn}, and a generic query point q for which we require to report efficiently
the nearest point N(q) of P to q:

N(q) = p ∈ P such that ||qp|| ≤ ||qpi|| ∀i ∈ {1, ..., n}. (8.1)

Point p is called the nearest neighbor of query point q. We first illustrate the need
for such efficient proximity data structures (and corresponding query algorithms) by
introducing a simple but efficient 2D texture synthesis technique.

8.1.1 Application: 2D Texture Synthesis

Consider the problem of synthesizing a large picture It (of size wt × ht) given a
small texture sample Is (of size ws × hs), as shown in Figure 8.1. This texture
synthesis problem has received a lot of attention in the computer graphics community,
and various techniques based on spectral, statistical, per-pixel, per-patch, and per-
tile methods have been designed. Here, we present a simple but powerful per-pixel
texture synthesis technique that requires nearest neighbor queries. As usual, we give

�

�

“vcbook” — 2006/9/5 — 12:28 — page 426 — #20
�

�

�

�

�

�

426 Visual Computing: Geometry, Graphics, and Vision

(a) (b)

(c) (d)

FIGURE 8.1 Examples of texture synthesis. (a) and (c) are
sample input textures. (b) and (d) are the corresponding
synthesized texture output images.

further references to relevant publications and materials in the Bibliographical Notes.
Surprisingly, the synthesis technique we describe here was invented only recently by
Efros and Leung (1999). Interestingly, their paper was presented in a computer vision
conference.

The synthesis algorithm first starts by filling the target image by random-colored
pixels, and then synthesizes the target image It by (re)assigning pixel colors, pixel
by pixel, following the horizontal scanline order (i.e., lexicographic1 (y, x) order), as
depicted in Figure 8.2. For a given pixel position (x, y) ∈ It, we consider a square
window centered at (x, y) of side length 2s + 1, where s denotes an integer parameter
defining the neighborhood size and related to the texture synthesis quality. In that
window, observe that (2s + 1)s + s = 2s2 + 2s pixels have already been synthesized

1The lexicographic order is a natural order of the Cartesian product of ordered sets. For two sets,
consider a, a′ ∈ A and b, b′ ∈ B, then for (a, b), (a′, b′) ∈ A × B, we have (a, b) ≤ (a′, b′) if, and only
if, a < a′, or a = a′ and b ≤ b′.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 427 — #21
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 427

FIGURE 8.2 Snapshot of in-progress scanline incremental 2D texture synthesis.

(Figure 8.3): namely, those pixels (x′, y′) visited before by the scanline. That is, using
the (y, x) lexicographic order of the horizontal scanline, the pixels (x′, y′) of the target
image such that (y′, x′) < (y, x). Those already synthesized pixels form an L-shape
pattern, as depicted in Figure 8.3. Thus, at current scanline position (xt, yt), we are
already given half of the window pixels synthesized, and we need to find an appropriate
color for the current visited pixel (xt, yt).

For assigning the color of that pixel, we search for the best match of the current
L-shaped window in the source image. The best match is defined as the matching
position in Is (possibly several places) that minimizes the sum of the square differences
(SSD):

SSD(xs, ys; xt, yt) =
s∑

l=−s

s∑
c=−s

LShape(l, c) (Is[xs + c, ys + l]− It[xt + c, yt + l])2 ,

(8.2)
where

LShape(l, c) =
{

1 if l < 0, or (l = 0 and c < 0),
0 Otherwise.

(8.3)

Using the argmin notation, we look for pixel coordinates (xs, ys) in the source
image, such that:

(xs, ys) = argmin(x,y)∈Is
SSD(x, y; xt, yt). (8.4)

�

�

“vcbook” — 2006/9/5 — 12:28 — page 428 — #22
�

�

�

�

�

�

428 Visual Computing: Geometry, Graphics, and Vision

Source Image Is Target Image It

Scanline

s

2s + 1
L-shape window

FIGURE 8.3 Synthesis of a 2D texture image. Pixels are synthesized in horizontal
scanline order. For a given position, we find the most similar L-shape window in
the source image and write the current pixel position of the target image with the
color pixel of the source image that produced the best match.

We summarize the 2D texture synthesis algorithm in pseudocode below:

TextureSynthesis(Is, It)
1. � Is is the input texture sample �
2. � Create a large texture It �
3. Initialize a random color image It

4. � Synthesize pixels following the horizontal scanline order �
5. for y ← 1 to ht

6. do for x← 1 to wt

7. do (xs, ys) = BestLShapeMatch(Is, x, y)
8. It[x, y] = Is[xs, ys]

Because the synthesis algorithm is using locally an L-shape window, this technique
is classified as a neighborhood-based texture synthesis method. There are other
texture synthesis techniques that we mention in the Bibliographical Notes, provided
at the end of the chapter. In practice, the size s of the neighborhood should match

�

�

“vcbook” — 2006/9/5 — 12:28 — page 429 — #23
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 429

2s + 1 = 5

c−1,0c−2,0

c−2,−2 c−1,−2 c0,−2 c1,−2 c2,−2

c−2,−1 c−1,−1 c0,−1 c1,−1 c2,−1

Linearization d = 2(s2 + s).

c−2,−2 c−1,−2 c0,−2 c1,−2 c2,−2 c−2,−1 c−1,−1 c0,−1 c1,−1 c2,−1 c−2,0 c−1,0

FIGURE 8.4 Linearization of the 2D L-shape window to a high-dimensional dD
vector, obtained by sequentially stacking coefficients.

with the scale of the largest texture structure (for textures combining several granular
elements), in order to preserve that largest pattern statistics on the synthesized image.
Note that in the initialization, it is enough to write color randomly only for the
first s lines of It. An implementation would actually create a larger target image
(of dimension (wt, ht + s)) so that its first s lines provide the random support for
L-shape neighbor queries. Computing an SSD cross-correlation costs O(s2) time.
Thus, a straightforward naive implementation of this algorithm runs in prohibitive
O(s2wthtwshs) time. Therefore, we need to devise a tailored data structure for
efficiently computing the L-shape window scores (SSDs), or even better, to design
a data structure that bypasses checking all possible ws × hs positions in the input
texture for a given L-shape query.

The Wei-Levoy texture synthesis algorithm used a tree-structure vector quantiza-
tion (TSVQ) technique to accelerate the neighborhood search of the original Efros
and Leung’s algorithm. Here, we present another practical acceleration method based
on proximity queries. The idea is to map all source pixels (xi, yj) to corresponding
points n(xi, yj) in large dimension d = 2(s2 + s) = 2s2 + 2s using a process called
linearization. Figure 8.4 illustrates the linearization process of pixel’s L-shapes.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 430 — #24
�

�

�

�

�

�

430 Visual Computing: Geometry, Graphics, and Vision

We use the following linearization:

n(xi, yj) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Is[xi−s, yj−s]
...

Is[xi+s, yj−s]
Is[xi−s, yj−s+1]

...
Is[xi+s, yj−s+1]

...

...

...
Is[xi − s, yj]

...
Is[xi − 1, yj]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.5)

That is, we stacked all elements on the L-shape window onto a dD vector (see
also Section 3.5.7 where we introduced the Fröbenius norm of a matrix). We
defined n(xi, yj) according to the source texture image Is. Similarly, we denote
by nIt(xi, yj) the mapping of L-shapes of the target image It to dD-dimensional
points. Now, observe that the L2-distance of two vectors p =

[
p1 ... pd

]T and

q =
[

q1 ... qd

]T defined as:

||p− q|| =

√√√√ d∑
i=1

(pi − qi)2. (8.6)

We defined in Equation 8.2:

SSD(xs, ys; xt, yt) =
s∑

l=−s

s∑
c=−s

LShape(l, c)(Is[xs + c, ys + l]− It[xt + c, yt + l])2.

That is:
SSD(xs, ys; xt, yt) = ||n(xs, ys)− n(xt, yt)||2. (8.7)

Therefore, querying for a nearest neighbor of n(xt, yt) returns the pixel position
that gives the best2 L-shape window match (that is, the lowest SSD score). Note

2More precisely, distance order and SSD score order match. Let SSD(xs, ys; xt, yt) = ||n(xs, ys)−
n(xt, yt)||2 = d2

t and SSD(xs, ys; xu, yu) = ||n(xs, ys) − n(xu, yu)||2 = d2
u (with du > dt). Then,

0 ≤ dt < du implies that d2
t < dudt < d2

u. That is, SSD(xs, ys; xt, yt) < SSD(xs, ys; xu, yu).

�

�

“vcbook” — 2006/9/5 — 12:28 — page 431 — #25
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 431

that the distance between any two distinct points n(x, y) is greater than one. For
RGB color texture images, we need to calculate nearest neighbor queries in dimension
d = 3(2s2 + 2s) = 6s(s + 1). That is, we further stack onto a vector all r, g, b color
components of the L-shape window pixels. There are fortunately fast data structures
for reporting or approximating nearest neighbors. We introduce such a data structure,
called the kD-tree in Section 8.1.2.

The texture synthesis pseudocode algorithm becomes:

TextureSynthesis(Is, s, It)
1. � Is: RGB color texture sample �
2. � s: defines half-square width �
3. � Create a large texture It �
4. d = 3(2s2 + 2s)
5. Initialize a random image It

6. � Build a d-dimensional search tree �
7. T = kDTree(d, {n(xi, yj) | (i, j) ∈ ws × hs})
8. � Synthesize pixels in the scanline order �
9. for y ← 1 to ht

10. do for x← 1 to wt

11. do n(xs, ys) = T.NearestNeighbor(nIt(x, y))
12. � Points n(xs, ys) are associated with their index (xs, ys) �
13. It[x, y] = Is[xs, ys]

The complexity of this algorithm becomes:

O (PreprocesskDTree(wshs, d) + wthtQuery(wshs, d)) , (8.8)

instead of the former O(wshswthts
2) time naive implementation. Computing the exact

nearest neighbor turns out to be a delicate and computational intensive query in high
dimensions. Here, we rely on the kD-tree described in Section 8.1.2. Under some
assumptions, the query time for approximate nearest neighbor queries is O(log wshs),
with the constant hidden in the big Oh-notation depending (exponentially) on d and
the approximation factor. Below, we give a C++ implementation of the texture
synthesis algorithm that relies on the approximate nearest neighbor library (ANN) of
Arya and Mount (refer to the Bibliographical Notes).

WWW

Additional source code or supplemental material is provided on the
book’s Web site:
www.charlesriver.com/Books/BookDetail.aspx?productID=117120
File: textureperpixel.cpp

�

�

“vcbook” — 2006/9/5 — 12:28 — page 432 — #26
�

�

�

�

�

�

432 Visual Computing: Geometry, Graphics, and Vision

(a) (b)

(c) (d)

FIGURE 8.5 Examples of volumetric illustrations created using
the 2D distorted texture synthesis techniques of Shigeru Owada
(University of Tokyo/Sony Computer Science Laboratories,
Japan). The (a) carrot and (b) cucumber objects are faked
volumetric objects. Every time the model is interactively cut, a
different cross-sectional image, shown in (c) and (d), is generated
on-the-fly using 2D distorted texture synthesis methods.

1 class Image{
2 public :
3 int width , he ight ;
4 unsigned char ∗ r a s t e r ;
5 . . .
6 } ;
7
8 #define GETPIXELQUICK(img , x , y) &img−>r a s t e r [((y) ∗ img−>width+(x))

�

�

“vcbook” — 2006/9/5 — 12:28 — page 433 — #27
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 433

∗3]
9 #define GETPIXELLOOP(img , x , y) GETPIXELQUICK(img , (x+img−>width)%img

−>width , (y+img−>he ight)%img−>he ight)
10
11 void TextureSynthes i s (Image∗ imgSrc , Image∗ imgDest , const int

n s i z e 2)
12 {
13
14 const int n s i z e = n s i z e 2 ∗2 + 1 ;
15
16 CAnnTree Simple<unsigned char , CPoint> SearchTree ;
17 {
18 // Build search tree.

19
20 SearchTree . Setup (3 ∗ (n s i z e ∗ n s i z e 2+n s i z e 2)) ;
21
22 unsigned char∗ buf = new unsigned char [SearchTree . GetDim ()] ;
23
24 for (int i y = n s i z e 2 ; i y < imgSrc−>he ight ; ++iy) {
25 for (int i x = n s i z e 2 ; i x < imgSrc−>width − n s i z e 2 ; ++ix

) {
26 unsigned char∗ bp = buf ;
27
28 for (int diy=−n s i z e 2 ; diy<0 ; ++diy)
29 for (int dix=−n s i z e 2 ; dix<=ns i z e 2 ; ++dix , bp+=3) {
30 memcpy(bp ,GETPIXELQUICK(imgSrc , i x+dix , i y+diy) , 3) ;
31 }
32
33 int diy=0 ;
34 for (int dix=−n s i z e 2 ; dix<0 ; ++dix , bp+=3) {
35 memcpy(bp ,GETPIXELQUICK(imgSrc , i x+dix , i y+diy) , 3) ;
36 }
37
38 SearchTree . AddElement (buf , CPoint (ix , i y)) ;
39 }
40 }
41
42 delete [] buf ;
43 SearchTree . ConstructSearchStructure () ;
44 }

1 // Fill main L Shape

2 {
3 unsigned char∗ buf = new unsigned char [SearchTree . GetDim ()] ;
4
5 for (int i y =0; iy<imgDest−>he ight ;++iy)
6 for (int i x =0; ix<imgDest−>width;++ix)
7 {
8 unsigned char∗ t g t px l = GETPIXELQUICK(imgDest , ix , i y) ;
9 unsigned char∗ bp = buf ;

�

�

“vcbook” — 2006/9/5 — 12:28 — page 434 — #28
�

�

�

�

�

�

434 Visual Computing: Geometry, Graphics, and Vision

FIGURE 8.6 Another example of neighborhood-based
synthesis: geometry synthesis. The seahorse model on
the right picture is obtained by analogies with the left
picture. © Stephen Ingram (Emory University, USA)
and Pravin Bhat (University of Washington, USA).
Reprinted with permission.

10
11 for (int diy=−n s i z e 2 ; diy<0 ; ++diy)
12 for (int dix=−n s i z e 2 ; dix<=ns i z e 2 ; ++dix , bp+=3)
13 memcpy(bp ,GETPIXELLOOP(imgDest , i x+dix , i y+diy) , 3) ;
14
15 int diy=0 ;
16 for (int dix=−n s i z e 2 ; dix<0 ; ++dix , bp+=3)
17 memcpy(bp ,GETPIXELLOOP(imgDest , i x+dix , i y+diy) , 3) ;
18
19 CPoint& bestMatchLocation = SearchTree . FindMostSimilar (buf

) ;
20 memcpy(tg t px l ,GETPIXELQUICK(imgSrc , bestMatchLocation . x ,

bestMatchLocation . y) , 3) ;

�

�

“vcbook” — 2006/9/5 — 12:28 — page 435 — #29
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 435

21 }
22
23 delete [] buf ;
24 }
25 }

Texture synthesis has many other marvelous applications in visual computing (e.g.,
image analogies, texturing 3D meshes or solid objects, geometry synthesis, etc.) For
example, Figure 8.5 shows a volumetric illustration system developed by Owada and
his colleagues that fakes textured solid objects by synthesizing on-the-fly 2D distorted
textures every time a user cut a surface model. This kind of neighborhood-based
synthesis can also be used for other attribute synthesis, such as geometry. Figure 8.6
presents some volumetric models obtained by analogies.

8.1.2 kD-Trees

A kD-tree is a generic multidimensional search tree based on partitioning the space
recursively with axis-parallel line bisectors. Figure 8.7 illustrates such a construction
for a toy set of eight points. Because kD-trees consider each axis independently, its
construction is much more efficient than traditional quadtrees or octrees.

In 2D, a kD-tree for a set of n points uses linear storage and can be constructed
using the divide-and-conquer paradigm, in O(n log n) time. The pseudocode below
explains the recursive construction of a kD-tree by splitting regions alternatively by
horizontal or vertical lines, according to the level parity (see Figure 8.7):

kDTree(P, l)
1. � Build a 2D kD-tree �
2. � l denote the level. Initially, l = 0 �
3. if |P| = 1
4. then return Leaf(P)
5. else if Even(l)
6. then � Compute the median x-abscissa (vertical split) �
7. xl = MedianX(P)
8. Pleft = {p ∈ P | x(p) ≤ xl}
9. Pright = {p ∈ P | x(p) > xl}

10. return Tree(xl,kDTree(Pleft, l + 1),kdTree(Pright, l + 1));
11. else � Compute the median y-abscissa (horizontal split) �
12. yl = MedianY(P)
13. Pbottom = {p ∈ P | y(p) ≤ yl}
14. Ptop = {p ∈ P | y(p) > yl}
15. return Tree(yl,kDtree(Pbottom, l + 1),kdTree(Ptop, l + 1));

�

�

“vcbook” — 2006/9/5 — 12:28 — page 436 — #30
�

�

�

�

�

�

436 Visual Computing: Geometry, Graphics, and Vision

7 8 5 6 1 2 4 3

8

7

5

6
1

2

4

3

A

B C

D E F G

7 8

5 6
1 2

4 3

A

B C

D E F G

FIGURE 8.7 A 2D kD-tree that illustrates the recursive splitting of isothetic
rectangles by either horizontal or vertical line bisectors. The bottom tree shows
the rectangular domain associated to each node of the kD-tree.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 437 — #31
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 437

kD-trees are specially tailored data structures to answer orthogonal range queries.
An orthogonal range query consists in reporting all points of P contained in an axis-
parallel domain R : [a1, b1]× [a2, b2]. Domain R is also called an isothetic range box.
The geometric domain R is equivalently defined as:

R = {(x, y) | a1 ≤ x ≤ b1 and a2 ≤ y ≤ b2}. (8.9)

Orthogonal range searching is particularly well suited for managing databases. In
dimension d, a range query is written similarly as the product of d 1D intervals:

R :
d∏

i=1

[ai, bi]. (8.10)

The recursive construction of kD-trees straightforwardly generalizes to arbitrary
dimension. Orientation of line bisectors are chosen according l mod d ∈ {0, ..., d− 1}
(instead of l mod 2), as suggested in Figure 8.7. In d-dimensional Euclidean space, a
kD-tree on n points can be built in O(dn log n)-time using O(dn) storage. The query
time for an orthogonal range query R is O(dn1− 1

d +k), where k is the number of points
belonging to the query domain. That is k = |R ∩P|. Let’s describe the algorithm for
answering proximity queries.

Using a kD-Tree, we find the nearest neighbor of a query point by traversing the
structure recursively. Let each node V of the kD-tree store the following five records:

• axis: the splitting axis dimension (from 1 to d)

• value: the splitting value (xaxis = value)

• left, right: the pointers to the left and right kD-Trees rooted at the current
node

• point: a pointer to a point if both left and right records are null pointers (that
is, current node is a leaf)

Given a query point q, let dist denote the distance to the so-far nearest point found
in the kD-Tree. Initially, dist is set to infinity: dist = +∞. To determine at a node V
whether to stop or proceed on the recursive exploration of the kD-tree, observe that
if, and only if, qV.axis − dist ≤ V.value we need to explore the left kD-subtree (see
Figure 8.8). Similarly, if, and only if, qV.axis + dist ≥ V.value we need to explore the
right kD-subtree.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 438 — #32
�

�

�

�

�

�

438 Visual Computing: Geometry, Graphics, and Vision

Thus, the nearest neighbor query algorithm on a kD-tree T is written as follows:

SearchNNinkDTree(q, V ;p, dist)
1. � Input: �
2. � V : a kD-Tree node �
3. � q: a query point �
4. � Output: �
5. � p: nearest neighbor point �
6. � dist: distance to the nearest neighbor �
7. if V.left = V.right = NULL
8. then � Leaf of a kD-Tree �
9. dist′ = ||q− V.point||

10. if dist′ < dist
11. then dist = dist′

12. p = V.point
13. else if qV.axis ≤ V.value
14. then � Search on the left subtree first �
15. SearchNNinkDTree(q, V.left;p, dist)
16. if qV.axis + dist > V.value
17. then SearchNNinkDTree(q, V.right;p, dist)
18. else � Search on the right subtree first �
19. SearchNNinkDTree(q, V.right;p, dist)
20. if qV.axis − dist ≤ V.value
21. then SearchNNinkDTree(q, V.left;p, dist)

Initially, we call the procedure as follows: SearchNNinkDTree(q, root;p, +∞),
where root is the root of the kD-tree, and q the query point. The nearest neighbor is
reported in p with its distance to q: ||pq|| = dist.

Arya and Fu designed a particular kD-tree splitting-rule and studied its expected
time performance of finding not exact, but rather approximate nearest neighbors. A
point p is a (1 + ε)-approximate nearest neighbor of q if:

||qp|| ≤ (1 + ε)||qN(q)||, (8.11)

where N(q) denotes the exact nearest neighbor. For arbitrary d-dimensional point
sets belonging to the unit hypercube H :

∏d
i=1[0, 1] = [0, 1]d and approximate nearest

neighbor queries sampled from the uniform distribution in the same hypercube H,
it can be shown that the expected query time is Õ(1

εd log n). That is, expected
logarithmic time but exponentially dependent on the dimension. Interestingly, this
running time is invariant from the distribution of the point set. The only assumption
is that queries are randomly and uniformly drawn from the unit hypercube.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 439 — #33
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 439

q q
dist dist

L
ef

t
S
u
b
tr

ee
R

igh
t

S
u
b
tree

V.axis = V.value V.axis = V.value

FIGURE 8.8 Using a kD-tree to perform nearest neighbor queries. Given a current
distance dist to the nearest neighbor of q, the algorithm decides to explore on the
kD-subtrees depending on whether the ball centered at q and radius dist intersects
the splitting plane or not.

Finally, let us mention another way of using orthogonal range queries for finding
nearest (or approximate) neighbors of a query point q. The idea is to use a dichotomy
search on the side length s of orthogonal square queries R centered at q. That is,
we recursively expand or shrink the orthogonal square query R based on whether
some points of P belong to R or not. Figure 8.9 illustrates the use of orthogonal
range queries to answer exact or approximate nearest neighbor queries. We spend
logarithmic time to report that no points of P are in R, and we only need to report
one point to confirm that the nearest neighbor N(q) is inside R (logarithmic cost).
Even if the distance is defined using the L2 metric, it is enough to consider the L∞
metric (orthogonal ranges) to probe for the presence of the nearest neighbor.

kD-trees are quite expensive data structures for orthogonal range queries whenever
the number of points to report is not large, since the overhead O(n1− 1

d) becomes
prohibitively expensive. There exists an alternative optimized geometric data
structure, called layered range trees, that bypasses the n1− 1

d complexity bottleneck.
A d-dimensional set of n points is first preprocessed in a layered range tree in
O(n logd−1 n) time, using O(n logd−1 n) space. Then, each orthogonal range query
R is answered in O(k + logd−1 n) time using a technique called fractional cascading,
where k = |R ∩ P|.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 440 — #34
�

�

�

�

�

�

440 Visual Computing: Geometry, Graphics, and Vision

q

R

Orthogonal Range Query

N(q)

FIGURE 8.9 Using orthogonal range queries
(squares) to probe for the approximate or exact
nearest neighbor N(q) of query point q.

8.2 Clustering

Clustering is the problem of grouping similar elements of a data set into corresponding
clusters. Finding the right number of clusters and measuring the quality of a clustering
are key challenges, especially for noisy input. Clustering is one of the most common
techniques used in data organization and data mining. But clustering also finds
many other (indirect) applications in visual computing. For example, in computer
vision, clustering allows us to significantly reduce the input size to work on classified
categories rather than directly on data elements. We first start by describing a popular
application of clustering: color quantization of images. We then present certainly the
most famous clustering algorithm: kMeans.

8.2.1 Application: Color Quantization

Color quantization is the problem of choosing among the space of continuous colors (or
very large discretized space such as the 24-bit true color space that contains 16,777,216
distinct colors) a given number of representative colors. Those representative colors
are arranged in a color palette, and the pixel colors of the image are then indexed
according to that palette. Color quantization is an important ingredient of image
compression as it allows us to reduce the numbers of distinct pixel colors used in
images. For example, a 24-bit true-color image may be first converted into a 256-
color image before being saved. Eventually, dithering techniques such as Floyd-
Steinberg error diffusion (see Section 4.4.2) may further be applied to generate the

�

�

“vcbook” — 2006/9/5 — 12:28 — page 441 — #35
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 441

(a) (b) (c)

(d) (e) (f)

FIGURE 8.10 Color quantizations. Given a true-color input image (a) of
resolution 1024 × 768 (with 16,777,216 distinct colors), picture (b) shows a
256-color downconverted result, and a 16-color version is shown in (c). The
corresponding color pixels (color palettes in (b) and (c)) are shown respectively
in the RGB color cube in (d), (e), and (f). See Color Plate XV.

downconverted image. Figure 8.10 illustrates the color quantization results on a
given source image. The distribution of colors of respective 24-bit, 8-bit, and 4-
bit color images are shown in the RGB color cube. Observe that the perceptual
difference between the true-color picture of Figure 8.10(a) and the 8-bit color image
of Figure 8.10(b) is less noticeable than the perceptual gap from Figure 8.10(a) to the
4-bit color image of Figure 8.10(c). To find a good color palette, we need to cluster the
color distribution of the true-color image into a fixed number of clusters (say, 256 = 28

as shown in Figure 8.10(e), or 16 = 24 as shown in Figure 8.10(f)). Once a clustering
of the 24-bit color distribution is calculated, we select a representative color of each
cluster (like its centroid) to create the color palette of the downconverted image. Let us
now describe a simple method to perform this clustering task: the kMeans algorithm.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 442 — #36
�

�

�

�

�

�

442 Visual Computing: Geometry, Graphics, and Vision

8.2.2 Clustering by kMeans

kMeans is a clustering technique that was first developed for vector quantization (VQ)
applications by Lloyd in 1957. In a vector quantization problem, we are given a set
of vectors, which we would like to group into a few representative vectors to reduce
the overall number of bit occupancy of data. The set of representative vectors form
a codebook. Color quantization is a typical example of vector quantization, where the
color palette is namely the color codebook. Measuring the goodness of clusters, and
therefore the performance of different clustering algorithms, can be done in various
ways. We consider the mean square error (MSE) defined as the total within-cluster
variance. Let P = {p1, ...,pn} denote the input vector set, a set of n d-dimensional
points. Let C = {c1, ..., ck} be the k codebook vectors (cluster centers). Then the
mean square error is defined by the following error measures:

MSE(P, C) =
k∑

i=1

n∑
j=1

w(j, i)||pj − ci||2, (8.12)

where w(j, i) is the point membership of pj with respect to all the cluster centers,
normalized so that the weights of each point add up to one:

w(j, i) ≥ 0,
k∑

i=1

w(j, i) = 1. (8.13)

For the kMeans, a point p ∈ P is allowed to belong to exactly one cluster. That
is w(j, i) = 1 if, and only if, pj belongs to the i-th cluster: ||pjci|| ≤ ||pjcl|| for all
l ∈ {1, .., k}. (In case of ties, we choose the cluster center with the lowest index.) We
say that kMeans clusters using the hard memberships of points (see Equation 8.14). If
a point may belong to several clusters, we need to take into account its contribution
to each cluster, and we look for a soft membership clustering algorithm. In that case
the weights of a point form a membership distribution. The kMeans algorithm is a
hard-membership iterative local optimization technique that clusters the data into
a given number k of clusters. kMeans is proven to minimize the MSE but can be
trapped into local minima. Each input vector is attributed to the Voronoi cell of the
Voronoi diagram of the codebook (Figure 8.11):

MSE(P, C) =
n∑

i=1

k
min
j=1
||pi − cj ||2. (8.14)

Each iteration of the kMeans algorithm works into two substeps: (1) allocate points
to their clusters, and (2) refine cluster centroids. Initialization of the clusters is
essential since the kMeans is a local optimization procedure. A common initialization

�

�

“vcbook” — 2006/9/5 — 12:28 — page 443 — #37
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 443

c1
c2

c3

c4

c5

FIGURE 8.11 Each point is associated to its nearest cluster
center. The cluster centers form a Voronoi partition of the
plane that defines the hard membership of points.

heuristic is to randomly draw k points from the point set P. This is the Forgy classic
initialization routine.

We summarize the kMeans algorithm in pseudocode:

kMeans(P, ε)
1. � Cluster points of P using kMeans �
2. � ε: threshold criterion to decide whether to stop or not �
3. Initialize centroids C
4. while Total centroid displacements is less than threshold ε
5. do � Allocate points to clusters (hard membership) �
6. for i← 1 to n
7. do C(pi) = argmink

j=1||picj ||
8. for i← 1 to k
9. do � Update centroids to the center of mass of clusters �

10. C(ci) = {p ∈ P | C(p) = i}
11. ci = CenterOfMass(C(ci))

�

�

“vcbook” — 2006/9/5 — 12:28 — page 444 — #38
�

�

�

�

�

�

444 Visual Computing: Geometry, Graphics, and Vision

(a) (b)

(c) (d)

(e) (f)

FIGURE 8.12 Example of clustering. (a) The initial 1500-point set is drawn
from three Gaussians (500 points each). The initial three cluster centers have
been randomly initialized. (b) depicts the result of the kMeans clustering after
50 iterations. (c) & (d) illustrate the first round of kMeans (assigning points
to clusters and updating the cluster centroids). (e) & (f) show the configuration
for the second round. For each cluster, we show the convex hull of the points
belonging to it.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 445 — #39
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 445

WWW

Additional source code or supplemental material is provided on the
book’s Web site:
www.charlesriver.com/Books/BookDetail.aspx?productID=117120
File: kmeans.cpp

Figure 8.12 shows an example of clustering using kMeans. In practice, kMeans
is known to be very sensitive to the initialization of the cluster centers. kMeans
belongs to a larger class of center-based clustering algorithms. kMeans can be
applied on very high-dimensional data sets, such as a set of images (dimension is
the image width times the image height). This is particularly useful for compressing a
sequence of images using a common codebook. Another popular clustering algorithm
is the expectation-maximization (EM), which assumes a linear mixing of Gaussian
distributions. In an EM-clustering, points are clustered using soft memberships. That
is, each point belongs potentially to all clusters. The weights of each point represent
the membership distribution.

In computational geometry, we state the problem of clustering point sets by defining
a mathematical global criterion. For example, the k-center problem is stated as
follows: given an n-point set P on the plane, minimize r and find corresponding k
positions c1, ..., ck such that P can be covered by k disks of radius r centered at
the ci’s:

P ⊆
k⋃

i=1

Disk(ci, r). (8.15)

Yet another related optimization problem is the k-median of a point set: given
an n-point set P on the plane, minimize the sum of the radii

∑k
i=1 ri and find

corresponding k positions c1, ..., ck such that P can be covered by k disks (disks
have potentially different radii) centered at the ci’s:

P ⊆
k⋃

i=1

Disk(ci, ri). (8.16)

Unfortunately, both those clustering problems have been proven NP-complete.
These problems are therefore intractable in practice (unless P=NP). Since the point
set can be considered as the geometric embedding of a complete graph (a clique),
those k-median and k-center problems on points are special instances of more general
graph-theoretic problems that have been motivated by facility locations problems, and
for which many heuristics have been designed.

A related clustering technique is the centroidal Voronoi diagram, that is also used
to initialize the cluster seeds of other clusterings. The idea of a centroidal Voronoi

�

�

“vcbook” — 2006/9/5 — 12:28 — page 446 — #40
�

�

�

�

�

�

446 Visual Computing: Geometry, Graphics, and Vision

(a) (b)

(c) (d)

FIGURE 8.13 Initial configuration of the generators (a), and centroidal Voronoi
diagrams after 5 iterations (b), 10 iterations (c), and 100 iterations (d).
Especially visible in (a), we show the generators using crosses and the centers
of mass of the Voronoi cells as circles.

diagram is to distribute a given set of k points evenly on an irregular continous domain
(for example, a surface mesh). Thus, in a centroidal Voronoi diagram, the point
density of sites, also called generators, tends to be the same. That is, the areas of
the Voronoi cells of generators tend to be identical. To compute a centroidal Voronoi
diagram, we relax the kMeans algorithm as follows (see Figure 8.13):

CentroidalVoronoi(C, ε)
1. � Compute k points evenly distributed on a spatial domain �
2. � ε: threshold criterion to decide whether to stop or not �
3. Initialize centroids C
4. while Total centroid displacements less than ε
5. do Compute Voronoi diagram of C
6. Allocate each ci to the center of mass of its Voronoi cell

That is, we iteratively compute Voronoi diagrams. At each iteration, we move

�

�

“vcbook” — 2006/9/5 — 12:28 — page 447 — #41
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 447

the current sites (generators) to the centers of mass of their Voronoi cells. Thus, the
difference with the former kMeans algorithm is that the centroidal Voronoi diagram
considers the continuous space (Voronoi cells), and not a finite (discrete) space of
points. This difference plays a theoretically important role, because no convergence
of the centroidal Voronoi diagram is proven guaranteed in the plane. (Remember
that kMeans is formally proven to converge to a local minimum, as each stage
of the algorithm reduces the mean square error.) More precisely, convergence of
centroidal Voronoi diagrams have been shown in 1D, and experimentally observed in
other dimensions, but lack a mathematical proof. Centroidal Voronoi diagrams have
been used successfully in many visual computing applications, such as for efficiently
remeshing 3D models, half-toning images, Monte Carlo samplings, or creating non-
photo-realistic renderings (stipplings).

We now give an overview of Voronoi diagrams that are omnipresent structures in
visual computing. In an ordinary Voronoi diagram, each bounded or unbounded region
is defined by a convex Thiessen polygon. Boundaries of Voronoi cells are obtained from
the bisectors of generators. Bisectors represent lines of equilibrium of generators. That
is, bisectors are straight lines perpendicular to the lines connecting the generators, and
intersecting them exactly half-way. Two nonparallel bisectors meet in a point.

Voronoi diagrams can be interpreted in two different ways: (1) static point
assignment, or (2) dynamic generator growth.

Static (Point→Generator). Each point of R
2 is assigned to its closest generator.

This is an assignment task, where distance may be thought as a friction function.

Dynamic (Generator→Point). All generators grow their regions, starting at the
same time from their seed positions with the same growing rate in all directions.
This dynamic interpretation of Voronoi diagram models the physical properties
of crystal growth.

There exists many other regionalization variants of the ordinary Voronoi diagram.
The measure function that describes the path length from any point to a generator can
further be taken as an arbitrary function f(·), thus relaxing the traditional Euclidean
distance function. Further, attributes can be attached to generators for computing
the “distance” from points to generators.

The Voronoi cell of generator pi ∈ P is defined as:

V (pi) = {x | f(pi) ≤ f(pj), ∀j ∈ {1, ..., n}} . (8.17)

�

�

“vcbook” — 2006/9/5 — 12:28 — page 448 — #42
�

�

�

�

�

�

448 Visual Computing: Geometry, Graphics, and Vision

(a) (b)

(c) (d)

FIGURE 8.14 Generalizations of Voronoi diagrams. (a) ordinary Voronoi
diagram. (b) multiplicatively weighted Voronoi diagram. (c) additively weighted
Voronoi diagram. (d) power diagram (as known as Laguerre diagram).

�

�

“vcbook” — 2006/9/5 — 12:28 — page 449 — #43
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 449

Let us describe a few examples with corresponding diagrams illustrated in
Figure 8.14:

Additively weighted Voronoi diagram. Each generator pi is associated with a
weight wi. The Voronoi cell V (pi) of generator pi is defined as:

V (pi) = {x | ||xpi||+ wi ≤ ||xpj ||+ wj , ∀j ∈ {1, ..., n}}. (8.18)

This means that generators grow at the same rate but start their growing process
at time indicated by their respective additive weights. Bisectors are no longer
straight lines but arcs of hyperboles (Figure 8.14(c)).

Multiplicatively weighted Voronoi diagram. Instead of adding weights, we can
choose to multiply weights to the distance function. The Voronoi cell of
generator pi is then defined as:

V (pi) =
{
x

∣∣∣∣ ||xpi||
wi

≤ ||xpj ||
wj

, ∀j ∈ {1, ..., n}
}

. (8.19)

Intuitively, this means that generators start growing at the same time, but with
different growth rates. The multiplicative weights can also be interpreted as
the different friction coefficients. Bisectors are portions of Appolonius circles3

and twice intersect the lines connecting the generators pi and pj , at relative
positions wi

wi+wj
and wj

wi+wj
. The highest weight region is unbounded and

surrounds all other bounded regions. Cells are not necessarily anymore convex
(see Figure 8.14(b)).

Multiplicatively and additively weighted Voronoi diagram. This diagram is
a compound of the previous two diagrams. The Voronoi cell of generator pi

is defined as:

V (pi) =
{
x

∣∣∣∣ ||xpi||
wi

+ w′
i ≤
||xpj ||

wj
+ w′

j , ∀j ∈ {1, ..., n}
}

. (8.20)

Power diagram. Instead of taking the regular distance function, we consider a power
function of the distance. The Voronoi region associated to pi is defined as:

V (pi) = {x | ||xpi||p − wi ≤ ||xpj ||p − wj , ∀j ∈ {1, ..., n}}, (8.21)

for some given p.
3An Appolonius circle is defined as the set of points whose distances from two fixed points are in

a constant ratio.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 450 — #44
�

�

�

�

�

�

450 Visual Computing: Geometry, Graphics, and Vision

In particular, the power of a point p to a disk Disk(c, r) of circumcenter c and
radius r is defined as ||pc||2 − r2. Power diagrams are also known as Laguerre
diagrams or Dirichlet cell complexes. Each cell is convex and bounded by straight
line edges. Some cells may be empty of generators whilst others may contain
several. The bisector of two nonconcentric disks is a line perpendicular to the
line joining these two disk centers. Observe that setting r = 0 for all generators
yields back the ordinary Voronoi diagram. Indeed, writing ||xpi||p ≤ ||xpj ||p
as exp(p ln ||xpi||) ≤ exp(p ln ||xpj ||), we conclude that ||xpi|| ≤ ||xpj || for
any p > 0. Power diagrams are used in computational geometry to efficiently
compute the union of disks or for the reconstruction of 3D shapes from point
clouds.

WWW

Additional source code or supplemental material is provided on the
book’s Web site:
www.charlesriver.com/Books/BookDetail.aspx?productID=117120
File: DiscreteVoronoi.cpp

Moreover, we can extend the partition principle of Voronoi diagrams to higher-
order Voronoi diagrams. Figure 8.15 depicts some higher-order Voronoi diagrams. An
order-k Voronoi diagram considers all k-tuples of a given point set P to partition the
space into cells V (T) such that:

|T | = k,

V (T) = {x | ∀t ∈ T ∀p ∈ P\T , ||xt|| ≤ ||xp||}.

In other words, the Voronoi cell of k-tuple T is the locus of points closer to all points
of T than to any other point of P\T . Higher-order Voronoi diagrams may contain
some cells empty of generators, as shown in Figure 8.15(a) and (b). The number
of possible k-order Voronoi cells is naively upperbounded by

(
n
k

)
. Fortunately, all

higher-order Voronoi diagrams for a given planar point set is much less. Namely,
the complexity of all higher-order diagrams for a plane n-point set is upperbounded
by O(n3). k-Order Voronoi diagrams find useful applications in proximity location
problems. Indeed, finding the k nearest neighbors to any given query point q amounts
to localize q in the k-order Voronoi diagram of P.

Yet another useful type of Voronoi diagram is the farthest point Voronoi diagram,
defined by reversing the distance order to define cells. The farthest point Voronoi
diagram of a point set P partitions the space into farthest regions such that the
Voronoi cell of p is defined as:

V (p) = {x | ||xp|| ≥ ||xp′||, ∀p′ ∈ P}. (8.22)

�

�

“vcbook” — 2006/9/5 — 12:28 — page 451 — #45
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 451

(a) (b) (c)

FIGURE 8.15 Higher-order Voronoi diagrams. (a) order-2 Voronoi diagram. (b)
order-3 Voronoi diagram. (c) farthest Voronoi diagram (order-(n− 1)).

Interestingly, observe that the set of points whose k nearest neighbors are k-tuple
T is also the region whose n− k farthest neighbors are the (n− k)-tuple P\T . That
is, an order-k (nearest) Voronoi diagram is an order-(n−k) farthest Voronoi diagram.
In particular, we have the farthest Voronoi diagram that coincides exactly with the
order-(n− 1) nearest Voronoi diagram. In summary, we have:

Order-k nearest Voronoi diagram = Order-(n− k) farthest Voronoi diagram. (8.23)

8.3 Mathematical Techniques

8.3.1 Linearization

Linearization is a general mathematical technique for obtaining linear equations by
adding extra slack variables. Thus, linearization increases the dimension of the
parameter space. Linearization is also called lifting, as we embed our initial space
into a higher-dimensional space. We’ll illustrate this technique with a typical problem
in computational geometry.

Application: Closest Pair of Points

The closest pair of points problem on the plane asks to compute the minimum
interdistance of a set of distinct points. It is related to the broader all nearest neighbors
problem that requires us to compute for each point pi ∈ P = {p1, ...,pn}, its closest
neighbor N(pi). If there is more than one “closest” neighbor point, we arbitrary pick

�

�

“vcbook” — 2006/9/5 — 12:28 — page 452 — #46
�

�

�

�

�

�

452 Visual Computing: Geometry, Graphics, and Vision

pi

pj

FIGURE 8.16 All nearest neighbor graph. For
each point, we draw the corresponding empty
circle (dotted circles). The closest pair of points
belongs among the double-oriented edges.

one of the nearest points. Figure 8.16 depicts the geometric graph obtained by drawing
all oriented edges piN(pi). Each pair piN(pi) defines a circle of circumcenter pi and
radius ||piN(pi)||, empty of other points of P, except possibly at the boundary. In
this figure, pi and pj are mutual nearest neighbors, and are visualized as such by a
double arrow edge in the geometric graph. Clearly, the closest pair of points of P is
found from the nearest neighbor graph, by simply inspecting pairs of mutually nearest
neighbors (doubly oriented edges, as shown in Figure 8.16). How many and how easily
can we check those mutually nearest neighbor pairs? First, let us prove that for any
pi, piN(pi) is an edge of the Delaunay triangulation of P. Consider the Voronoi
diagram of P (see Section 5.2.3 and Section 8.2.2) and the Voronoi cells of sites pi

and N(pi). Clearly, those Voronoi regions are adjacent and this means that the edge
[piN(pi)] is necessarily a Delaunay edge (by taking the dual graph representation, as
explained in Section 5.2.3). Figure 8.17 illustrates this property.

Thus, it is enough to check all Delaunay edges to find the closest pair of point set
P. Now, let’s define a lifting to the 3D unit paraboloid of revolution to show that the
Delaunay edges can be obtained from the edges of the convex hull of a “special” 3D
point set. First, we’ll write the equation of the empty circle Ci of center pi = [xi yi]T

and radius ri = ||piN(pi)||.

Ci : (x− xi)2 + (y − yi)2 = r2
i . (8.24)

We rewrite equivalently the equation as:

Ci : x2 + y2 = 2xix + 2yiy + r2
i − (x2

i + y2
i). (8.25)

�

�

“vcbook” — 2006/9/5 — 12:28 — page 453 — #47
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 453

pi

N(pi)

Bisector line piN(pi)

Delaunay Edge

Voronoi Diagram

Empty
Circle

FIGURE 8.17 Any mutual nearest neighbor pair of a finite
point set is a Delaunay edge because their corresponding
Voronoi cells are necessarily adjacent.

Let us linearize the latter equation by introducing an extra slack variable:

z = x2 + y2. (8.26)

Thus, we get:

Ci : z = 2xix + 2yiy + r2
i − (x2

i + y2
i)︸ ︷︷ ︸

�
i

, with z = x2 + y2. (8.27)

Let z denote the vertical axis in the augmented 3D space. Such a linearization
provides for each circle Ci a linear equation of a nonvertical 3D plane

∏
i =

∏
(Ci).

The second equation z = x2 + y2, which represents the constraint related to the
slack variable z, is fixed (independent of point set P) and represents the paraboloid
of revolution (a parabola curve z = x2 that is rotated around the z-axis). Visually
speaking, the circle Ci is interpreted as the vertical projection of the intersection of
the plane

∏
i with the paraboloid of revolution. In other words, the vertical lifting

of a circle to the paraboloid yields an ellipsis supported by the plane
∏

i. Points are
considered as circles of null radii.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 454 — #48
�

�

�

�

�

�

454 Visual Computing: Geometry, Graphics, and Vision

Convex Hull

Toward (−∞, 0) Toward (+∞, 0)
Upper
Convex Hull

Lower
Convex Hull

FIGURE 8.18 Decomposing a convex hull in its “lower” and “upper” part.

Let f(x, y) = (x, y, x2 + y2) denote the lifting function from 2D to 3D, and P ′

represent the lifted point set P ′ = {p′
i = f(pi) | pi ∈ P}. Now, consider any circle C

of the plane, then C is an empty circle (no points in P in its interior) if, and only if,
all points of P ′ are strictly above the 3D plane

∏
(C). Indeed, a point p = [x y]T is

outside a circle defined by its circumcenter pi = [xi yi]T and radius ri, if and only if:

(xi − x)2 + (yi − y)2 − r2
i > 0. (8.28)

That is,

z > 2xix + 2yiy + r2
i − (x2

i + y2
i). (8.29)

This latter equation means that point p is above the 3D plane
∏

i (see Eq. 8.27).
Furthermore, consider a pair of points pi and pj . This diametrically opposed pair of
points defines an empty circle C if all lifted points of P are on or above the plane∏

(C). Since
∏

(C) necessarily passes through p′
i and p′

j , this means that p′
i and p′

j

defines an edge of the lower convex hull of P ′. By definition, any 3D plane passing
through p′

i and p′
j with all other points of P ′ above it is called a supporting plane

of the convex hull. The lower convex hull is defined as the part of the convex hull
visible from (0, 0,−∞). Another way to define the lower convex hull of a point set is
to compute the convex hull of the point set to which we further add the extra point
(0, 0, +∞). Similarly, the upper convex hull is defined as conv(P ∪ {(0, 0,−∞)}) (see
Figure 8.18). The convex hull is the intersection of the lower convex hull with the
upper convex hull. Another related property is that a triangle �pipjpk is a triangle
of the Delaunay triangulation of P if, and only if, �p′

ip
′
jp

′
k is a triangle (facet) of

the lower convex hull of the corresponding lifted point set. Figure 8.19 illustrates the
lifting process and those 2D/3D relationships.

Thus, by linearization, the algorithm for computing all the nearest neighbors
becomes straightforward: Compute the lower convex hull of P ′. Then for each vertex
pi

′ inspect all adjacent edges of the lower convex hull, and associate to pi its closest

�

�

“vcbook” — 2006/9/5 — 12:28 — page 455 — #49
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 455

Paraboloid Of
Revolution

pi pj

p′i

p′j

Delaunay
Triangulation

Lower
Convex Hull

Lifting 2D → 3D

z

xy-plane

FIGURE 8.19 Lifting a 2D point set onto the 3D paraboloid of
revolution. Edges of the 2D Delaunay triangulation directly come
from the xy-projection of the 3D edges of the lower convex hull.

neighbor N(pi). This is enough, since the point that has the minimum distance from
pi is found among the edges of the lower convex hull departing from p′

i.

Let us now analyze the time complexity: lifting requires linear time. Computing
the convex hull of a 3D n-point set is done in O(n log n) time. Finally, traversing all
the lower convex hull edges of all points of P ′ costs linear time (twice the number of
edges). Therefore, we conclude that computing all the nearest neighbors of an n-point
set is done in O(n log n) time.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 456 — #50
�

�

�

�

�

�

456 Visual Computing: Geometry, Graphics, and Vision

We summarize the overall procedure in pseudocode below:

AllNearestNeighbors(P = {p1, ...,pn})
1. � Use linearization and 3D lower convex hull edges �
2. P ′=Lift all points of P to the paraboloid of revolution.
3. CH = LowerConvexHull3D(P ′)
4. E = All edges of CH projected on the xy-plane
5. Traverse E to determine for each point its nearest neighbor

Although we considered the 2D to 3D lifting, this circle-to-plane lifting technique
generalizes to arbitrary dimension. To conclude, let us mention that in Section 3.5.3,
we have concisely described using the polarity that the convex hull problem is
equivalent to the problem of computing a dual bounded intersection of half-spaces.
Moreover, here we showed how to obtain the Voronoi diagram from the intersection
of half-spaces via lifting onto the unit paraboloid. Finally, the Delaunay triangulation
is obtained from the Voronoi diagram using the duality of their face incidence graph.
Thus, a generic arbitary dimension convex hull algorithm allows us to compute
Voronoi/Delaunay triangulations (see Bibliographical Notes).

Lifting for Designing Geometric Predicates

Let us first describe the orientation predicate for a sequence of points. In the plane,
the orientation predicate Orient2D for a sequence of points p, q, and r is defined as
the sign of the following 3× 3 determinant:

Orient2D(p,q, r) = sign det
[

1 1 1
p q r

]
, (8.30)

which is mathematically rewritten after developing the determinant by the first row
as the sign of a 2× 2 determinant:

Orient2D(p,q, r) = sign det
[

xq − xp xr − xp

yq − yp yr − yp

]
. (8.31)

Geometrically, the absolute value of the determinant corresponds to twice the area
of the triangle �pqr. The sign of the determinant indicates whether the points
are oriented clockwise, counterclockwise, or aligned (Figure 8.20). Note that since
detM = detMT , we can rewrite the orientation predicate equivalently as follows:

Orient2D(p,q, r) = sign det
[

xq − xp yq − yp

xr − xp yr − yp

]
. (8.32)

Another interpretation of the determinant consists in embedding the 2D points p,
q, and r in 3D, by adding an extra coordinate z set to zero. Let p′, q′, and r′ be those

�

�

“vcbook” — 2006/9/5 — 12:28 — page 457 — #51
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 457

Orient2D

InSphere2D

s1

s2
s3

p
s1

s2
s3

p
s1

s2
s3

p

IN ON OUT

p1

p2

p

CCW

p1

p2
p

ON

p1

p2

p

CW

FIGURE 8.20 Standard geometric predicates. OrientdD and InSpheredD

illustrated on the plane.

3D points lying on the 2D xy-plane: z = 0. Then, the determinant value corresponds
to the z-coordinate of the cross product vector n:

n = (p′ − q′)× (p′ − r′). (8.33)

Those p′ − q′, p′ − r′, and n vectors define either a left-handed or right-handed
3D coordinate system (see Section 3.2.2) according to the sign of the determinant of
Equation 8.31.

WWW

Additional source code or supplemental material is provided on the
book’s Web site:
www.charlesriver.com/Books/BookDetail.aspx?productID=117120
File: Orient2D (demo interface in OpenGL)

�

�

“vcbook” — 2006/9/5 — 12:28 — page 458 — #52
�

�

�

�

�

�

458 Visual Computing: Geometry, Graphics, and Vision

In C++, such an orientation predicate can be implemented as follows:

1 // Orientation test: 2x2 determinant sign

2 // This is not the best bound but enough for this screen demo.

3 #define ERR THRESHOLD 1.0 e−6
4
5 int Orient2D (const Point2D& p , const Point2D& q , const Point2D& r)
6 {
7 i f ((q . x−p . x) ∗(r . y−p . y) > (r . x−p . x) ∗(q . y−p . y)+ERR THRESHOLD)

return CCW;
8 i f ((q . x−p . x) ∗(r . y−p . y) < (r . x−p . x) ∗(q . y−p . y)−ERR THRESHOLD)

return CW;
9 return ON;

10 }
In 3D, Orient3D is defined similarly as the sign of the following 4× 4 determinant:

Orient3D(p,q, r, s) = sign det
[

1 1 1 1
p q r s

]
. (8.34)

Note that changing the row position of the vector whose coordinates are all 1 may
reverse the sign of the determinant (the sign depends on the row parity where [1 1 1 1]T

is located).
A geometric interpretation of the determinant using the cross product and the dot

product is given as:

Orient3D(p,q, r, s) = ((q− p)× (r− p)) · (s− p). (8.35)

Orientation tests are thus expressed by the signs of determinants. These
determinants amount to compute the volume of simplices. Simplices are convex bodies
defined by the convex hull of affinely independent vertices. A k-dimensional simplex,
defined by k + 1 affinely independent point, has (k+1)k

2 edges, (k+1)k(k−1)
3! 2-faces, ...,

and k + 1 facets.4 To test whether a simplex is degenerated or not, we need to check
whether its volume is zero or not. In general, the volume of a k-dimensional simplex
Sk sitting in R

d can be computed in several ways depending on whether we use vertex
coordinates or edge lengths:

Gram determinant. Let p1, ...,pk+1 be the k + 1 vertices of simplex Sk. Further,
let p′

i = pi − p1 be the k associated vectors, with 1 < i ≤ k + 1. Denote by D
the k × d matrix whose rows are the vectors p′

i (i > 1). Then, the volume of
simplex Sk is given as:

Volume(Sk) =

√
|detDDT |

k!
. (8.36)

4A facet is by definition a (k − 1)-dimensional face.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 459 — #53
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 459

Cayley-Menger determinant. If only edge lengths di,j = ||pipj || are known (but
not the vertex coordinates), consider the following (k + 2)× (k + 2) matrix D:

D =

⎡
⎢⎢⎢⎣

0 1 1 . . . 1
1 0 d2

1,2 . . . d2
1,k+1

...
1 d2

k+1,1 d2
k+1,2 . . . 0

⎤
⎥⎥⎥⎦ . (8.37)

Then, the volume of simplex Sk is given as:

Volume(Sk) =

√
|detD|
2

k
2 k!

. (8.38)

This Cayley-Menger determinant generalizes the Heron’s formula which com-
putes the area of a triangle using its edge lengths (see Section 9.2).

There is also a recent5 determinant formula (due to Klebaner, Sudbury, and
Watterson in 1988) which computes the volume of d-dimensional simplices given as
the intersection of d + 1 halfspace equations.

We are now ready to describe how to compute another fundamental geometric
predicate using a lifting procedure. In dimension d, consider the sphere defined
by (at most) d + 1 points on its boundary: s1, ..., sd+1. We often need to answer
whether a query point p is inside, on, or outside the ball defined by the basis points
s1, ...sd+1. That is, we need to return the sign of ||pc||−r, where c is the circumcenter
of the sphere defined by s1, ..., sd+1, and r its radius. In computational geometry,
this is known as the d-dimensional predicate InSpheredD (Figure 8.20). Using the
linearization technique, the sign of ||pc||−r amounts to finding the sign of a particular
determinant. The idea is that d + 1 points are coplanar in dimension d if their
corresponding matrix determinant is zero (degenerated matrix said rank deficient).
That is, we would like to report the mutual position of a point p with d other points
p1, ...,pd defining an hyperplane. We’ll call this orientation predicate OrientdD. We
write predicate OrientdD using the sign of the following determinant:

OrientdD(p1, ...,pd,p) = sign det

⎡
⎢⎢⎢⎢⎢⎣

pT
1 1

pT
2 1
... 1

pT
d 1

pT 1

⎤
⎥⎥⎥⎥⎥⎦ . (8.39)

5Readers interested in those results should also check the Brunn-Minkowski’s theory of mixed
volume.

�

�

“vcbook” — 2006/9/5 — 12:28 — page 460 — #54
�

�

�

�

�

�

460 Visual Computing: Geometry, Graphics, and Vision

Note that the equation of the hyperplane H passing through d points p1, ...,pd is
found as:

H : OrientdD(p1, ...,pd,x) = 0. (8.40)

This latter determinant can be simplified further by lowering the matrix size by
one dimension, as follows (see Eq. 8.32):

OrientdD(p1, ...,pd,p) = sign det

⎡
⎢⎢⎢⎣

(p1 − p)T

(p2 − p)T

...
(pd − p)T

⎤
⎥⎥⎥⎦ . (8.41)

Thus, the strategy for defining InSpheredD consists in first lifting both the sphere
basis points si → s′i and the query point p to the paraboloid of revolution. Let
InSphered and Orientd denote these generic predicates in arbitray dimension d. Then,
we check for the sign of the following determinant:

InSphered(s1, ..., sd+1,p) = Orientd+1(s′1, ..., s
′
d+1,p

′). (8.42)

Thus, it comes that:

InSpheredD(s1, ..., sd+1,p) = sign det

⎡
⎢⎢⎢⎢⎢⎣

s′T1 1
s′T2 1
... 1

s′Td+1 1
p′T 1

⎤
⎥⎥⎥⎥⎥⎦ . (8.43)

Using the fact that:

xd+1(s) =
d∑

i=1

xi(s)2 = s · s, (8.44)

we rewrite this determinant as:

InSpheredD(s1, ..., sd+1,p) = sign det

⎡
⎢⎢⎢⎢⎢⎣

sT
1 s1 · s1 1

sT
2 s2 · s2 1
...

... 1
sT
d+1 sd+1 · sd+1 1
pT p · p 1

⎤
⎥⎥⎥⎥⎥⎦ . (8.45)

�

�

“vcbook” — 2006/9/5 — 12:28 — page 461 — #55
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 461

8.3.2 Approximating Distances in Large Dimensions

When the dimension becomes large, computing the Euclidean distance between two
points becomes an expensive operation in itself. Indeed, the distance of two points p
and q of the d-dimensional Euclidean space is defined as:

d2(p,q) = ||pq|| =

√√√√ d∑
i=1

(pi − qi)2. (8.46)

Thus, computing the distance between two points costs O(d) time. The distance
can be conveniently rewritten mathematically using the dot product of vectors p and
q, as follows:

||pq|| =

√√√√(
d∑

i=1

p2
i) + (

d∑
i=1

q2
i)− 2

d∑
i=1

piqi, (8.47)

||pq|| =
√
||p||2 + ||q||2 − 2 p · q. (8.48)

Now, using the Cauchy-Schwarz inequality, which states that the absolute value of
the dot product of vectors is less than or equal to the product of its norms,

|p · q| ≤ ||p|| ||q||, (8.49)

we obtain the following inequality:

||p||2 + ||q||2 − 2 ||p|| ||q|| ≤ ||pq||2 ≤ ||p||2 + ||q||2 + 2 ||p|| ||q||. (8.50)

Suppose ||p|| and ||q|| are already computed, then we get in constant time
(independent of the dimension) a lower and an upper bound estimate on the distance
||pq||, using the inequalities of Eq. 8.50.

Let’s consider a particular case of clustering: the smallest enclosing ball of a high-
dimensional point set P = {p1, ...pn}. The smallest enclosing ball is also called the
Euclidean 1-center in the operations research community. We have already presented
some algorithms for small dimensions, in Section 7.5. Here, we present a simple
guaranteed approximation algorithm that uses Cauchy-Schwarz filtering: we compute
a (1+ε)-approximation of the minimum enclosing ball. That is, an enclosing ball with
radius r ≤ (1 + ε)r∗, where r∗ is the radius of the smallest6 enclosing ball.

First, we initialize the circumenter c1 to any arbitrary input point of P, say p1. The
approximation algorithm proceeds iteratively. At the ith iteration, given the current

6The smallest enclosing ball is unique (proof by contradiction).

�

�

“vcbook” — 2006/9/5 — 12:28 — page 462 — #56
�

�

�

�

�

�

462 Visual Computing: Geometry, Graphics, and Vision

ci+1

ri+1

ri

ci

fi

FIGURE 8.21 Approximating the smallest enclosing ball of a 2D
planar point set using a local iterative updating of circumcenters.
The drawing explains the configuration at the i-th iteration. The
thick circle depicts the smallest enclosing ball.

circumcenter ci, we seek the farthest point of P. Let fi ∈ P be that point (in case of
ties, again we choose any arbitary one). We then update the current circumcenter ci

in direction of fi using a harmonic weighting rule:

ci+1 = ci +
1

i + 1
cifi. (8.51)

Figure 8.21 illustrates those operations between two successive iterations. The
beauty of this approximation algorithm is that the algorithm computes a (1 + ε)-
approximation of the smallest enclosing ball after at most 1

ε2
iterations.

We summarize the smallest enclosing ball approximation algorithm in pseudocode:

SmallEnclosingBall(p1, ...,pn, ε)
1. � Compute a (1 + ε)-approximation of the smallest enclosing ball �
2. � Return the circumcenter of a small enclosing ball �
3. c← p1

4. for i← 1 to � 1
ε2
�

5. do � Furthest point is fi = pj �
6. j = argmaxn

i=1||cpi||
7. c← c + 1

i+1cpj

8. return c

�

�

“vcbook” — 2006/9/5 — 12:28 — page 463 — #57
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 463

A straightforward implementation in C++ follows:

1 void Smal lEnc lo s ingBa l l (Point ∗ set , int n , Point ¢er , double &
radius , double ep s i l o n)

2 {
3 int i , i t e r , nb i te r , winner ;
4 double d i s t ;
5
6 nb i t e r=(int) c e i l (1 . 0 / (e p s i l o n ∗ ep s i l o n)) ;
7 c en te r=s e t [0] ;
8
9 for (i t e r =0; i t e r <nb i t e r ; i t e r++)

10 {
11 winner=0;
12 rad iu s=Distance (center , s e t [0]) ;
13
14 // Farthest point query

15 for (i =1; i<n ; i++)
16 {
17 d i s t=Distance (center , s e t [i]) ;
18 i f (d i s t >rad iu s) {winner=i ; r ad iu s=d i s t ;}
19 }
20
21 // Update circumcenter

22 for (i =0; i<DIMENSION; i++)
23 { cente r . coord [i]+=(1.0/(i t e r +1.0)) ∗(s e t [winner] . coord [i]− cente r .

coord [i]) ;}
24 }
25 }

This heuristic unfortunately does not scale well with ε, but is useful for, say ε ≥
0.01 (at most 10,000 iterations for guaranteeing an enclosing ball with radius within
1% of the optimal ball). A straightforward implementation of the algorithm yields
running time O(dn

ε2
). Computing the farthest points in high dimensions is clearly the

bottleneck of that method. However, all over the iterations, our input point set P is
fixed. At each iteration, we query for the farthest point of the current approximate
circumcenter. Therefore, we preprocess P by computing all distances to the origin
||pi||, for a preprocessing total cost O(dn). Then, at a given iteration, we compute
the current circumcenter point norm ||c|| (in O(d) time), and look for the farthest
point of P from c using the Cauchy-Schwarz-based filtering inequality, described in
Eq. 8.50. Assume that using the Cauchy-Schwarz filtering inequality, we skip α percent
(normalized to a ratio: 0 ≤ α ≤ 1) of distance computations, then the running time of
this simple approximation algorithm becomes O(1

ε2
(αn+(1−α)dn+d)). For uniform

or Gaussian distributions, we empirically observe that α → 1. In those cases, the
complexity of the algorithm becomes a much faster O(1

ε2
(n + d)).

�

�

“vcbook” — 2006/9/5 — 12:28 — page 464 — #58
�

�

�

�

�

�

464 Visual Computing: Geometry, Graphics, and Vision

The pseudocode below gives details on implementing the search for a farthest point
using the Cauchy-Schwarz upper bound:

FarthestPoint(P = {p1, ...,pn},normP, c)
1. � Find the farthest point of P to c using Cauchy-Schwarz filtering �
2. � normP: array of norms (normP[i] = ||pi||) �
3. � A better implementation should consider squared distances �
4. � c: current circumcenter for which we seek the farthest point �
5. maxdist = 0.0
6. � j: index of the furthest point of P (argmax) �
7. j = −1
8. � Calculate ||c|| �
9. normc = Distance(c,o)

10. for i← 1 to |P|
11. do � Filtering distance computations �
12. dist =

√
normP[i]2 + normc2 + 2× normP[i]× normc

13. if dist > maxdist
14. then � Compute the distance in linear time �
15. pc = Distance(p[i], c)
16. if pc > maxdist
17. then maxdist = pc
18. j = i
19. return j

WWW

Additional source code or supplemental material is provided on the
book’s Web site:
www.charlesriver.com/Books/BookDetail.aspx?productID=117120
File smallenclosingball.cpp

8.4 Bibliographical Notes

The seminal paper on 2D texture synthesis is due to Efros and Leung [109]. This
synthesis algorithm was further sped up by Wei and Levoy [339]. The texture synthesis
method was later extended to arbitrary manifolds [340], and solid textures [338].

The kD-Tree data structure was invented by Bentley [29] in 1975, as a major
improvement of the quadtree search structure. Arya and Mount [13] and Arya
and Fu [12] developed tailored proximity data structures for answering approximate
nearest neighbors in high dimensions. They provide a C++ package, available online

�

�

“vcbook” — 2006/9/5 — 12:28 — page 465 — #59
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 465

at http://www.cs.umd.edu/∼mount/ANN/ . There is also another software package
called Ranger that can be downloaded at http://www.cs.sunysb.edu/∼algorith/
implement/ ranger/ implement.shtml . Alternatives to the kD-trees for nearest neigh-
bor queries include Orchard’s algorithm [252] and its variants (annulus [168], double
annulus [175]), and the principal component partitioning [354] (PCP). Yet another
recent method is the vantage point tree (VP-Tree) proposed by Yianilos [351, 352].
VP-Trees use a partitioning scheme based on relative distances and are designed for
handling multidimensional nearest neighbor queries. The range tree data structure
is described in most computational geometry textbooks [271, 91]. Historically, in the
1970s, orthogonal range searching was a hot topic. This explains why range trees
have been independently discovered by several researchers [30, 194, 215]. Using a
technique called fractional cascading [76, 76], range tree queries can be further sped
up by using additional pointers. A rectangular query is performed in O(k + logd−1 n)
time in dimension d, saving a logarithmic factor over the traditional structure.

Nearest neighbor queries are also used in many other applications of computer
graphics, such as image analogies [164], or geometry synthesis [34]. Alternative
methods of texture synthesis consist in patch-based graph cuts [188] or fast tiling [83].
Recently, Zelinka and Garland [355, 356] developed a fast interactive texture synthesis
method based on preprocessing efficiently the source textures into so-called jump
maps. Their seminal method was later extended to texture arbitrary surface
manifolds. Finally, the system of Owada et al. [258] demonstrates cutable objects
by synthesizing on-the-fly 2D distorted textures on cross sections.

Clustering is an essential technique in machine learning and data mining. The
seminal kMeans algorithm dates back to 1957 by a technical report by Lloyd [206].
kMeans is by essence a local iterative methodology that is therefore trapped into local
minima. The paper by Kanungo et al. [180] showed that a local heuristic guarantees a
global clustering. Kumar et al. [187] present a fast linear-time (1 + ε)-approximation
algorithm for the kMeans algorithm. Their random sampling-based method work in
linear Oε,k(dn) time and can handle outliers. Unfortunately the constant hidden in
the big-Oh notation is exponential in k

ε . Har-Peled and Sadri [157] further present
results on the polynomial convergence of kMeans and describe two simple variants
with guaranteed performance. Their convergence bounds depend on the spread of
a point set, where the spread is defined as the ratio of the maximum interdistance
over the minimum interdistance. The soft clustering performed by the expectation
maximization was first thoroughly analyzed by Dempster et al. [95]. Another recent
center-based clustering algorithm is the k-Harmonic means that uses the harmonic
averages of the distances from each data point to the centers as its performance
function [358, 359]. The advantage of k-Harmonic means compared to traditional
kMeans is that it is experimentally observed less sensitive to the cluster initialization.
Furthermore, k-Harmonic means uses a dynamic weighting technique [357] of the

�

�

“vcbook” — 2006/9/5 — 12:28 — page 466 — #60
�

�

�

�

�

�

466 Visual Computing: Geometry, Graphics, and Vision

data to escape some local optima. This weighting technique is further investigated
by Nock and Nielsen [250], proving some analogy with a well-known algorithm in
computational learning: boosting [287]. Recently, there has been an abstraction of
kMeans-type/EM-type of algorithms using the concept of Bregman divergences [22,
250].

Burkardt gives an implementation of the centroidal Voronoi diagram, available
online at http://www.csit.fsu.edu/∼burkardt/ . Ju et al. [176] provides a fast
probabilistic method to implement in parallel the centroidal Voronoi diagram of a
point set. Clustering is often used in visual computing. For example, the paper by
Cohen-Steiner et al. [84] presents a mesh simplification method based on a centroidal
Voronoi clutering method.

Yao and Yao showed how the linearization techniques [350] help in designing
geometric searching data structures. They show how any algebraic range query
can be linearized to halfspace range searching. Mehlhorn et al. [223] describe a
geometric kernel on rational coordinates that includes a robust implementation of
high-dimensional orientation predicates. The closest-pair problem of an n-point set
was first solved in O(n log n)-time by Hoey and Shamos [299]. In arbitary fixed
dimension, the closest pair can be computed in O(n log n) time by a seminal algorithm
by Bentley and Shamos [32]. Golin et al. [136] further proved that the use of the floor
function with randomization allows us to find the closest pair within expected linear
time. We presented a simple lifting method that required us to compute the convex
hull [270] of 3D points in O(n log n) time. The Qhull library (http://www.qhull.org/)
allows us to robustly compute convex hulls in arbitary dimension, and hence
Voronoi/Delaunay structures. Lifting is often used in computational geometry. For
example, the convex hull of balls in R

d can be computed from the convex hull of
lifted points in R

d+1 [41]. The union of n balls of R
d can be computed from the

intersection of a polytope of R
d+1 with the paraboloid of revolution of R

d+1 [105]. In
R

3, the complexity of the union of unit balls can be quadratic, even if all unit balls
contain the origin [58]. This result contrasts with the fact that the combinatorial
complexity of the intersection of unit balls of R

3 is linear. The power diagram [16] of
spheres of R

d is a cell complex of R
d+1. Similarly, the multiplicative weighted Voronoi

diagram [101] of a point set (a Voronoi diagram with a non-Euclidean metrics) in R
d

can be solved by embedding the d-dimensional space into R
d+2. More details on the

unit paraboloid lifting is found in the book by Edelsbrunner [104]. Reitsma et al. [279]
investigate the use of multiplicatively weighted Voronoi diagram for information
visualization tasks. Namely, they define the inverse weighted Voronoi diagram as the
following reconstruction problem: given relative area sizes, find a corresponding weight
distribution of generators whose regionalization best approaches the given relative
areas.

Computing the smallest enclosing ball in high dimensions is not known to be

�

�

“vcbook” — 2006/9/5 — 12:28 — page 467 — #61
�

�

�

�

�

�

Chapter 8 Higher Dimensions for “3D” 467

strongly polynomial. However, there are practical heuristics that seem to solve the
exact smallest enclosing ball (of points) in very large dimensions (d > 10, 000). The
two-line approximation code of the smallest enclosing ball in arbitrary dimension was
reported in the paper by Bădoiu and Clarkson [62]. Combining this simple iterative
approximation algorithm with distance filtering using Cauchy-Schwarz inequalities is
presented in [248].

	visualcomputing_frontcover.pdf
	visualcomputing-excerpt-oh2006.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

