A fast deterministic smallest enclosing disk approximation algorithm

Frank Nielsen ${ }^{\text {a }}$, Richard Nock ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Sony Computer Science Laboratories Inc., 3-14-13 Higashi Gotanda, Shinagawa-Ku, 141-0022 Tokyo, Japan
${ }^{\text {b }}$ Université des Antilles-Guyane, Campus de Schoelcher, Departement Scientifique Interfacultaire, BP 7209, Schoelcher (Martinique) 97233, France

Received 11 May 2003; received in revised form 24 November 2004
Available online 13 January 2005
Communicated by F. Dehne

Abstract

We describe a simple and fast $\mathrm{O}\left(n \log _{2} \frac{1}{\varepsilon}\right)$-time algorithm for finding a $(1+\varepsilon)$-approximation of the smallest enclosing disk of a planar set of n points or disks. Experimental results of a readily available implementation are presented.

© 2004 Elsevier B.V. All rights reserved.
Keywords: Approximation algorithms; Computational geometry; Minimum enclosing ball

1. Introduction

The smallest enclosing disk (SED for short) problem dates back to 1857 when Sylvester [5] first asked for the smallest disk enclosing n points on the plane. Although $\mathrm{O}(n \log n)$-time algorithms were designed for the planar case in the early 1970s, its complexity was only settled in 1984 with Megiddo's first linear time algorithm [2] for solving linear programs in fixed dimension. Unfortunately, these algorithms exhibit a large constant hidden in the big-Oh notation

[^0]and do not perform so well in practice. In this note, we concentrate exclusively on the planar case approximation, and we refer readers to the papers $[1,3]$ for experimental comparisons of recently designed algorithms that either solve the exact or approximate smallest enclosing ball problems in unbounded dimension. Computing smallest enclosing disks are useful for metrology, machine learning and computer graphics problems. Fast constant approximation heuristics are popular in computer graphics [4]. Let $\mathcal{P}=\left\{P_{i}=\right.$ $\left.\left(x_{i}, y_{i}\right), i \in\{1, \ldots, n\}\right\}$ be a set of n planar points. We use notations $x\left(P_{i}\right)=x_{i}$ and $y\left(P_{i}\right)=y_{i}$ to mention point coordinates. Let $\operatorname{Disk}\left(C^{*}, r^{*}\right)$ be the smallest enclosing disk of \mathcal{P} of center point C^{*} (also called circumcenter or Euclidean 1-center) and minimum ra-
dius r^{*}. We want to compute a $(1+\varepsilon)$-approximation, that is, a disk $\operatorname{Disk}(C, r)$ such that $r \leqslant(1+\varepsilon) r^{*}$ and $\mathcal{P} \subseteq \operatorname{Disk}(C, r)$. Our paper aims at designing a fast deterministic (i.e., worst-case time bounded) approximation algorithm that is suitable for real-time demanding applications. Our simple implementation ${ }^{1}$ for point/disk sets is a mere 30 -line code which do not require to compute the tedious basis primitive of the smallest disk enclosing three disks. Moreover, we exhibit a robust approximation algorithm using only algebraic predicates of degree 2 on Integer arithmetic. In Section 6, we show that our floating-point implementation outperforms or fairly competes with traditional methods while guaranteeing worst-case time.

2. Piercing/covering duality

Let us consider the general case of a disk set $\mathcal{D}=\left\{D_{i}=\operatorname{Disk}\left(P_{i}, r_{i}\right), i \in\{1, \ldots, n\}\right\}$ to explain the piercing/covering duality. Our approximation algorithm proceeds by solving dual piercing decision problems (DPs for short; see Fig. 1): given a set of corresponding dual disks $\mathcal{B}(r)=\left\{B_{i}=\operatorname{Disk}\left(P_{i}, r-r_{i}\right), i \in\right.$ $\{1, \ldots, n\}\}$, determine whether $\bigcap \mathcal{B}(r)=\bigcap_{i=1}^{n} B_{i}=$ \emptyset or not.

Lemma 1. Observe that for $r \geqslant r^{*}$, there exists a (unique) disk B of radius $r(B)=r-r^{*}$ centered at $C(B)=C^{*}$ fully contained inside $\bigcap \mathcal{B}$.

Proof. In order to ensure that C^{*} is inside each $B_{i}(r)$, a sufficient condition is to have $r \geqslant \max _{i}\left\{r_{i}+\right.$ $\left.d_{2}\left(P_{i}, C^{*}\right)\right\}$. Since $B_{i} \subseteq \operatorname{Disk}\left(C^{*}, r^{*}\right), \forall i \in\{1,2, \ldots$, $n\}$, we have
$\max _{i}\left\{r_{i}+d_{2}\left(P_{i}, C^{*}\right)\right\} \leqslant r^{*}$.
Thus, provided $r \geqslant r^{*}$, we have $C^{*} \in \bigcap \mathcal{B}(r)$. Now, notice that $\forall i \in\{1,2, \ldots, n\}, \forall 0 \leqslant r^{\prime} \leqslant\left(r-r_{i}\right)-$ $d_{2}\left(P_{i}, C^{*}\right)$, $\operatorname{Disk}\left(C^{*}, r^{\prime}\right) \subseteq B_{i}(r)$. Thus, if we ensure that $r^{\prime} \leqslant r-\max _{i}\left(r_{i}+d_{2}\left(P_{i}, C^{*}\right)\right)$, then $\operatorname{Disk}\left(C^{*}, r^{\prime}\right)$ $\subseteq \bigcap \mathcal{B}(r)$. From ineq. (\star), we choose $r^{\prime}=r-r^{*}$ and obtain the lemma (see Fig. 1). Uniqueness follows from the proof by contradiction of [6].

[^1]

Fig. 1. Covering/piercing duality principle.

3. Algorithm outline

Our approximation algorithm proceeds by solving a sequence of dual piercing decision problems (see Fig. 1): given a set of disks $\mathcal{B}(r)=\left\{B_{i}=\right.$ $\left.\operatorname{Disk}\left(P_{i}, r\right), i \in\{1, \ldots, n\}\right\}$, determine whether $\bigcap \mathcal{B}(r)$ $=\bigcap_{i} B_{i}=\emptyset$ or not. We relax the 1 -piercing point problem to that of a common piercing εr^{*}-disk (i.e., a disk of radius εr^{*}): report whether there exists a disk $B=\operatorname{Disk}\left(C, \varepsilon r^{*}\right)$ such that $B \subseteq \bigcap \mathcal{B}(r)$ or not. Algorithm 1 describes the complete approximation procedure.

3.1. Solving decision problems

We explain procedure DecisionProblem of Algorithm 1. Let $\left[x_{m}, x_{M}\right]$ be an interval on the x-axis where an εr^{*}-disk center might be located if it exists. (That is $x(C) \in\left[x_{m}, x_{M}\right]$ if it exists.) We initialize x_{m}, x_{M} as the x-abscissae extrema: $x_{m}=\max _{i}\left(x_{i}\right)-$ $r, x_{M}=\min _{i}\left(x_{i}\right)+r$. If $x_{M}<x_{m}$ then clearly vertical line $L: x=\left(x_{m}+x_{M}\right) / 2$ separates two extremum disks (those whose corresponding centers give rise to x_{m} and x_{M}) and therefore $\mathcal{B}(r)$ is not 1-pierceable (therefore not εr^{*}-ball pierceable). Otherwise, the algorithm proceeds by dichotomy (see Fig. 2). Let $e=$ $\left(x_{m}+x_{M}\right) / 2$ and let L denotes the vertical line $L: x$ $=e$. Denote by $\mathcal{B}_{L}=\left\{B_{i} \cap L \mid i \in\{1, \ldots, n\}\right\}$ the set of $n y$-intervals obtained as the intersection of the disks of \mathcal{B} with line L. We check whether $\mathcal{B}_{L}=$

```
DecisionProblem \((\mathcal{P}, \operatorname{xmin}, \operatorname{xmax}, r, \varepsilon)\) :
\(x_{M}=\mathrm{xmin}+r\);
\(x_{m}=\mathrm{xmax}-r\);
while \(x_{M}-x_{m} \geqslant \varepsilon\) do
    \(l=\frac{x_{M}+x_{m}}{2}\);
    \(y_{m}=\max _{i \in\{1, \ldots, n\}} y_{i}-\sqrt{r^{2}-\left(l-x_{i}\right)^{2}}\);
    \(m=\operatorname{argmax}_{i \in\{1, \ldots, n\}} y_{i}-\sqrt{r^{2}-\left(l-x_{i}\right)^{2}} ;\)
    \(y_{M}=\min _{i \in\{1, \ldots, n\}} y_{i}+\sqrt{r^{2}-\left(l-x_{i}\right)^{2}}\);
    \(M=\operatorname{argmin}_{i \in\{1, \ldots, n\}} y_{i}+\sqrt{r^{2}-\left(l-x_{i}\right)^{2}}\);
    if \(y_{M} \geqslant y_{m}\) then
        \(x=l\);
        \(y=\left(y_{m}+y_{M}\right) / 2\);
            return true;
        else
            \(/ / m\) and \(M\) are arg indices of \(y_{m}\) and \(y_{M}\);
            if \(\left(x_{m}+x_{M}\right) / 2>l\) then
                \(x_{m}=l\);
            else
                \(x_{M}=l ;\)
return false;
SmallEnclosingDisk \((\mathcal{P}, \varepsilon)\) :
\(\mathrm{xmin}=\min _{i \in\{1, \ldots, n\}} x_{i}\);
\(\mathrm{xmax}=\max _{i \in\{1, \ldots, n\}} x_{i}\);
\(d_{1}=\max _{i \in\{1, \ldots, n\}}\left\|P_{i}-P_{1}\right\|\);
\(b=d_{1}\);
\(a=\frac{d_{1}}{2}\);
\(\varepsilon \leftarrow \frac{1}{4}(b-a) \varepsilon ;\)
while \(b-a>\varepsilon\) do
    \(r=(a+b) / 2\);
    pierceable \(=\operatorname{DecisionProblem}(\mathcal{P}, \operatorname{xmin}, \operatorname{xmax}, r, \varepsilon) ;\)
    if pierceable then
        \(b=r ;\)
    else
        \(a=r ;\)
```

Algorithm 1. $(1+\varepsilon)$-approximation of the minimum enclosing disk of \mathcal{P}.
$\left\{B_{i} \cap L=\left[a_{i}, b_{i}\right] \mid i \in\{1, \ldots, n\}\right\}$ is 1-pierceable or not. Since \mathcal{B}_{L} is a set of $n y$-intervals, we just need to check whether $\min _{i} b_{i} \geqslant \max _{i} a_{i}$ or not. If $\bigcap \mathcal{B}_{L} \neq \emptyset$, then we have found a point $\left(e, \min _{i} b_{i}\right)$ in the intersection of all balls of \mathcal{B} and we stop recursing. (In fact we found a ($x=e, y=\left[y_{m}=\max _{i} a_{i}, y_{M}=\right.$ $\min _{i} b_{i}$]) vertical piercing segment.) Otherwise, we have $\bigcap \mathcal{B}_{L}=\emptyset$ and need to choose on which side of L to recurse. Without loss of generality, let B_{1} and B_{2} denote the two disks whose corresponding y-intervals on L are disjoint. We choose to recurse on the side
where $B_{1} \cap B_{2}$ is located (if the intersection is empty then we stop by reporting the two nonintersecting balls B_{1} and B_{2}). Otherwise, $B_{1} \cap B_{2} \neq \emptyset$ and we branch on the side where $x_{B_{1} B_{2}}=\left(x\left(C\left(B_{1}\right)\right)+x\left(C\left(B_{2}\right)\right)\right) / 2$ lies. At each stage of the dichotomic process, we halve the x-axis range where the solution is to be located (if it exists). We stop the recursion as soon as $x_{M}-x_{m}<\varepsilon \frac{r}{2}$. Indeed, if $x_{M}-x_{m}<\varepsilon \frac{r}{2}$ then we know that no center of a ball of radius εr is contained in $\bigcap \mathcal{B}$. (Indeed if such a ball exists then both $\bigcap \mathcal{B}_{L\left(x_{m}\right)} \neq \emptyset$ and $\bigcap \mathcal{B}_{L\left(x_{M}\right)} \neq \emptyset$.) Overall, we recurse at most $3+\left\lceil\log _{2} \frac{1}{\varepsilon}\right\rceil$ times since the initial interval width $x_{M}-x_{m}$ is less than $2 r^{*}$ and we always consider $r \geqslant \frac{r^{*}}{2}$.

3.2. Radius dichotomy search

Finding the minimum enclosing disk radius amounts to find the smallest value $r \in \mathbb{R}^{+}$such that $\bigcap \mathcal{B}(r) \neq \emptyset$. That is $r^{*}=\operatorname{argmin}_{r \in \mathbb{R}^{+}} \bigcap \mathcal{B}(r) \neq \emptyset$. We seek an $(1+\varepsilon)$-approximation of the minimum enclosing ball of points by doing a straightforward dichotomic process on relaxed decision problems as explicited by procedure SmallEnclosingDisk. We always keep a solution interval $[a, b]$ where r^{*} lies, such that at any stage we have $\bigcap \mathcal{B}\left(a-\frac{\varepsilon r^{*}}{2}\right)=\emptyset$ and $\bigcap \mathcal{B}(b) \neq \emptyset$. Without loss of generality, let P_{1} denote the leftmost x-abscissae point of \mathcal{P} and let $P_{2} \in \mathcal{P}$ be the maximum distance point of \mathcal{P} from P_{1}. We have $r=d_{2}\left(P_{1}, P_{2}\right) \geqslant r^{*}\left(\right.$ since $\left.\mathcal{P} \subseteq \operatorname{Disk}\left(P_{1}, r\right)\right)$. But $d_{2}\left(P_{1}, P_{2}\right) \leqslant 2 r^{*}$ since both P_{1} and P_{2} are contained inside the unique smallest enclosing disk of radius r^{*}. Thus we have $r^{*} \in\left[\frac{r}{2}, r\right]$. We initialize the range by choosing $a=\frac{r}{2} \leqslant r^{*}$ and $b=r \leqslant 2 r^{*}$. Then we solve the $\frac{\varepsilon}{4} r$-disk piercing problem with disks of radius $e=(a+b) / 2$. If we found a common piercing point for $\bigcap \mathcal{B}(e)$ then we recurse on $[a, e]$. Otherwise we recurse on $[e, b]$. We stop as soon as $b-a \leqslant \varepsilon \frac{r}{4}$. (Therefore after $\mathrm{O}\left(\log _{2} \frac{1}{\varepsilon}\right)$ iterations since the initial range width $b-a \leqslant r^{*}$.) At any stage, we assert that $\bigcap \mathcal{B}\left(a-\frac{\varepsilon r}{4}\right)=\emptyset$ (by answering that $\bigcap \mathcal{B}(a)$ does not contain any ball of radius $\frac{\varepsilon r}{4}$) and $\mathcal{B}(b) \neq \emptyset$. At the end of the recursion process, we get an interval $\left[a-\frac{\varepsilon r}{4}, b\right]$ where r^{*} lies in. Since $b-a \leqslant \varepsilon \frac{r}{4} \leqslant \varepsilon \frac{r^{*}}{2}$ and $\left|r^{*}-a\right|<\frac{\varepsilon r}{4} \leqslant \frac{\varepsilon r^{*}}{2}$ (because $\mathcal{B}\left(a-\frac{\varepsilon r}{4}\right)=\emptyset$), we get: $b \leqslant r^{*}+2 \varepsilon \frac{r}{4}$. Since $r \leqslant 2 r^{*}$, we obtain a ($1+\varepsilon$)-approximation of the minimum enclosing ball of the point set. Thus, by solving $\mathrm{O}\left(\log _{2} \frac{1}{\varepsilon}\right)$ decision

Fig. 2. A recursion step: $L: x=e$ intersects all balls. Two y-intervals do not intersect on L. We recurse on x-range $\left[e, x_{M}\right]$.
problems, we obtain a $\mathrm{O}\left(n \log _{2}^{2} \frac{1}{\varepsilon}\right)$-time deterministic ($1+\varepsilon$)-approximation algorithm.

3.3. Bootstrapping

We bootstrap the previous algorithm in order to get a better $\mathrm{O}\left(n \log _{2} \frac{1}{\varepsilon}\right)$-time algorithm. The key idea is to shrink potential range $[a, b]$ of r^{*} by selecting iteratively different approximation ratios ε_{i} until we ensure that, at k th stage, $\varepsilon_{k} \leqslant \varepsilon$. Let $\operatorname{Disk}(C, r)$ be a $(1+\varepsilon)$ approximation enclosing ball. Observe that $\mid x(C)-$ $x\left(C^{*}\right) \mid \leqslant \varepsilon r^{*}$. We update the x-range $\left[x_{m}, x_{M}\right]$ according to the so far found piercing point abcissae $x(C)$ and current approximation factor. We start by solving the approximation of the smallest enclosing ball for $\varepsilon_{1}=\frac{1}{2}$. It costs $\mathrm{O}\left(n \log _{2} \frac{1}{\varepsilon_{1}}\right)=\mathrm{O}(n)$. Using the final output range $[a, b]$, we now have $b-a \leqslant \varepsilon_{1} r^{*}$. $\operatorname{Consider} \varepsilon_{2}=\frac{\varepsilon_{1}}{2}$ and reiterate until $\varepsilon_{l} \leqslant \varepsilon$. The overall cost of the procedure is

$$
\sum_{i=0}^{\left\lceil\log _{2} \frac{1}{\varepsilon}\right\rceil} \mathrm{O}\left(n \log _{2} 2\right)=\mathrm{O}\left(n \log _{2} \frac{1}{\varepsilon}\right) .
$$

We get the following theorem:
Theorem 1. $A(1+\varepsilon)$-approximation of the minimum enclosing disk of a set of n points on the plane can be computed efficiently in $\mathrm{O}\left(n \log _{2} \frac{1}{\varepsilon}\right)$ deterministic time.

4. Predicate degree

Predicates are the basic computational atoms of algorithms that are related to their numerical stabilities. In the exact smallest enclosing disk algorithm [6], the so-called InCircle containment predicate of algebraic degree 4 is used on Integers. Since we only use $\sqrt{ }$. function to determine the sign of algebraic numbers, all computations can be done on Rationals using algebraic degree 2 . We show how to replace the predicates of algebraic degree ${ }^{2} 4$ by predicates of degree 2 for Integers: "Given a disk center $\left(x_{i}, y_{i}\right)$ and a radius r_{i}, determine whether a point (x, y) is inside, on or outside the disk". It boils down to compute the sign of $\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}-r_{i}^{2}$. This can be achieved using another dichotomy search on line $L: x=l$. We need to ensure that if $y_{m}>y_{M}$, then there do exist two disjoint disks B_{m} and B_{M}. We regularly sample line L such that if $y_{m}>y_{M}$, then there exists a sampling point in [y_{M}, y_{m}] that does not belong to both disks B_{m} and B_{M}. In order to guarantee that setting, we need to ensure some fatness of the intersection of $\bigcap \mathcal{B}(r) \cap L$ by

[^2]Table 1
Timings

Method/distribution	\square Square max	\odot Ring max	\square Square avg	\odot Ring avg
Eberly $\left(\varepsilon=10^{-5}\right)$	$\mathbf{0 . 7 0 5 6}$	$\mathbf{0 . 6 3 7 4}$	0.1955	0.2767
Ritter $\left(\varepsilon>10^{-1}\right)$	$\mathbf{0 . 0 0 7 0}$	$\mathbf{0 . 0 0 6 9}$	0.0049	0.0049
ASED $\left(\varepsilon=10^{-2}\right)$	$\mathbf{0 . 0 3 4 3}$	$\mathbf{0 . 0 3 3 8}$	0.0205	0.0286
ASED $\left(\varepsilon=10^{-3}\right)$	$\mathbf{0 . 0 5 1 5}$	$\mathbf{0 . 0 4 4 4}$	0.0284	0.0405
ASED $\left(\varepsilon=10^{-4}\right)$	$\mathbf{0 . 0 6 4 6}$	$\mathbf{0 . 0 6 1 7}$	0.0392	0.0449
ASED $\left(\varepsilon=10^{-5}\right)$	$\mathbf{0 . 0 7 1 9}$	0.0726	0.0473	0.0527

Experiments done on 1000 trials for point sets of size 100000. Maximum (max) and average (avg) running times are in fractions of a second. Bold numbers indicate worst-case timings.
recursing on the x-axis until we have $x_{M}-x_{m} \leqslant \frac{\varepsilon}{\sqrt{2}}$. In that case, we know that if there was a common εr^{*} ball intersection, then its center x-coordinate is inside [x_{m}, x_{M}]: this means that on L, the width of the intersection is at least $\frac{\varepsilon}{\sqrt{2}}$. Therefore, a regular sampling on vertical line L with step width $\frac{\varepsilon}{\sqrt{2}}$ guarantees to find a common piercing point if it exists. A straightforward implementation would yield a time complexity $\mathrm{O}\left(\frac{n}{\varepsilon} \log _{2} \frac{1}{\varepsilon}\right)$. However it is sufficient for each of the n disks, to find the upper most and bottom most lattice point in $\mathrm{O}\left(\log _{2} \frac{1}{\varepsilon}\right)$-time using the floor function. Using the bootstrapping method, we obtain the following theorem:

Theorem 2. $A(1+\varepsilon)$-approximation of the minimum enclosing disk of a set of n points on the plane can be computed in $\mathrm{O}\left(n \log _{2} \frac{1}{\varepsilon}\right)$ time using Integer arithmetic with algebraic predicates InCircle of degree 2 .

5. Extension to disks

Our algorithm extends straightforwardly for sets of disks. Consider a set of n planar disks $\mathcal{D}=$ $\left\{D_{1}, \ldots, D_{n}\right\}$ with $C\left(D_{i}\right)=P_{i}=\left(x_{i}, y_{i}\right)$ and $r\left(D_{i}\right)=$ r_{i}. Let $\mathcal{B}(r)=\left\{B_{i} \mid C\left(B_{i}\right)=P_{i}\right.$ and $\left.r\left(B_{i}\right)=r-r_{i}\right\}$. Using the dual piercing principle, we obtain that $r^{*}=$ $\operatorname{argmin}_{r \in \mathbb{R}} \bigcap \mathcal{B}(r) \neq \emptyset$. (We have $C^{*}=\bigcap \mathcal{B}\left(r^{*}\right)$.) Observe also that $r^{*} \geqslant \max _{i} r_{i}$. Initialization is done by choosing $b=r_{1}+\max _{i}\left(d_{2}\left(P_{1}, P_{i}\right)+r_{i}\right)$ and $a=\frac{b}{2}$. We now let
$x_{B_{1} B_{2}}=x_{B_{1}}+\frac{r_{2}^{2}-r_{1}^{2}+\left(r_{1}+r_{2}\right)^{2}}{2\left(r_{1}+r_{2}\right)^{2}}\left(x_{B_{2}}-x_{B_{1}}\right)$.

6. Experimental results

We compare our implementation with D.H. Eberly's C++ implementation ${ }^{3}$ using double types that guarantees precision $\varepsilon=10^{-5}$ and has expected running time $10 n$ but no known worst-case bound better than $\mathrm{O}(n!)$. We also compare our code with Ritter's fast constant approximation ($\varepsilon \simeq 10 \%$) greedy heuristic used in game programming [4]. Timings are obtained on an Intel Pentium(R) 41.6 GHz with 1 GB of memory for points uniformly distributed inside a unit square (\square) and inside a unit ring of width 0.01 (\odot). Table 1 reports our timings. The experiments show that over a thousand square/ring random point sets, our algorithm (ASED) maximum time is much smaller than that of Eberly's (in addition, this latter algorithm requires $\tilde{\mathrm{O}}\left(\log _{2}^{3} n\right)$ calls [6] to the expensive and intricate basic primitive of computing the circle passing through three points). Source codes in C for point and disk sets are available at http://www. csl.sony.co.jp/person/nielsen.

Acknowledgements

The authors are grateful to the anonymous referees for their helpful suggestions.

References

[1] P. Kumar, J.S.B. Mitchell, A. Yıldırım, Computing core-sets and approximate smallest enclosing hyperspheres in high di-

[^3]mensions, in: Algorithm Engineering and Experimentation (ALENEX), SIAM, Philadelphia, PA, 2003, pp. 45-55.
[2] N. Megiddo, Linear programming in linear time when the dimension is fixed, J. ACM 3 (1) (1984) 114-127.
[3] F. Nielsen, R. Nock, Approximating smallest enclosing balls, in: Computational Geometry and Applications (ICCSA), in: Lecture Notes in Comput. Sci., vol. 3045, Springer, Berlin, 2004, pp. 147-157.
[4] J. Ritter, An efficient bounding sphere, in: A. Glassner (Ed.), Game Programming Gems, Academic Press, New York, 1990, pp. 301-303.
[5] J.J. Sylvester, A question in the geometry of situation, Quart. J. Math. 1 (79) (1857).
[6] E. Welzl, Smallest enclosing disks (balls and ellipsoids), in: H. Maurer (Ed.), New Results and New Trends in Computer Science, in: Lecture Notes in Comput. Sci., vol. 555, Springer, Berlin, 1991, pp. 359-370.

[^0]: * Corresponding author.

 E-mail addresses: frank.nielsen@acm.org (F. Nielsen), rnock@martinique.univ-ag.fr (R. Nock).

[^1]: ${ }^{1}$ Source code in C is available at http://www.csl.sony.co.jp/ person/nielsen.

[^2]: ${ }^{2}$ Comparing expressions $y_{1}+\sqrt{r^{2}-\left(l-x_{1}\right)^{2}}>y_{2}+$ $\sqrt{r^{2}-\left(l-x_{2}\right)^{2}}$ is of degree 4 for Integers. Indeed, by isolating and removing the square roots by successive squaring, the predicate sign is the same as $\left(2 r^{2}-\left(l-x_{1}\right)^{2}-\left(l-x_{2}\right)^{2}\right)^{2}>$ $4\left(r^{2}-\left(l-x_{1}\right)^{2}\right)\left(r^{2}-\left(l-x_{2}\right)^{2}\right)$. The last polynomial has highest monomials of degree 4 .

[^3]: 3 Source code available at http://www.magic-software.com.

