
A Sketching Interface for Modeling the Internal
Structures of 3D Shapes

Shigeru Owada1, Frank Nielsen2, Kazuo Nakazawa3, and Takeo Igarashi1

1 Department of Computer Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN,

{ohwada|takeo}@is.s.u-tokyo.ac.jp
2 Sony Computer Science Laboratories,Inc.,

Takanawa Muse Bldg., 3-14-13, Higashigotanda,
Shinagawa-ku, Tokyo 141-0022, JAPAN,

nielsen@csl.sony.co.jp
3 National Cardiovascular Center,

5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, JAPAN,
nakazawa@ri.ncvc.go.jp

Abstract. This paper presents a sketch-based modeling system for cre-
ating objects that have internal structures. The user input consists of
hand-drawn sketches and the system automatically generates a volu-
metric model. The volumetric representation solves any self-intersection
problems and enables the creation of models with a variety of topolog-
ical structures, such as a torus or a hollow sphere. To specify internal
structures, our system allows the user to cut the model temporarily and
apply modeling operations to the exposed face. In addition, the user can
draw multiple contours in the Create or Sweep stages. Our system also
allows automatic rotation of the model so that the user does not need
to perform frequent manual rotations. Our system is much simpler to
implement than a surface-oriented system because no complicated mesh
editing code is required. We observed that novice users could quickly
create a variety of objects using our system.

1 Introduction

Geometric modeling has been a major research area in computer graphics. While
there has been much progress in rendering 3D models, creating 3D objects is still
a challenging task. Recently, attention has focused on sketch-based modeling sys-
tems with which the user can quickly create 3D models using simple freehand
strokes rather than by specifying precise parameters for geometric objects, such
as spline curves, NURBS patches, and so forth [15,6]. However, these systems
are primarily designed for specifying the external appearance of 3D shapes, and
it is still difficult to design freeform models with internal structures, such as
internal organs. Specifically, the existing sketch-based freeform modeling system
[6] can handle 3D models only with spherical topology. This paper introduces a
modeling system that can design 3D models with complex internal structures,

A. Butz et al. (Eds.): Smart Graphics 2003, LNCS 2733, pp. 49–57, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



50 S. Owada et al.

while maintaining the ease of use of existing sketch-based freeform modelers.
We used a volumetric data structure to handle the dynamically changing topol-
ogy efficiently. The volumetric model is converted to a polygonal surface and
is displayed using a non-photorealistic rendering technique to facilitate creative
exploration. Unlike previous systems, our system allows the user to draw nested
contours to design models with internal structures. In addition, the user can cut
the model temporarily and apply modeling operations to the exposed face to
design internal structures. The underlying volumetric representation simplifies
the implementation of such functions. Moreover, our system actively assists the
user by automatically rotating the model when necessary.

The heart of our technique is automatic “guessing” of 3D geometry from 2D
gestural input, and it is done by making certain assumptions about the target
geometry. To be specific, the system assumes that the target geometry has a
rotund, smooth (low curvature) surface [6] other than the places where the user
explicitly defined the geometry by the input strokes. In other words, the user
specifies the information about important features (silhouette, intersection, and
sweep path) and the system supplies missing information based on the above
assumption.

Our system is designed to facilitate the communication of complicated ge-
ometric information, such as surgical plans. Like other sketch-based modeling
systems, however, our system is not suitable for creating the final output of any
serious production, because of its lack of accuracy.

2 Previous Work

Three-dimensional shape modeling systems that use a volumetric data structure
directly are relatively new [14,4] as compared with other popular modeling prim-
itives, such as polygons, NURBS, and subdivision surfaces. Recently, a scripting
language [2], octree [11], subdivision volume [10], and level set [1] have been
used as volumetric modeling methodologies. Some systems use 3D haptic input
devices [4,3,5,10].

Sketch-based modeling using standard mouse operations became popular in
the past decade. Instead of creating precise, large-scale objects, a sketching in-
terface provides an easy way to create a rough model to convey the user’s idea
quickly. One of the earliest sketching systems was Viking [12], which was de-
signed in the context of prototypic CAD models. Later works include SKETCH
[15] and Teddy [6]. The SKETCH system is intended to sketch a scene consisting
of simple primitives, such as boxes and cones, while the Teddy system is designed
to create rotund objects with spherical topology. Although improvements to the
original Teddy system have recently been proposed [7], extending the topological
variety of creatable models is still an unsolved problem.

Although the user interface of our system is based on the Teddy system,
our system is free from topological limitations, provides multiple interfaces for
specifying internal structures, and actively assists the user by automatically
rotating a model when necessary.



A Sketching Interface for Modeling the Internal Structures of 3D Shapes 51

3 User Interface

The entire editing operation is performed in a single window. Modeling oper-
ations are specified by freeform strokes drawn on the screen and by pressing
buttons on a menu bar. The freeform strokes provide necessary geometric infor-
mation and the buttons apply specific modeling operations using the strokes as
input. The drawing of strokes is assigned to the left mouse button and rotating
the model is assigned to the right mouse button. The current implementation
uses four buttons, as shown in Fig. 1. The leftmost button is used to initial-
ize the current scene; the second one is to create items; the third is for the
extrusion/sweep function; and the last is for undo.

Fig. 1. Buttons in our system

3.1 Create

Objects are created by drawing one or more contours on the canvas and pressing
the “Create” button. This operation inflates the intermediate region between
the strokes leaving holes (Fig. 2).

Fig. 2. Nested contours are allowed in the Create operation.

3.2 Extrusion

Extrusion is an operation that generates a protuberance or a dent on a model.
The user draws a single closed stroke on the object’s surface specifying the con-
tour (Fig. 3 (b)) and presses the “Extrusion/sweep” button. After rotating the
model (Fig. 3 (c)), the user draws a second stroke specifying the silhouette of the
extruded area (Fig. 3 (d, f)). The user should place each end of the silhouette
stroke close to each end of the projected surface contour (otherwise the second
stroke is interpreted as a sweep path; see Section 3.4.) A protuberance is created
if the second stroke is drawn on the outside of the object (Fig. 3 (d,e)). The user



52 S. Owada et al.

can also create a hole by drawing a stroke into the object (Fig. 3 (f,g)). Vol-
umetric representation automatically prevents self-intersection problems, where
specialized care must be taken when using a polygonal representation. A hidden
silhouette is rendered as broken lines.

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Examples of Extrusion

3.3 Loop Extrusion

In addition, it is also possible to create a hollow object using extrusion. To do
this, the user first cuts the model to expose the internal region (Fig. 4 (a-c)),
then draws a contour on the exposed plane (Fig. 4 (d)), and finally draws a
circular stroke that entirely surrounds the contour (Fig. 4 (e)). We call this
operation “Loop Extrusion”. The cutting operation that we use differs from the
standard Cut operation in the Teddy system [6] in that the removed region is
just deactivated temporarily. The system distinguishes these two operations by
checking whether there is a corner at the end of a stroke. The system performs a
standard cutting operation when there is no corner, while the system deactivates
a region when there is a corner. The direction of the stroke end is used to
determine which area to deactivate. The silhouette of the deactivated parts is
rendered as broken lines.

(a) (b) (c) (d) (e) (f)

Fig. 4. An example of creating a hollow object: first, the user defines the desired cross-
sectional plane by deactivating part of the object (a-c). Then, the user draws a contour
on the cut plane (d). Finally, the user draws a extruding shape surrounding the contour,
which we call “Loop Extrusion” (e). This creates a hollow object (f).

Deactivation is provided in order to make the inside of an object accessible.
The user can draw a contour and have it extrude on an internal surface in
exactly the same way as done on an external surface (Fig. 5). The following
sweep operation can also be used in conjunction with deactivation.



A Sketching Interface for Modeling the Internal Structures of 3D Shapes 53

(a) (b) (c)

Fig. 5. An extrusion from an internal surface of an object using deactivation

3.4 Sweep

After pressing the “Extrusion/Sweep” button, the user can also draw an open
stroke specifying the sweep path. If a single contour is drawn in the first step,
both ends are checked to determine whether they are close to the projected
contour. Unlike extrusion, the user can draw multiple contours to design tube-
like shapes (Fig. 6).

(a) (b) (c)

Fig. 6. Sweeping double contours: drawing contours on the surface of an object (a)
and sweeping them (b) produces a tube (c).

3.5 Animation Assistance

In extrusion or sweep, the model must be rotated approximately 90 degrees after
pressing the “Extrusion/Sweep” button to draw the last stroke. To automate
this process, our system rotates the model after the “Extrusion/Sweep” button
is pressed; the contours are then moved so that they are perpendicular to the
screen (Fig. 7 (a-c)). This animation assistance is also performed after a Cut
operation, because it is likely that a contour will be drawn on the cut plane in
the next step. When a model is cut, it is automatically rotated so that the cut
plane is parallel to the screen (Fig. 7 (d-f)).

4 Implementation

We use a standard binary volumetric representation. The examples shown in
this paper require approximately 4003 voxels. The volumetric data are polygo-
nized using the Marching Cubes algorithm [9]. The polygonized surface is then
smoothed [13] and displayed using a non-photorealistic rendering technique [8].
The silhouette lines of invisible or deactivated parts are rendered as broken lines.



54 S. Owada et al.

(a) (b) (c) (d) (e) (f)

Fig. 7. Examples of animation assistance: as soon as the user presses the “Extru-
sion/Sweep” button, the model is rotated so that the contours are perpendicular to
the screen (a-c). When the user cuts a model, the /model is automatically rotated so
that the cut plane is parallel to the screen (d-f).

The Create and Extrusion operations can be implemented using the algo-
rithms described in the original Teddy system, converting the resulting polygonal
model into a volumetric model and performing a CSG operation. In Extrusion,
our system adds the additional geometry to the original model when an out-
ward stroke is drawn and subtracts it when an inward stroke is drawn. Note
that complex “sewing” of polygons is not necessary and no self-intersection will
occur because of the volumetric data structure. Loop Extrusion applies the stan-
dard inward (subtract) extrusion in both directions. The Sweep operation in our
system requires two-path CSG operations to add a new geometry to the original
model. First, the sweep volume of the outermost contour is subtracted from the
original model (Fig. 8 (a-c)). Then, the regions between the contours are swept
and the sweep volume is added to the model (Fig. 8 (d)). This avoids the inner
space being filled with the original geometry.

(a) (b) (c) (d)

Fig. 8. Handling the sweep operation. The outmost contour is swept along the specified
path (a,b) and extracted from the original model (c). Then, every contour is swept and
added to the model.

The volumetric representation significantly simplifies the implementation of
the Cut operation and enables the change in topology. A binary 2D image is
computed from the cutting stroke in the screen space to specify a “delete” region
and a “remain” region. Both ends of the cutting stroke are extended until they



A Sketching Interface for Modeling the Internal Structures of 3D Shapes 55

intersect or reach the edges of the screen. Then, one of the separated regions is
set as the “delete” region (usually the region to the left of the stroke, following
the original Teddy convention). Each voxel is then projected to the screen space
to check whether it is in the deleted region; if so, the voxel is deleted. This process
is significantly simpler than traversing the polygonized surface and remeshing it.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 9. Examples created using our system. (a-c) were created by novices, while (d-g)
were created by an expert.

���� ����� 	
�������� �
��� �� �����

Fig. 10. An undesired effect caused by the lack of depth control. Since there is no
depth information in the original model, the newly created cavity can pierce the wall.



56 S. Owada et al.

5 Results

We used a Dell Dimension 8200 computer that contained a Pentium 4 2-GHz
processor and 512 MB of RAM. The graphics card was an NVIDIA GeForce3
Ti500 with 64 MB of memory. Users can create models interactively on this
machine. We also used a display-integrated tablet as an input device, with which
the user can edit an object more intuitively. However, some users found it difficult
to rotate an object because they needed to press a button attached to the side
of the pen and move the pen without touching the display.

Figure 9 shows some models created using our system. Fig. 9 (a-c) were cre-
ated by novices within fifteen minutes of an introductory fifteen-minute tutorial;
the others were created by an expert. Our observations confirmed that users
could create models with internal structures quickly and easily. Nevertheless,
one limitation also became clear. The users occasionally found the behavior of
Extrusion unpredictable because there was no depth control. Specifically, when
a user tried to create a cavity in an object, the hole sometimes penetrated the
wall of the original model (Fig.10).

6 Conclusions and Future Work

We presented a sketch-based modeling system for creating objects with internal
structures. The underlying volumetric data structure simplifies the handling of
a dynamically changing topology. The user can modify the topology easily in
various ways, such as by cutting an object, forming a extrusion, specifying mul-
tiple contours with create or sweep operations, or specifying internal structures
in conjunction with temporal deactivation. In addition, automatic rotation of
the object frees the user from tedious manual labor.

Our system is designed for the rapid construction of coarse models and is
not appropriate for precise modeling. Currently, it is difficult to modify shapes
locally and we are exploring ways to add small details. As mentioned above, the
absence of depth control causes difficulty. Finally, our current implementation
can produce only binary volumetric data and we plan to explore a new interface
in which the user can define the internal volumetric textures of a model.

References

1. Bærentzen, J.A. and Christensen, N.J.: Volume Sculpting Using the Level-set
Method. Proc. 2002 International Conference on Shape Modeling and Applications
(2002) 175–182

2. Cutler, B., Dorsey, J., McMillian, L., Müller, M. and Jagnow, R.: A Procedural
Approach to Authoring Solid Models. ACM Transactions on Graphics 21 3 (2002)
302–311

3. Ferley, E., Cani, M.P. and Gascuel, J.D.: Practical Volumetric Sculpting. The Vi-
sual Computer 16 8 (2000) 469–480

4. Galyean, T.A. and Hughes, J.F.: Sculpting: An Interactive Volumetric Modeling
Technique. In Computer Graphics (Proc. SIGGRAPH 91) 25 4 (1991) 267–274



A Sketching Interface for Modeling the Internal Structures of 3D Shapes 57

5. Hua, J. and Qin, H.: Haptics-based Volumetric Modeling Using Dynamic Spline-
based Implicit Functions. In Proc. 2002 IEEE Symposium on Volume Visualization
and Graphics (2002) 55–64

6. Igarashi, T., Matsuoka, S. and Tanaka, H.: Teddy: A Sketching Interface for 3D
Freeform Design. In Computer Graphics (Proc. SIGGRAPH 99) (1999) 409–416

7. Karpenko, O., Hughes, J.F. and Raskar, R.: Free-form Sketching with Variational
Implicit Surfaces. Computer Graphics Forum 21 3 (2002) 585–594

8. Lake, A., Marshall, C., Harris, M. and Blackstein, M.: Stylized Rendering Tech-
niques for Scalable Real-Time 3D Animation. In Proc. Symposium on Non-
Photorealistic Animation and Rendering (NPAR 2000) (2000) 13–20

9. Lorensen, W.E. and Cline, H.E.: Marching Cubes: A High Resolution 3D Sur-
face Construction Algorithm. In Computer Graphics (Proc. SIGGRAPH 87) 21 4
(1987) 163–169

10. McDonnell, K.T. and Qin, H.: Dynamic Sculpting and Animation of Free-Form
Subdivision Solids. The Visual Computer 18 2 (2002) 81–96

11. Perry, R.N. and Frisken, S.F.: Kizamu: A System for Sculpting Digital Characters.
In Computer Graphics (Proc. SIGGRAPH 2001) (2001) 47–56

12. Pugh, D.: Designing Solid Objects Using Interactive Sketch Interpretation. Com-
puter Graphics (1992 Symposium on Interactive 3D Graphics) 25 2 (1992) 117–126

13. Taubin, G.: A Signal Processing Approach to Fair Surface Design. In Computer
Graphics (Proc. SIGGRAPH 95) (1995) 351–358

14. Wang, S.W. and Kaufman, A.E.: Volume Sculpting. Computer Graphics (1995
Symposium on Interactive 3D Graphics) (1995) 151–156

15. Zeleznik, R.C., Herndon, K.P. and Hughes, J.F.: SKETCH: An Interface for Sketch-
ing 3D Scenes. In Computer Graphics (Proc. SIGGRAPH 96) (1996) 163–170


	Introduction
	Previous Work
	User Interface
	Create
	Extrusion
	Loop Extrusion
	Sweep
	Animation Assistance

	Implementation
	Results
	Conclusions and Future Work

