
Theoretical Computer Science 263 (2001) 235–245
www.elsevier.com/locate/tcs

Combinatorial optimization algorithms for
radio network planning

Patrice Cal'egaria, Fr'ed'eric Guideca, Pierre Kuonena, Frank Nielsenb;∗;1

aSwiss Federal Institute of Technology, 1015 Lausanne, Switzerland
b �Ecole Polytechnique, Laboratoire d’informatique LIX, CNRS Unit�e 1439 91128 Palaiseau Cedex,

France

Accepted April 2000

Abstract

This paper uses a realistic problem taken from the telecommunication world as the basis for
comparing di.erent combinatorial optimization algorithms. The problem recalls the minimum
hitting set problem, and is solved with greedy-like, Darwinism and genetic algorithms. These
three paradigms are described and analyzed with emphasis on the Darwinism approach, which
is based on the computation of �-nets. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the key issues telecommunication companies must face when deploying a
mobile phone network is the selection of a good set of sites among those possible
for installing base transceiver stations (BTSs). The problem comes down to serving
a maximum surface of a geographical area with a minimum number of BTSs. The set
of sites where BTSs may be installed is taken as an input, and our goal is to 9nd
a minimum subset of sites that allows a ‘good’ service. This mobile radio network
planning problem is tackled in the STORMS project (software tools for the optimization
of resources in mobile systems). We have developed so far di.erent algorithms to solve
this mobile radio network planning problem.
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Fig. 1. Three cells computed on the French region ‘Les Vosges’ (a), and in a district of the city of Geneva
(b). The black zone represents the served area.

The paper is organized as follows: Section 2 introduces notations and gives a model
of our problem. Section 3 describes a greedy-like approach. Section 4 brie@y introduces
�-nets and some of their key properties. �-nets are then applied to solve the problem in
a weighted process. Section 5 gives an island-based genetic algorithm that runs concur-
rently on a network of workstations. Finally, we elaborate on comparative benchmarks
obtained experimentally when siting transceivers in the Swiss urban district of Geneva
and in the hilly French region ‘Les Vosges’.

2. Modeling of the problem

Cells. A geographical location is said to be served when it can receive the sig-
nal broadcast by a BTS with a given quality of service. The area served by a BTS
is called a cell. It must be noticed that, since each BTS is associated to a cell, we
will not di.erentiate between BTSs and cells in the rest of this paper. In our im-
plementation, geographical locations are discretized on a regular grid, and the cells
are computed by a radio wave propagation prediction tool. Fig. 1 shows the shape
of such cells, computed in the hilly French region ‘Les Vosges’ and in the Swiss
urban district of Geneva (in this example, indoor radio wave propagation is not
considered).
Modeling of the service. The relationship between each pixelized location served

and the BTSs is naturally modeled as a bipartite graph whose nodes represent either
BTSs or geographic locations (pixels). Such a graph tends to have huge size when
many geographic locations are allowed. A smart way to reduce the graph size without
loosing any useful information is to build a bipartite graph whose nodes represent
either BTSs or intercells. An intercell is de9ned as the set of geographical locations
that are potentially served by exactly the same set of BTSs. For each intercell node,
one only needs to encode the cost of this intercell, that is, the number of locations it
contains. It can be noticed that the geographical zone delimited by an intercell node
is not necessarily connex. The bipartite graph hence obtained can be smaller than the
former one by more than one order of magnitude.
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Fig. 2. A set system of n=4 cells inducing m=8 intercells.

Below, we introduce formal de9nitions used in the 9eld of combinatorial optimiza-
tion theory and explain their equivalence or relationships with our facility location
problem.
Set system. A set system (X;R) is a set X of n elements, with a collection R of

m subsets of X called in the literature ranges. Let us consider a set system (X;R)
where X is the set of cells and R is the set of all intercells. Fig. 2 depicts such a set
system.
Hitting set and set cover problems. A hitting set of our set system (X;R) is a

subset H ⊆X of cells such that H has a non-empty intersection with every intercell R
in R (for example, in Fig. 2 {b; c; d} is a hitting set of (X;R)). Roughly speaking, this
means that each pixelized location of the whole area is served by at least one BTS.
The problem we consider recalls the minimum hitting set problem (HSP) whose NP-
completeness (shown by Karp [8]) dates back to the early 1970s. However, it slightly
di.ers from the minimum HSP because our goal is to select a satisfactory subset of
BTSs that ensures a service in almost all the area. This means that non-combinatorial
parameters such as the target service ratio (tsr ∈ [0; 1]) are also to be taken into account
in practice. tsr expresses the ratio of the area that is targeted to be served over the
maximum area that can be served. For each cell x∈X , let xR= {R∈R | x∈R} denote
the set of intercells included in x. Let XR= {xR | x∈X } be the set of groups of all
intercells. A covering set of a set system (R; XR) is a subset of XR

′ ⊆XR such that⋃
xR∈XR

′ =R. A minimum set cover problem, SCP, asks for a minimum-size covering
set XRmin such that |XRmin|= min(|XR

′|; XR
′ ⊆XR and

⋃
xR∈XR

′ =R). The set system
(R; XR) is said to be the dual of (X;R) since a solution to HSP implies a solution to
SCP and vice versa. Denote by k-HSP the HSP where each range has at most k BTS
and by k-SCP the SCP where each cell covers at most k intercells. Recently, Feige [6]
proved that unless NP⊆DTIME[nlog log n] there is no polynomial-time algorithm that
guarantees a (1− �) log k performance ratio. 2 This plainly explains the intractability
of HSP, and dually of SCP, from both the theoretical and the practical point of view and
motivates our comparative tests. The following section presents the greedy-lobe algo-
rithm for solving SCP, re9nes the modeling of the problem and gives further references
to extensions of SCP.

2 The performance ratio is the ratio between a solution and an optimal solution.
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3. A greedy-like algorithm

Introduced by Chv'atal [4] and thoroughly analyzed by Slav'Ok [15], the natural greedy
heuristic surprisingly achieves a performance ratio of log k − log log k +(1), where
k is the maximum number of intercells lying in a BTS. Note that if k62 then SCP
is equivalent to the EDGE COVER problem and therefore can be solved in O(n

√
m)-

time using a maximum matching in a bipartite graph [12]. This approach was used
to improve GREEDY and k-HSP [5]. The PARTIAL HITTING SET COVER PROBLEM, PHSP, con-
sists in hitting, with as few cells as possible, at least |R|r intercells for a given hit-
ting ratio r ∈ [0; 1]. PHSP has also been proven NP-complete by Kearns [9] as soon
as 0¡r61. Kearns used a variant of GREEDY with performance ratio 2H (m) + 3,
where H (c)=

∑c
i=1

1
i6 log c + 1 is the cth harmonic number. Slav'Ok [14] lowered

the performance ratio to min{H (�rm	); H (k)}. A weighted set system is a set sys-
tem in which each range R∈R is given a cost cR (e.g., cR is the number of pix-
els contained by the intercell R). Denote c(xR)=

∑
R∈xR cR and c(X )=

∑
x∈X c(x).

GREEDY can be naturally extended to weighted set systems and runs in O(nm) time
and space for dense (resp. O(n log n) for sparse, i.e. m=O(n)) set systems as shown
below (See algorithm GREEDY). There exists various extensions of HSP that lead to
di.erent heuristics and hardness results. We refer to [13] for an up-to-date
survey.

Algorithm GREEDY // Implements Kearn’s greedy-like heuristic
// tsr is the target service ratio
// rest is the surface yet to be served in order to obtain a tsr-service
X ′ := ∅; rest := tsr
// Initialize the current solution X ′ with 0 BTS
while less than tsr of the surface is served by X ′ do
Add xi (the ith BTS) to X ′ such that xi maximizes min(rest; c(xiR\X ′

R))
Update rest := tsr −∑

x∈X ′ c(x)

4. A Darwinism algorithm

4.1. De>nition and properties of epsilon nets

If a subset N ⊆X intersects each set R of R of size bigger than � ∗ |X |, then N
is called an �-net. In our case, an �-net is a set of cells (i.e., BTSs) that serves all
intercells potentially served by more than � ∗ n BTSs. Denote by R|Y the collections
of intercells restricted to elements of Y :R|Y = {R∩Y |R∈R}. A set Y ⊆X is said
shattered if R|Y =2Y , where 2Y denotes all subsets of Y . The Vapnik– RCervonenkis
dimension is de9ned as the minimum integer d so that no d + 1 elements can be
shattered by R. Set systems of VC-dimension d admits 1=r-nets of size O(dr log r)
[10] and can be computed in O(d)3DrD logD(rd)|X | given a computational oracle that
returns (Y;R|Y ) in time O(|Y |D+1) [11].
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4.2. Weighted set algorithm

In our practical situation, the VC-dimension of the problem can be bounded by 5
since it is very unlikely to obtain a complete sub-arrangement of 5 BTSs (i.e., all
proper 25−1 intercells generated by 5 BTSs). Algorithm WEIGHTED SETS is based on
seminal ideas of a weighted strategy presented in [1]. Parameters � and � are used for
both convergence of the algorithm and performance ratio of our solution. Basically,
the strategy amounts to guess the optimal size c and compute an �-net which might
be a ‘good’ solution or not. In the latter case, we choose a not yet covered intercell,
update the weights of all BTSs fully serving it and reiterate until, at some step, we
9nd a ‘good’ solution.

5. An island-based genetic algorithm

The algorithm presented in the previous section relies on the notion of �-net and set
systems. In this section we present a genetic algorithm which does

Algorithm EPSILON NET(�) // Computes randomly an �-net.
i := � 1

� 	; Q := ∅
while Q is not an �-net do
Q := ∅
Draw i elements of X taking into account their weight
i := i + 1

Algorithm WEIGHTED SETS // Implements a weighted selection procedure
// n number of initial potential BTSs, i.e. 100¡n¡10000
// [cmin ; cmax]⊆ [0; n] potential interval where a solution lies
// tsr is the target service ratio (tsr � 0:9)
// �; �: we must have �¿(� − 1)= ln � to prove the convergence (e.g., � � 2,
� � 1:45)

for c∈ [cmin ; cmax]
// c is supposed to be the optimal value
Set wi := 1 be the weight of xi ∈X .
repeat at most �c ln n=c=(� ln � − � + 1) times
Compute X ′ a weighted 1=�c-net of (X;R)
if X ′ serves more than tsr of the surface
then
X ′ is a ‘good’ enough solution. STOP.

else
Choose a not yet served intercell R∈R

Multiply by � ALL the weights wi’s of the BTSs that can serve it.

not rely on these notions but that still uses the bipartite graph introduced in Section 2
to compute the service ratio.
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Fig. 3. Two sites (associated with cells in black) from a set of six potential ones are chosen in this candidate
solution (a), that can be encoded as a bit-string (b). A set (or population) of such bit-strings (or individuals)
evolves according to the four phases of a genetic algorithm (c).

A genetic algorithm is a population-based algorithm, which means that its state
at any time is a set of candidate solutions, called a population of individuals. In our
implementation, an individual is encoded as a chromosome-like bit-string that represents
the whole set of possible BTS sites. Whether a location is actually selected in a potential
solution depends on the value of the corresponding entry in the bit-string (see Figs. 3a
and b). A 9tness value is assigned to each individual, indicating how ‘good’ the solution
it represents is. We choose >tness=(served area=total area)�=number of BTSs used,
where � is a parameter that can be tuned at will (experiments show that when �=4
the solutions returned by the algorithm give around 90% of service ratio, which is a
satisfactory result according to telecommunication specialists).
In genetic algorithms (introduced by Holland in [7]) four phases inspired by the

genetic mechanisms of natural species evolution can be identi9ed (see Fig. 3c). Given
a population of individuals, that are initially generated at random, an intermediate
population is created by selecting individuals according to their relative 9tness value:
the higher the 9tness value of an individual, the more likely it is to be selected.
When this intermediate population has been 9lled, individuals are mated in pairs. On
each of these pairs, a 1-point crossover operator is applied with a probability of pc.
This operator cuts two given bit-strings at a same random position and recombines
them by exchanging their ends, thus producing two new bit-strings (or oAsprings). In
the end, a mutation operator is applied to each individual with probability pm. The
mutation operator inverts the value of a randomly selected bit of the bit-string. This
introduces ‘noise’ to prevent premature convergence of the population. The execution
terminates after a prede9ned number of generations (typically twice the total number
of individuals).
Such a genetic algorithm meets our demand. Yet, it has two major shortcomings.

First, it is not fast enough for interactive use, as required by telecommunication oper-
ators. Second, the solutions obtained remain far from the optimum solution because of
an over rapid convergence of the algorithm.
Many studies have been done to improve the quality of the results obtained using

genetic algorithms [17]. One of them consists in splitting the population into sub-
populations, called islands, that evolve independently [16], and that can cooperate by
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Fig. 4. Comparison of the convergence speed, with and without islands, of a genetic algorithm operating
on 160 individuals (a). Islands (or sub-populations) of a genetic algorithm organized according to a ring
topology (b). Distribution of islands in a parallel version of the algorithm (c).

migrating individuals from an island to another. An example of convergence speed
observation, with and without islands, is shown in Fig. 4a (a more detailed study can
be found in [2, 3]).
A population must contain many individuals in order to give good results, hence a

large computation load. The amount of independent processing required for the evo-
lution of islands suggests an intrinsic parallelism. The overall computation time could
thus be decreased by distributing the islands on several processors. In our implemen-
tation, the islands are virtually positioned on an oriented ring, and migrations are only
allowed along that ring (see Fig. 4b). Every time a new generation is computed, a copy
of the best individual (that with the greatest 9tness value) ever met by each island is
sent to the next island on the ring. Each island thus receives a new individual that
replaces one of its individuals selected randomly. This topology was chosen so as to
minimize the amount of migrations, and thus to minimize the communication load due
to migrations between remote islands (see Fig. 4c).

6. Analysis of the results

6.1. Quality

For our tests, a rural and an urban real-life case are considered. First, a set of 150 po-
tential sites is considered in the French eastern hilly region ‘Les Vosges’. Second, a
set of 99 potential sites is considered in a district of the Swiss city of Geneva. Fig. 5
show the total coverage that would be obtained in both cases if all the potential sites
are selected to install BTSs.
GREEDY gives quite good results in the two cases and does not need to be tuned.

The parameters of the WEIGHTED SETS algorithm are set such that �=1:45; �=2 and
cmin = 15. The genetic algorithm runs with 160 individuals that evolve during 320 gen-
erations. Experience shows that the probabilities of mutation and crossover give better
results when they are high (typically pm ; pc ∈ [0:6; 0:9]). The island-based algorithm
distributes the 160 individuals on 40 islands.
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Fig. 5. Served areas computed on the French region ‘Les Vosges’ with 150 BTSs (a), and in a district of
the city of Geneva with 99 BTSs (b). White zones represent areas that are not served. Black zones are the
served once. Dark gray zones are served twice, and light gray zones are served three times or more. The
underlying terrain is not represented on these pictures.

Fig. 6. Results obtained with an initial set of 150 BTSs in the French region ‘Les Vosges’, taken as an input
by our di.erent algorithms. The target service ratio is 90%. The greedy-like algorithm returns a solution
with 58 BTSs (a). The Darwinism algorithm returns a solution with 82 BTSs (b). The genetic algorithm
returns a solution with 70 BTSs (c), and the island-based genetic algorithm returns a solution with 57 BTSs
(d). The meaning of the gray scale is the same as that of Fig. 5.

Figs. 6 and 7 show examples of solutions that are found by our algorithms. It can be
noticed that the number of locations that are covered more than once are very small.
This side e.ect is due to the fact that the algorithms tend to minimize the overlaps
between cells.
Fig. 8 shows the characteristics of solutions that are obtained by our di.erent

programs. Before comparing the quality of the solutions, we 9rst compute a set of
randomized solutions to serve as a basis for comparison. The di.erent solutions ob-
tained by the island-based genetic algorithm are due to several runs with di.erent
random seeds. Since at each step of GREEDY, a partial solution exists, the evolution of
the service ratio can be observed for any number of BTSs selected.
The results of the island-based genetic algorithm and of GREEDY are of the same

quality in average. However, we do not know how far these results are from the
optimal solution. Experience shows that when an optimal solution is known, it can
be found by the island-based genetic algorithm whereas GREEDY can fall in bad, yet
attractive local optima.
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Fig. 7. Results obtained with an initial set of 99 BTSs in a district of the city of Geneva, taken as an input
by our di.erent algorithms. The target service ratio is 90%. The greedy-like algorithm returns a solution
with 24 BTSs (a). The Darwinism algorithm returns a solution with 38 BTSs (b). The genetic algorithm
returns a solution with 30 BTSs (c), and the island-based genetic algorithm returns a solution with 22 BTSs
(d). The meaning of the gray scale is the same as that of Fig. 5.

Fig. 8. Service ratio against the number of BTSs selected by the island-based genetic algorithm (IGA), by
GREEDY, and at random. The input data are the 150 BTS set of ‘Les Vosges’ and the 99 BTS set of the
Geneva district introduced above.

So far, the WEIGHTED SETS algorithm shows rather poor quality results. Its solutions
are only slightly better than the best of those generated randomly. The program must
indeed be improved and 9ne tuned. Beside it should be tested on data sets larger
than those shown in this paper (thousand of BTSs). Actually, since this algorithm is
based on probabilistic rules, hundreds of BTSs may not be suTcient to let it work
properly. Another clue for explaining these poor quality results is the very poor per-
formance of the EPSILON NET algorithm introduced in this paper which is the core of
the WEIGHTED SETS algorithm. A better approach using a randomized greedy-like or
a weighted greedy-like algorithm is being investigated and seems to show results of
better quality.

6.2. Execution times

GREEDY shows the best ratio quality=time. However slightly better solutions can be
found by the island-based genetic algorithm (Table 1).
The number of operations achieved during the selection step of the genetic algorithm

is proportional to the square of the number of individuals per island. Actually, when
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Table 1
Execution times of di.erent algorithms applied on an initial set of 150 BTSs in the French region ‘Les
Vosges’, and on a set of 99 BTSs in a district of Geneva

Algorithm Execution time

Les Vosges Geneva

Greedy algorithm 3.6 s 0.6 s
Darwinism algorithm ≈ 2 min ≈ 2 min
Genetic algorithm (sequential) 24 min 16 min 19 s
Island-based genetic algorithm 4 min 30 s 3 min 31 s
(40 islands in sequential)
Island-based genetic algorithm 12 s 10 s
(40 islands on 40 workstations in parallel)

the number of islands is doubled, the number of individuals is divided by 2 on each
island and the computation load of the selection step is divided by 22 = 4. This ex-
plains why the execution using 40 islands is much quicker than that evolving a single
island.
When running the island-based genetic algorithm in parallel, a speedup of up to 7.8

was observed on 10 Sparc-4 workstations (that is, the same execution of the program
runs 7.8 times quicker on 10 machines than on a single one). The resulting eTciency
of 78% is considered as very good since communications between remote processors
are usually much time consuming in parallel programs. However, this eTciency falls
down to 37% in 86 workstations. For this latter result, 320 individuals were distributed
in 160 islands.

7. Conclusion and future works

In this paper, we show three very di.erent approaches to solve the minimum set
cover problem and the minimum hitting set problem. A mobile radio network planning
project that deals with this problem is used to test these three algorithms. The results
obtained with a classical greedy-like algorithm and an island-based genetic algorithm
are satisfying. Moreover the computation time needed by the genetic algorithm, that
gives the best results, can be decreased by running a parallel version of the program.
The original Darwinism WEIGHTED SETS algorithm must still be improved and tested,
but it shows new perspectives for the �-net theory.
The resulting C++ package currently weighs about 50; 000 code lines and its object-

oriented conception allows to easily implement other algorithms such as Evolution
Strategy, ant systems and tabu search. The implementation of a hybrid method that
combines di.erent algorithms is already in progress.
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