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ABSTRACT

A set of planar objects is said to be of type m if the convex hull of any two objects
has its size bounded by 2m. In this paper, we present an algorithm based on the
marriage-before-conquest paradigm to compute the convex hull of a set of n planar
convex objects of fixed type m. The algorithm is output-sensitive, i.e. its time complexity
depends on the size h of the computed convex hull. The main ingredient of this algorithm
is a linear method to find a bridge, i.e. a facet of the convex hull intersected by a given
line. We obtain an O(nB(h,m)logh)-time convex hull algorithm for planar objects.
Here B(h,2) = O(1) and B(h,m) is an extremely slowly growing function. As a direct
consequence, we can compute in optimal ©(n log h) time the convex hull of disks, convex
homothets, non-overlapping objects. The method described in this paper also applies to
compute lower envelopes of functions. In particular, we obtain an optimal ©(n log h)-time
algorithm to compute the upper envelope of line segments.

Keywords: Computational geometry, Convex hull, Upper Envelope, Output-sensitive
algorithms, Marriage before conquest.

1. Introduction

Convex hull has been of main interest for years in computational geometry.
Many articles have considered the case of points where general paradigms have been
used or purposely developed. Worst-case optimal space and time algorithms have
been established for sets of points in dimension d*>2-3. However, the convex hull of n
points in general position in a d-dimensional space ranges from the d-simplex with



29+1 faces to maximal polytopes of size O(nl2)) (see Ref.4,5). We are interested in
designing algorithms whose time complexity depends on both the input and output
sizes: the so-called output-sensitive algorithms.

Optimal output-sensitive algorithms for points are known only in dimensions
2 and 3 by the time being. D.G. Kirkpatrick and R. Seidel®” gave the first op-
timal output-sensitive algorithm in dimension 2. Their algorithm is based on a
new paradigm: marriage-before-conquest. H. Edelsbrunner and W. Shi® gave an
O(nlog? h)-time algorithm to compute the h facets of the convex hull of n points
of E3 using the same paradigm. K.L. Clarkson and P.W. Shor? described an out-
put-sensitive randomized algorithm for computing the convex hull of a set of points
in dimension 3. The expected complexity of their algorithm is optimal. Their algo-
rithm uses as a basic primitive the deterministic algorithm of D.G. Kirkpatrick and
R. Seidel and was derandomized later on by B. Chazelle and J. Matougek!°.

In higher dimensions (d > 4), for a long time the best known solution was the
algorithm of R. Seidel'! which after an O(n?)-time preprocessing step , finds the
facets of a convex hull in a shelling order at a logarithmic cost per facet. The
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preprocessing step was reduced later'?!3 on to O <n Lg1+1 > for any € > 0.

Recently, T. Chan et al.'* have investigated the case of points in four dimensions,
achieving an O((n + h)log® h)-time algorithm for computing the convex hull of a
set of n points where h denotes the output-size. In higher dimensions, T. Chan'®
realized many improvements on the convex hull computations and related problems,
combining the gift-wrapping method of D.R. Chand and S.S. Kapur'® and G.F.
Swart!” with recent results on data structures for ray shooting queries in polytopes
(developed by P.K. Agarwal et J. MatouSek'® and refined by J. Matousek and O.
Schwarzkopf!?).

Computing the convex hull of a set of curved objects has been much less investi-
gated. Computing the convex hull of a single planar object bounded by curves has
been carefully studied2?-2!:22 and several authors have generalized linear-time algo-
rithms for computing the convex hull of a simple planar polygon?*:24:25:26 Tn the
case of a family of n planar disks, optimal ©(n logn)-time convex hull algorithms
have been designed?”28.

We consider the following problem: given a collection O = {Oy,...,0,} of n
convex objects, compute in an output-sensitive manner the convex hull CH(O), i.e.
the smallest convex object containing O. In the general case, the usual way to
compute the convex hull of O is to compute the lower and the upper envelopes
of O and to consider the unique object bounded by these envelopes. Then, one
can apply to this single planar object one of the convex hull algorithms mentioned
above. A classical output-sensitive algorithm to compute the convex hull CH(O)
is Jarvis’s march?® which runs in O(nh) where h denotes the output-size. In this
paper, we generalize the marriage-before-conquest approach of R. Seidel and D.G
Kirkpatrick” in the case of planar objects.

Independently, T. Chan'® gave a simple algorithm for computing the convex hull
of a set of planar points. His algorithm can be adapted to handle the case of convex
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Figure 1: A convex hull of disks (m = 2).

objects (although this is not described in Ref.15) within the same time bounds.
Nevertheless, our algorithm is different and is interesting in its own right. It relies
on an O(n log h+06h)-time algorithm to compute the convex hull of n objects of fixed
type m such that any object can be colored with a value in {1, ..., 6} and objects of
a same color do not intersect pairwise®, where h denotes the output-size. Thus, we
obtain immediately an optimal ©(nlogh) algorithm if we consider that the objects
satisfy the hard-sphere model®® or have only a few intersections (in that case, our
algorithm is simpler than T. Chan’s one!®). Moreover, we solve the problem of
computing in linear time a bridge, i.e. a facet of the convex hull intersecting a given
oriented line. In the general case, we first transform our original set of objects O
into another set 7 such that CH(O) = CH(7T) with the objects in 7 being colored
with at most 6 = [7] objects and apply our basic algorithm.

Computing the convex hull of general planar convex objects differs from the case
of points because the convex hull of two points p; and py is the straight segment
[p1p2] whereas the complexity of the convex hull of two planar convex objects O;
and O; depends on the nature of these objects. We call arc a maximal piece of the
boundary of CH(O) that is included in the boundary 90; of an object O; of O.
The boundary of CH(O) is an alternating sequence of arcs and bitangent segments
(Figure 1). In the following, the arcs of CH(O) and its bitangent segments are called
facets. In this paper, we shall consider sets of convex objects with the property
that the convex hull of any two objects has bounded complexity (if the objects
are non-convex and have fixed descriptive complexity, we can first compute their

“In particular, if any object intersect at most v others then § < v + 1.



convex hulls in linear time). More precisely, a set of objects O is said to be of type
m if the convex hull of any two objects of O has at most m arcs (or 2m facets).
Let |CH(O)| denote the size of the convex hull CH(O), i.e. the number of facets
(convex arcs and bitangent segments) of its boundary dCH(O). Then, O is of type
m if Vi, j € [1,n], |CH(O;,0;)] < 2m. For example, points have type 1, disks,
convex homothets and non-overlapping objects have type 2, ellipsis have type 4,
etc. Note that if O is of type m then the boundaries of any two convex objects of
O cannot intersect in more than m points. Moreover, if ¢ denotes the maximum
number of intersection points between the boundaries of two distinct convex objects
of O, then m = max{2, q}. Moreover, if the objects are bounded by closed convex
curves then m is even.

Throughout this paper, we suppose that the type of set O is fixed. Moreover,
each object in O is assumed to have a bounded descriptive size (for instance, the
boundary of each object is a curve of bounded degree) : in particular, this means
that we can find in constant time the two supporting lines of an object with a given
slope. Furthermore, we assume that the convex hull of two objects in O can be
computed in constant time, where the constant depends on the type m.

This paper is organized as follows:

In section 2, we recall the complexity of the convex hull of n objects of type m.

In section 3, we first extend to the case of a set of convex objects of type m, the
algorithm of D.G. Kirkpatrick and R. Seidel®” to compute a bridge, i.e. the facet
of the convex hull intersecting a given oriented line (subsection 3.1). Our algorithm
is based on the searching-and-pruning paradigm and achieve an optimal ©(n) time
complexity to compute a bridge of a set of n convex objects of type m. Then, we
present the scheme of the marriage-before-conquest approach (subsection 3.2). This
scheme amounts to computing a bridge at a given oriented line, uses this bridge
to filter the objects and to divide the problem into two independent sub-problems
which are recursively solved. Finally, we refine the marriage-before-conquest algo-
rithm in the case of a set partitionned into k subsets of non-overlapping objects,
i.e. aset O = UY_ | P; where each P;, i € [L,k], is a collection of non-overlapping
objects (subsection 3.3). The time complexity of the algorithm is O(nlogh + hk).
This algorithm is used as a basic primitive in the final algorithm. We also derive
an O(nlogh + 6h)-time algorithm to compute the convex hull of n objects of fixed
type m where h denotes the output-size and é is the maximal number of objects
that an object can intersect.

In section 4, we describe the algorithm in the general case. We design an
O(nB(h,m)log h)-time convex hull algorithm where n is the number of objects,
h denotes the output-size and 3(h,m) is a very slowly growing function related to
the maximum length A(n, m) of a (n, m)-Davenport-Schinzel sequence3!3233, More
precisely, 3(h,2) = O(1) and S(h,m) = O(2°")™) if m > 2, where ¢,, is an integer
depending on m and «f(-) is the functional inverse of Ackermann’s function. The
algorithm is close to optimal with respect to both the input and output sizes since
Q(nlogh) is a lower bound”.
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Figure 2: Defining O; " and O;™.

In section 5, we adapt the method for computing upper envelopes of functions
intersecting pairwise in at most m points and obtain an O(nS(h, m + 2)log h)-time
algorithm. We improve slightly the algorithm in case of k-intersecting generalized
segments, i.e. partially defined functions that intersect pairwise in at most k points.
In that case, we obtain an O(ngB(h, k + 1) logh)-time algorithm which is ©(nlogh)
for line segments.

Finally, in section 6, we conclude and give several guidelines for future research.

2. Complexity of the Convex Hull of Convex Objects of Type m

In this section, we first examine the complexity of the convex hull CH(O) where
O is a set of planar convex objects of type m.

Let us consider p™ the point with coordinates (0,+4o00) (resp. p~ the point
with coordinates (0, —00)). Let us call upper convex hull (respectively lower convez
hull) of O the convex hull CH'(O) = CH(O,p~) (resp. CH (O) = CH(O,pT)).
We denote by OF (resp. O;) the object CH'(O;,p~) (resp. CH ™ (O;,p")) (see
Figure 2). Let Ot = {O]0; € O} and O~ = {O; |0; € O}. Then, CH"(0) =
CH(OT),CH™(O) =CH(O™) and CH(O) = CH(OT)NCH(O™).

We bound the complexity of the convex hull of convex objects of type m as
follows:

Theorem 1 In the worst-case, the complexity of the convex hull of n planar convex
objects of type m is bounded by 4\(n,m) where A(n,m) is the mazimum length of
an (n,m)-Davenport-Schinzel sequence3t32:33,

Proof. Since the boundaries 9CH(OT) and dCH(O™) of respectively CH(OT)
and CH(O™) coincides at their extremities, the size [CH(O)| of the convex hull is at
most |CH(OT)| + |CH(O™)|. We therefore focus on the upper bound of [CH(OT)].
Since the convex hull CH(O™) is an alternating sequence of bitangent segments and
arcs, we count the maximal number of arcs that can appear on the boundary of
CH(OT), i.e. ICH(OT).

To each object O} of OF we associate its supporting function f;(-) defined as
follows: f;(#) is defined over [0, 7] as the y-coordinate of the intersection point p;(8)
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Figure 3: Duality between the boundary of the upper convex hull 8C’H+((’)) and
the upper envelope Er of F.

Table 1: Lower and upper bounds of A(n,m). a(n) is the functional inverse of
Ackermann’s function.

m\/\(n, m) | Lower Bound 2 Upper Bound O

1 n -

2 2n —1 2n —1

3 Qn x a(n)) O(n x a(n))

4 Q(n x 2¢m) O(n x 22()
m=2s+1 | Qn x 20" | O(n x a(n)O(a(n)‘“l))
m=2s+2| Qn x 200 O(n x 20(a(m)))

of the y-axis A with the supporting line of O] with slope @ (see Figure 3). We get a
collection F = {f;|1 <i < n} of n functions that are totally defined over the range
[0,7]. As it is well known from duality, the upper convex hull CH(O") is isomorph
to the upper envelope Ex of F, i.e. the pointwise maximum of the f;’s. An arc of
Ez corresponds to an arc of CH(OT), a vertex of Ex corresponds to a bitangent
segment of ICH(OT).

Since O1 is of type m, two supporting functions f; and f; intersect in at most
m points.

Therefore, the number of arcs of CH(O™) is bounded by the maximal length
A(n,m) of an (n,m)-Davenport-Schinzel sequence3!:32:33,
hull is an alternating sequence of arcs and bitangent segments, we get |CH(O1)| <
2X(n,m). It follows that |CH(O)| < 4A(n,m). O

Computing upper envelopes of real functions (defined over R) that can mutually
intersect in at most ¢ points is a problem which has been extensively studied3433-36,
A divide-and-conquer approach yields an O(A(n, ¢) log n)-time complexity algorithm.

Since the upper convex



Therefore, one can compute the upper envelope of the ‘dual’ functions f;’s defined
by objects in O% in time O(A(n,m)logn) if set OF is of type m. Alternatively,
the convex hull CH"(©) can also be computed using the randomized incremen-
tal construction of Clarkson®” and Clarkson and Shor®® in expected running time

O(A(n,m)logn).

3. Computing the Convex Hull of Colored Families of Convex Objects

In this section, we first show in subsection 3.1 how to compute in linear time a
bridge, i.e. a facet of the convex hull intersected by a given ray. Then, we present in
subsection 3.2 the marriage-before-conquest paradigm applied to the case of objects.
Finally, we refine the algorithm in subsection 3.3 in the case of colored families of
convex objects, i.e. families that can be partitionned into monochromatic subsets
of pairwise non-intersecting objects.

3.1. Bridge of a Conver Hull

3.1.1. Definition and notations

The bridge of O at A is the unique facet of CH™ (0) that is intersected by A.
The bridge at A is either an arc or a bitangent segment of CH(O). This section is
devoted to the computation of the bridge at an oriented line A of a set of planar
convex objects of fixed type m. The bridge facet is easily determined if one knows
the line which supports CH(O) at the point A N ICH(O) where A intersects the
boundary of CH(O). Indeed, if this line is a supporting line for at least two objects
in O then the bridge is a bitangent segment whereas if this line is a supporting line
of a single object O; € O then the bridge is an arc of CH(O) included in JO;. In
both cases, the two endpoints of the bridge can be found in linear time once this
supporting line is known. Thus, we focus on the determination of the supporting
line of CH(O) at point A N ACH(O). Hereafter, this line is called the supporting
line of the bridge at A.

Computing the supporting line of the bridge at A of n convex objects is a
generalized linear program?®®-4041:42 and can therefore be computed by a randomized
algorithm in expected O(n) time. Moreover, we can use the derandomized algorithm
of B. Chazelle and J. Matousek*? in order to obtain a linear deterministic algorithm.
Hereafter we give a more direct algorithm to compute in linear time the bridge at A.
D.G. Kirkpatrick and R. Seidel” gave a deterministic optimal ©(n) algorithm that
computes a bridge for a set of n points using a searching-and-pruning procedure.
We extend this algorithm to convex objects of fixed type m.

In order to follow the steps of this searching-and-pruning method, we first extend
the main theorem of D.G. Kirkpatrick and R. Seidel”’s algorithm for computing the
bridge of points to the case of convex objects that can be separated by a line parallel
to A. Then, we introduce the vertical decomposition in order to obtain convenient
sets of convex objects. We finally give the overall algorithm and analyze its time
complexity.



3.1.2. The case of convex objects

Without loss of generality, consider that the direction of A is the direction of

the y-axis, called the wvertical axis. We denote by x(p) the abscissa of point p.
Kirkpatrick and Seidel proved the following lemma for a set O of points:
Lemma 2 (3.2, pp. 291 Ref.7) Letp,q be a pair of points of O with x(p) < z(q),
let s, be the slope of the supporting line of the bridge of O at A and let s be the
slope of the straight line through p and q. If s > s, then p cannot be a point of the
bridge of CH(O) at A. If s < s, then q cannot be a point of the bridge at A.

Two objects Oy and O- are said to be x-separated if they can be separated by a
line parallel to A. Note that z-separated objects can be ordered along the z-axis.
In the following, we note x(O) the z-range of an object O, i.e. the projection of O
onto the z-axis. Let (O1,02) be a pair of z-separated objects. If O; is to the left
of an oriented vertical line separating O; and Oy then we note 2(01) < 2(0O2) and
O (resp. Os) is called the left (resp. right) object of the pair (O1,O3). An object
O € O is said to participate to the bridge at A if the supporting line of CH™ (0) at
ANACHT(O) is a supporting line of object O. We extend lemma 2 to the case of
z-separated objects. Observe that if O; and O are a pair of z-separated object, the
boundary of the upper convex hull CH*(O;,O,) has a unique bitangent segment.
Lemma 3 Let (O1,03) be a pair of x-separated objects with x(O1) < z(02), let
s be the slope of the unique bitangent segment of OCHT (01, 02) and let s, be the
slope of the bridge of O at A. If s > sy, then the left object Oy of the pair cannot
participate to the bridge at A. If s < s, then the right object O2 of the pair cannot
participate to the bridge at A.

Proof. We only give the proof in case of s > s, (the other case is obtained by
symmetric considerations). Let I be the intersection point between a separating
line A’ parallel to A and the affine hull L of the unique bitangent segment of
OCH"(01,05) (see Figure 4). Let s be the slope of L and define L' as the line
passing through I with slope s,. Let L1 (sp) be the tangent line to O; with slope s;.
Li(sp) and L' are parallel lines (and can therefore be ordered along A’). Because
of the convexity of Oy, if s > s, then y(L' N A") =y(LNA") > y(Li(sp) N A’) and
Li(sp) is below L'. But the contact point T>(s) = L N O is strictly above L’ if
s > sp. Therefore, point T»(s) is above Li(s,) so that O cannot participate to the
bridge at A O

3.1.3. Vertical decomposition

The vertical decomposition will give rise to a set of z-separated convex objects.

Let O = {04, ...,0,} be a set of n planar convex objects of type m and CH™ ()
its upper convex hull. We decompose this upper convex hull by striping CH'(0O).
To stripe CH'(0), we draw through each vertex of ICHT(O) a line parallel to A.
These parallel lines induce a decomposition of each object O; of O into sub-objects,
called tiny objects in the following (see Figure 5). We only keep the tiny objects
whose boundary participates to the boundary of the convex hull 0. Note that
each tiny object is defined from a single object and two vertical lines, and that two
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Figure 4: Discarding O; when s > s.

— Tiny objects of a cluster (O;, O;)
1 Tiny objects removed directly from the set of candidates

Figure 5: Vertical decomposition of a pair of convex objects of type 2.

tiny objects arising from this decomposition are z-separated.

3.1.4. Algorithm

Let L be the line which supports CH(©) at point A N ICH'(0O). Line L is
a supporting line for some of the objects in O. Our goal is to select from O the
objects that touch L.

We pair up the convex objects of O into pairs (O;,0;). For each pair (0O;, O;),
we first compute CH'(0O;,0;), the upper convex hull of O; and O; and apply the
vertical decomposition to CH*(O;,0;). We discard from this decomposition all the
tiny objects that do not have an arc of 3CH™'(0;, 0;) on their boundaries. Indeed,
as these tiny objects do not appear on the boundary of CH" (0;,0;), they also do
not appear on the boundary of CH(©) and therefore cannot participate to any
bridge of CH*(0O) (Figure 1).



We call cluster the set of remaining tiny objects of a pair. As each pair is of
type at most m since O is of type m, we can deduce that there are at most (m + 1)
convex tiny objects in a cluster. Then, we pair up all the tiny objects within a
cluster into at most LWTHJ tiny pairs. Note that we pair up only the tiny objects
within a cluster since, as they are x-separated, they have type 2 whereas two tiny
objects of different clusters have type m. In the following, we shall use lemma 3 to
reduce the number of tiny objects in the clusters. As the slope s; of the supporting
line of CH(O) at A NACHT(O) is of course unknown, the trick is to resolve tests
like s < sp, or s > s, using transitivity. A cluster is said to be reduced if it has only
one remaining tiny object. The algorithm consists in an initial step where we pair
up the objects in order to get non-reduced clusters and several rounds of selecting
and clustering where we eliminate, round after round, the tiny objects. We describe
the algorithm below:

Initial step. We pair up the objects and compute for each pair its vertical decom-
position. This step gives rise to clusters of tiny objects. If an object O; of
a pair (O;,0;) is included in Oj; then the cluster generated by this pair is
reduced. In that case, we discard O; and pair O; again until all clusters are
non-reduced.

Selecting and Clustering. A round:

e Selecting.

— Pair up the tiny objects inside each cluster.

— Compute the median s,, of the slopes of the bitangent segments of
pairs of tiny objects (use the median algorithm of
Blum et al.%%).

— Let O’ be the subset of objects which contribute to the current
collection of tiny objects. Then, find the supporting line L(s,,)
of CH™(O') with slope s,, and locate the contact points L(s,,) N
CHT(0O') with respect to A. To find the supporting line of CH™ (0O')
with a given slope s,,, we find the object(s) which maximize
max;—i |o/|{¥i — Sm¥i} where point (;,y;) is the contact point of
the supporting line of O; with slope s,,. In general, there is one or
two such objects and therefore one or two contact points but there
can be possibly more.

— Discard tiny objects:

x If there are contact points located in both sides of A then s, =
sy. The supporting line of CH(O) at A N ACH(O) is fully
determined by a tiny pair whose bitangent segment has slope
Sm-

x If all the contact points are located at the left side of A then
Sm > Sp. We consider all tiny pairs with slope s > s, and
discard the left tiny object ¢; of these pairs.
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x If all the contact points are located at the right side of A then
Sm < sp. We consider all tiny pairs with slope s < s, and
discard the right tiny object t5 of these pairs.

e Clustering. This stage is required in order to obtain a set of non-reduced
clusters for the next round. For each reduced cluster, we consider the
original object O € O which gave rise to the single tiny object of this
cluster. We pair up these objects and compute for each pair its vertical
decomposition. This step gives rise to new clusters. If an object O; of
a pair (0;, 0;) is included in O; then the cluster generated by this pair
is reduced. In that case, we discard O; and pair O; again until all clus-
ters are non-reduced. In the next round, we consider these new clusters
together with the non-reduced clusters remaining from the last selecting
step.

The algorithm halts whenever it finds a tiny pair whose slope equals the slope
sp of the supporting line of the bridge at A or if it remains only one tiny object.
In the former case, the bridge is a bitangent segment and we find its two endpoints
in linear time. In the latter case, there are two subcases: either the remaining tiny
object does not intersect A and CH(O) N A = @ or it defines the object whose
boundary contains the bridge arc. In the latter subcase, the endpoints of the arc
can be found in linear time.

3.1.5. Complexity analysis

Theorem 4 The above algorithm computes the bridge of a set of n planar convex
objects of fized type m in optimal ©(n) time and storage.

Proof. Once we know the supporting line of the bridge at A, we can determine,
in linear time, the nature of the bridge (arc or segment) and compute its two
endpoints in linear time for a fixed type m. We therefore focus on the analysis of
the searching-and-pruning algorithm.

Let [ and & be respectively the number of tiny objects and the number of clusters
(they are all non-reduced) present at the beginning of some round of the selecting
and clustering steps. Then, we denote by ¢(I, k) the cost of the algorithm from that
stage. Let I’ and k' be respectively the number of tiny objects and the number of
non-reduced clusters at the end of that round, i.e. after the clustering step. We
have the following recursive equation:

~[o(1) ifk<l1
c(l, k) = { al + Bk — k'Y +c(l',k') otherwise, @)

where « and 3 = 3,, are some constants (3 depending on m).

Let r denote the number of clusters reduced during the selecting phase. Since
we pair up the r reduced clusters to create new non-reduced clusters, we have
k' <k —r+[5]. In the second part of equation (1), ol is the cost of the selecting
phase, 35 < B(k — k') the cost of the clustering phase of the round and ¢(I', k') the
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total cost of the remaining rounds. Each vertical decomposition of the convex hull
of two objects costs 3,, = 5 if type m is fixed.

If £ = 1 there is only one cluster of tiny objects. We can compute the convex
hull of the at most two objects which give rise to the set of its tiny objects in time
O(1) = v, = v if type m is fixed.

Let S (|S1] = 1}) be the set of remaining tiny objects after the selecting phase
of the current round and Sy (|S2| = 1}) the set of tiny objects created during the
clustering phase. Let &' (|S’| = I'|) be the set of tiny objects at the beginning of
the next round, i.e. &' C §; US,. Clearly, we have I’ <] + 1.

We prove that [{ < 2I:

Assume that among the k clusters present at the beginning of the current round,
k, clusters have an odd number of tiny objects (say the first k, clusters) and thus
remain with an unpaired tiny object after the pairing of tiny objects while the
(k — k,) other clusters have all their tiny objects paired. Finally, denote by a; the
number of pairs of tiny objects in the i-th cluster. We have the following equation:

ko k k
1= Qai+1)+ Y 2ai=()_2a)+k (2)
i=1 i=ko+1 i=1

The selecting process removes a tiny object from half of the tiny pairs, so that
I} <1—-1%F  a;. Using equation (2), we obtain [} < 31+ k. As the number of
tiny objects [ is at least 2k + k, and k, ranges over [0, k], we have [ > 3k,. Thus,
<2

Now, consider the number of created tiny objects during the clustering step.
Clearly, Iy < (k—k')(m+1). I is therefore upper-bounded by 21+ (k —k')(m + 1).

Then, it follows by induction on vector (k,l) ordered lexicographically that
c(l,k) <6l + (B +6(m+ 1))k +~ for any § > 6a.

Initially, I < [#](m + 1) and k < [%] so that the complexity of all the rounds
of the selecting and clustering step is upper bounded by O(n) for any fixed type m.

The cost of the initial step is also O(n). Thus we obtain an ©(n)-time algorithm
to compute the bridge O

3.2. Marriage-Before-Conquest Algorithm

In this section, we present the marriage-before-conquest strategy to compute
the convex hull CH(O) of a set of n convex objects O. We consider w.l.o.g. the
computation of the upper convex hull since the boundary of CH(O) is obtained in
O(1) time from the boundaries of CH*(O) and CH™(O). Each object in O has
two supporting lines parallel to the y-axis, called walls. Fach wall is oriented as
the y-axis. Let W be the set of walls and denote by |W| = w = 2n its cardinality.
Let R be a range, i.e. an interval on the z-axis. We define a slab as the portion
of the euclidean plane E? between two lines parallel to A. The upper convex hull
CH"(O) can be described as an z-ordered sequence of facets. The following algo-
rithm MarriageBeforeConquest(W, O, R) computes a subsequence MBC(W, O, R)
of the facets of CH*(0) included in the slab B =R x (—o0, +00).
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Termination. If w =0 then MBC(W,O,R) = 0. Return MBC(W,O,R).

Divide. Find the median W, of the walls W. Split W into two balanced subsets
W, ={W e W|jz(W) < x(W,,)} and W) = {W € W|z(W) > z(W,,)}.

Merge. Compute the bridge b at the median oriented line W,,.

Filter. Let W; (respectively W») be the subset of the walls of Wi (resp. Wj)
that do not intersect b. Let w; and wy denote respectively the cardinalities
of sets Wi and W». Let 27 and x, be respectively the abscissa of the right
and left endpoints of b. Let Ry = RN (—o0,z, ), Bi = Ry x (—00,+00),
Ro = RN (x;,+00) and By = Ry x (—00, +00). Let Oy (resp. O2) be the set
of objects in O that intersect slab By (resp. slab By). Compute Wy, W, R,
RQ, Bl, BQ, 01 and OQ. Let ny = |01| and Ny = |02|

Conquest. Call recursively MarriageBeforeConquest(W,, 01, R1) and
MarriageBeforeConquest(Ws, O3, R2) and return the ordered sequence of facets
MBC(Wh 017 R1) U {b} U MBC(WQ, OQ,RQ).

We denote by ¢(n,w, h) the complexity of the algorithm MarriageBeforeConquest
running inside range R if there are w walls in B, n objects intersecting B and h
computed facets of CH'(O) in B. Each computed facet is intersected by at least
one wall of W, so that h < |[W|. We obtain the following equation:

O(n) ifh<1
c(ny,wy, hi) + ¢(ng, wa, hy) + O(n) otherwise

e(nyw,h) = { (3)

The algorithm ensures that w; + we < w and wy,wy; < [%] but it does not
control my nor ny (ny,n2 < n) so that its worst-case running time is O(nh). At
the end, we are left with an z-ordered alternating sequence of computed facets
and empty slabs (i.e. slabs that do not contain any wall of WW). We can find the
whole upper convex hull using Jarvis’s algorithm inside each empty terminal slab.
In the following section, we study a special case where we can bound the number of
objects that participate to the upper convex hull inside a slab (parameter n; and
ny of equation (3)). We will use this “special” case as a basic primitive in the final
algorithm.

3.8. The Case of a Non-Ouverlapping Partition

Let O be a set of n objects of fixed type m. If we know that a partition w*_ P;
of set O of fixed type m into k subsets such that each subset P;, for i € [1,k], is a
set of non-overlapping convex objects then we can derive an O(nlogh + hk)-time
complexity algorithm to find the convex hull of @. This result holds, for example
if O is a set of non-overlapping convex objects, since in that case k = 1 and m = 2.
Let B be a vertical slab where we want to compute the upper convex hull. Among
the objects of O intersecting B, we distinguish two mutually exclusive categories:

Category 1: The objects that have a wall inside 5.
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Category 2: The objects that intersect B but do not have a wall inside B: these
objects are called the spanning objects hereafter.

Algorithm MarriageBeforeConquest is slightly modified, taking into account these
two categories of objects inside each slab B (with associated range R), as follows:

e We bound the number of objects to consider in slab B by selecting among the
spanning objects, at most one object of each family P;. Indeed, R is included
in the z-range of each spanning object. Thus, the spanning objects which
belong to a given family P; can be ordered along any vertical line included in
B and only the topmost object can contribute to the upper convex hull in 5.

o We stop the recursive calls as soon as w < k and run Jarvis’s march in each
resulting slab on the set of objects Op relevant for this slab. We have |Op| <
2k since there are at most k& spanning objects and k objects of category 1.
This Jarvis’s march is initialized from the computed facet which intersects
the rightmost vertical line limiting B and stopped when the leftmost vertical
line limiting B is reached.

Theorem 5 Let O be a set of n planar convex objects of fixed type m partitionned
into k subsets of non-overlapping convex objects, then the convex hull of O can be
computed in O(nlogh + hk) time, where h is the size of the conver hull of O.

Proof. Let ¢(n,w,h) denote the complexity of the above algorithm. We have:

_ [ O(nk) if w <k

c(n,w,h) = { c(ny,wy, hy) + c(na, wa, h2) + O(n) otherwise )

with wy +ws < w, wy,ws < [F], n1 < wy +k and ny < ws + k since we keep, in
each sub-slab By, By, at most k£ spanning objects and there are at most w; objects
(resp. wq objects) that have a wall in slab By (resp. Ba).

We consider the recursive time complexity equation (4) and link parameters n
and w using the inequality: n < w+k; thus ¢(n,w,h) < c(w+k,w, h) and from now
on, we simply note ¢(w, h) for ¢(w + k,w, h). Bounding n by w + k in equation (4),
we obtain:

h) = ahk fw<k 5
o(w, h) = c(wi, hi) + c(wa, he) + B(w + k) otherwise (5)

where a and (3 are some constants.

Note that w; <[], we < [§] and h = hy + hy + 1. We prove by induction on

w that c¢(w,h) < y(wlogh + kh) for a suitable constant ~:

o If w < k then ¢(w, h) = akh by equation (5). So that ¢(w, h) < vy(wlogh+kh)
if v>a.

e Suppose that c(w’, h) = y(w'log h + kh) for 0 < w' < w and consider c(w, h)
with w > k. Using equation (5), it follows that:

c(w, h) = y(wy loghy + khy + wy log hy + khs) + f(w + k)
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with w1, w2 < 5§ and hy + he + 1 = h. Note that log(h1hz) is maximized for
hl = hg = %, thus:

2

h
e(w, h) < (55 log — + kh) + B(w + k),

c(w,h) < y(wlogh + kh — w) + B(w + k).
But £k < w by hypothesis, so that

c(w,h) < y(wlogh + kh) + (28 — 7)w,
and c(w, h) < y(wlogh + kh) for suitable v > 24.

This proves that c(w,h) < y(wlogh + kh) for constant v = max{28, a}. Initially,
w = 2n (each of the n initial objects has two walls) so that the complexity of the
algorithm is O(nlogh + kh). O

As a direct consequence, we obtain a O(nlogh)-time algorithm for computing
the convex hull of non-overlapping convex objects. Note that our algorithm requires
to know the partition of O into subsets of non-overlapping objects. We can define
for a family of n objects its intersection graph G as follows: for each object O; € O
we create a node and two different nodes are linked iff their corresponding objects
intersect. If § is the maximum degree of the nodes of G, we know from the graph
theory that there exists a partition of O into p subsets of non-overlapping objects
such that p < 6 + 1. We can slightly modify our algorithm in order to take into
account the paramater 6 without knowing a partition into subsets of non-overlapping
objects: choose a vertical line inside the slab and select from the spanning objects
the object O that has the uppermost intersection point with that line. Then, we
discard all the spanning objects that do not intersect O (this means that we only
keep the spanning objects intersecting O). It is trivial to prove that all the spanning
objects that do not intersect O are below O and therefore cannot participate to the
upper convex hull. Thus, we obtain an O(nlogh + 6h)-time algorithm to compute
the upper convex hull of n objects of fixed type m where § is the maximal number of
intersection of any object with the others. For example, we can compute the convex
hull of n hard-disks®® in ©(nlogh) (a family of disks in the hard-sphere model has
the property that each disk intersects at most O(1) others, i.e. § = O(1)). We also
obtain an optimal @(n log h)-time algorithm if § < O( ;(11:817713 ).

Note that the above algorithm computes the upper convex hull inside each ter-
minal slab using Jarvis’s march. If we skip this last phase of the algorithm, we
are left with a subsequence of the facets of the convex hull. There is a terminal
slab intersecting at most 2k objects between each pair of consecutive facets in the
subsequence. Then, the algorithm is called PartiaMBC and its complexity is still
O(nlogh + kh) but h is, here, the number of computed bridges (and not the total
number of facets of the upper convex hull).
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4. The General Case

In this section, we first present a convex hull algorithm assuming we know a good
estimate h. of the output-size h. To obtain a good estimate of the output-size, we
have to compare the size h of the convex hull with some given value p; we show
in section 4.2 how to perform such comparisons. The final algorithm is given in
section 4.3.

4.1. Given an Estimate of the Output-Size

Let h. be an estimate of the output-size h = |[CH*(O)|. The algorithm includes
two steps: the first step computes from O a set 7 of objects partitionned into
non-overlapping subsets such that CH*(O) = CH"(T). Then, in a second step, we
apply the marriage-before-conquest algorithm of section 3.3 on 7. We describe the
algorithm below:

Grouping. Group the n objects into [;-] groups of size h.. For each group, we

compute the vertical decomposition of the convex hull of its objects. Thus, we
obtain from the groups a set 7 of O([7-]A(he,m)) tiny objects partitionned
into [ ;=1 subsets of at most A(h.,m) non-overlapping tiny objects.

Marriage-before-conquest. Let VW be the set of walls corresponding to the tiny
objects of 7. Let R be the z-range (—oo, +00).
Return MarriageBeforeConquest(W, 7, R) (see algorithm section 5).

Let us now analyze the complexity of the two steps:

Grouping. Computing the vertical decomposition of the upper convex hull of a
group of h. objects requires O(A\(h.,m)logh.) time: we first compute the up-
per envelope of the h. objects by a divide-and-conquer algorithm and then run
a walk-like convex hull algorithm on the resulting upper envelope®. The up-
per envelope has worst-case size A(he,m). Thus, the time required to compute
the vertical decomposition of a group is O(A(he,m)logh,). Since there are
[5-1 groups, the total time complexity of this first step is O(n A(he’m) log h.).

Marriage-before-conquest. We run the marriage-before-conquest algorithm of
section 3.3 onto the set of O(%:m)) tiny objects partitionned into [ ;-] sub-
sets of non- overlapping objects From the complexity analysis of section 3.3,
this step requires O(n he’m logh + "h) time.

The total  time complexity of the algorithm is  therefore
0 (nA(he’m) (log he +logh) + ) Thus, if he = h then the time required to com-

pute the convex hull CH™(0) is O(nw logh).

4.2. Comparing the Output-Size with a Given Value

In order to find a good estimate of h, we will need to determine if our current
estimate (say p) is good (this means that p roughly equals to h) or not, i.e. to
answer tests like p > h , p=~h or p < h.
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Lemma 6 There exists a deterministic algorithm that given an integer p, answers
whether h > p or not in O(n@ log p) time.

Proof. = We design an algorithm which does not differ too much from the
algorithm of section 4.1: the idea is to group the objects into [%] groups of p objects
and then run the marriage-before-conquest algorithm PartialMBC on the [2] subsets
of non-overlapping tiny objects resulting from the vertical decomposition of each
group. Finally, we bound the number of facets computed by Jarvis’s marches inside
the terminal slabs. More precisely, we run Jarvis’s march inside each “terminal”
slab (a slab with at most 2 walls) until we have computed a total of min{p, h}
facets. We describe the algorithm below:

Let a = 0 (a denotes the number of computed facets).

Grouping. Group the n objects into [2] groups of size p and compute the vertical

decompositions of their convex hull. We obtain a set 7 of O(W) tiny

objects partitionned into [Z] non-overlapping subsets.

Marriage-before-conquest. Apply algorithm PartiaMBC on the set 7 until each
slab has less than f%] walls, incrementing a each time we compute a bridge.
If a > p stop and return YES, i.e. h > p.

Jarvis’s march. Fill the terminal slabs by running Jarvis’s march inside each slab
on a set of O(Z) objects (at most [2] spanning objects and [Z] objects that
have a wall inside the slab), incrementing a and testing if a > p each time we
compute a new facet. If @ > p at some step then we stop the algorithm and

return YES, i.e. h > p.

Default case. At this stage, we have computed the whole upper convex hull and
a = h, the number of computed facets is less or equal to p. We return NO.

The overall cost of the grouping step is O(nM log p) as in section 4.1. The

P
cost of the marriage-before-conquest algorithm is bounded by O(n% log p) since
we stop the recursion process if the slab has less than [%] walls. Indeed, we split
into two balanced parts the walls of the tiny objects of 7 at each recursive call of
the procedure. So that dividing the number of walls inside each slab by a factor
A(p, m) amounts to computing at most A(p, m) bridge facets. Thus, the cost of run-
ning PartialMBC is bounded by O(n@ log A\(p,m)) —l—nk(pl;m) = O(n)‘(pl;m) log p)
since log A(p,m) = O(logp). Let c¢(n,p) denote the time complexity of this al-
gorithm. Then, c¢(n,p) = O(n@logp) + O(3a’) where o is the number of
computed facets during the Jarvis’s march (¢’ < a). Clearly, ' < p so that
c(n,p) = O(n@ log p). This proves the lemma. O

4.8. The Querall Algorithm

The scheme of the algorithm is to find a good estimate h. of h, that is an
estimate such that h < h. < h?, and to run the algorithm of section 4.1 with that
estimate. The final algorithm is described below:
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Initializing. Let i = 0 and p = 22’ = 2.

Estimating. While (p < h) do p < min{n,p?} (this means that ¢ < i + 1 and
p=2%)

Computing. Compute the upper convex hull using p = h, = 22’ (note that h% >
p>h).

Note that we use the algorithm of section 6.2 to perform tests like p < h in the
while-loop.
Let ¢(n, h) be the cost of the algorithm, we obtain:

[loglog h]

22' . .
c(n,h) =0(1)+ O Z n%? +0 (nw log he> .
i=0 €

Let B(p,m) be an upper bound of the ratio @ that satisfies 3(p%,m) =
O(B(p,m)) like B(p,m) < O(2*®)™) with ¢,, an integer depending on m (this
upper-bound is deduced from the maximal length of (n,s)-Davenport-Schinzel se-

quences, see Table 1). We bound ¢(n, h) as follows:

[loglog h]
c(n,h) <O [ nB(h,m) > 2" | +0 (np(h? m)logh’),

=0

c(n,h) = O(nB(h,m)logh).

This yields the desired upper-bound c¢(n,h) = O(nB(h,m)logh).

Theorem 7 There exists a deterministic algorithm that computes the upper convex
hull of n planar convexr objects of fized type m in time O(nB(h,m)logh) using
O(nB(h,m)) storage.

This bound is very close to optimal since Q(nlogh) is a lower bound”. In case
of convex objects of type 2 (like disks, convex homothets, non-overlapping objects,
etc.), the algorithm is truly optimal since @ = O(1) (see Ref.45). If m > 2 we do
not know if our algorithm is optimal. We cannot reach the Q(nlogh) lower bound
(proved in Ref.7) with this method. Indeed, when grouping the objects into groups
and computing their vertical decomposition, we create a set of tiny objects which
is slightly supra-linear with respect to the original set of objects. This remark gives
rise to the problem of the lower bound as soon as m > 2. Is Q(nw log h) a better
lower bound for the convex hull problem? Can we group the objects in a better
way so that the number of tiny objects obtained from the convex decomposition of
the groups is less than O(n%) for a p-grouping?

In the following section, we show how this method can be used to compute upper
envelopes of functions and line segments. In the latter case, we can improve the
grouping step of the inputs so that we achieve an optimal ©(n log h)-time algorithm
in the case of line segments.
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5. Computing Upper Envelopes

Let F = {f1,..., fu} be a collection of n mono-variate, possibly partially defined,
functions, all algebraic of some constant maximum degree. We denote by Er its
upper envelope, i.e. the pointwise maximum of the f;’s:

Er(z) = max {fi(z)},
i€{l,...,n}
where f;(z) is the value of the function f; at abscissa z or —oo if « does not belong
to the domain of definition of f;. Throughout this paper, we will use the term
function for the mathematical object itself or its graph. Thus, in term of graph,
the upper envelope of functions can be seen as the part of the graphs of the f;’s
visible from viewpoint (0,+00). If the functions are partially defined, then the
observer (which stands at point (0,4+00)) may see the point (0,—oc0), i.e. there
exists vertical rays emanating from (0, +00) that do not collide with the function
graphs. In order to unify the definition of the mathematical object upper envelope

in case of partially defined functions, we add an extra function f_..(-) such that
fooo(x) = —00,V 2 € R. Thus,

Er(r) = max {fi(z),f o(®)} = max {fi(z),—oo}.

ie{1,...,n} ie{l,...,n}

The upper envelope is a sequence of maximal visible portions of the original func-
tions. Hereafter, we call facet of the upper envelope each maximal visible portion
of the original functions. A facet is fully determined by the function whose graph
coincides with that facet, and its two endpoints. The size of the upper envelope Er
of F, denoted by |E#|, is the number of facets of the upper envelope.

Set F is said of type m if any two functions of F intersect in at most m points.
Line segments are of type 1, parabola are of type 2, ... Since the functions have a
bounded descriptive size (algebraic functions of fixed degree), F is of fixed type m.

We can use the theory of Davenport-Schinzel3!32:33:46 to bound the complexity
of the upper envelope Ex of 7. The maximal length A(n, m) of an (n, m)-Davenport-
Schinzel sequence is almost linear in n for fixed m3":32:33, It is well-known that the
size of the upper envelope of n functions totally defined over R (resp. partially
defined over R) is bounded by A(n,m + 1) (resp. A(n,m + 3)).

For example, line segments are partially defined functions intersecting pairwise
in at most one point. Thus, the size of the upper envelope of n line segments is
A(n,3) = O(na(n)). Here a(n) is the extremely slowly growing functional inverse of
Ackermann’s function%. This bound is tight: M. Sharir and A. Wiernik3® built a set
of n line segments such that the size of their upper envelope is Q(na(n)). However
for practical implementation, it is worth noting that a(n) < 4 for n < tower(65536)
where tower(i) is a tower of 2 of length 4, i.e. tower(l) = 2 and tower(i + 1) =
2t0wer(i)_

The methodology previously described for computing convex hulls can be applied
for computing upper envelopes. We briefly recall the main steps. Computing the
bridge at a given oriented line A, i.e. the facet of Er intersected by A, can be done
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Figure 6: Upper envelope of 200 line segments. Facets are shown in bold.
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almost trivially in linear time: first, we select the function which has the highest
intersection point with A. Let f be that function. Then, in a second step, we find
the two endpoints (to the left and right of A ) limiting the bridge facet. As type
m is fixed, we can compute the two endpoints in linear time. We can also design
a linear-time-per-facet algorithm (an analogous algorithm of Jarvis’s march). Then
we consider the case of a set of functions partitionned into k subsets of pairwise
nonintersecting subsets. We obtain a O(n log h+kh)-time upper envelope algorithm.

We define the vertical decomposition of a group of functions as the partially
defined functions induced by striping vertically the upper envelope. We follow the
same steps as those of the convex hull algorithm and obtain an O(nB(h, m)log h)-time
O(nB3(h,m))-storage algorithm with B(h,m) = O(2*(")™) where ¢,, = [2] if the
functions are partially defined and ¢,, = [5] —1 otherwise (see Table 1). Note that
the complexity of the upper envelope depends on both the number of intersection
points and if the functions are partially or totally defined.

Thus, for the case of line segments we obtain an O(na(h)log h)-time algorithm.
We show in the following section how we can reach the optimal bound Q(nlogh)
by adapting the technique due to J. Hershberger*”. The main idea is to group the
the line segments efficiently. A family of functions is said to be k-intersecting if
the functions are intersecting pairwise in at most k points. A set of k-intersecting
generalized segments is a family of partially defined functions that are k-intersecting.

5.1. An Improved Algorithm for k-Intersecting Segments

W.l.o.g. we consider the case of line segments. The generalization of the result
to k-intersecting generalized segments is straightforward. The main idea is to create
groups so that the size of the vertical decomposition of each group remains linear.
We first compute a lazy interval tree as follows: consider the 2n endpoints of the
line segments and compute by recursive application of the median algorithm** a
partition P = {Py, ..., P,} of the 2n endpoints so that each sheaf P; has size 27”
and the sheaves are z-ordered, i.e. z(P;) < z(P;) for all j > i. We consider the
following p — 1 reference abscissa and p z-ranges:

e For each sheaf P;, we associate the z-range X, of the points p; € P;. Note
that all the x-ranges of the sheaves are disjoint.

e Between two successive sheaves, we choose an abscissa a; so that X; < a; <
Xi+1, i.e an abscissa between two consecutive z-ranges of sheaves.

We build an interval tree Z7 as follows: each leaf of the interval tree corresponds
to the z-range of a sheaf and each internal node to an abscissa separating the
sheaves (see Figure 8). Then, we allocate the n line segments according to the
lowest common ancestor of their two endpoints. At this step, all the segments are
located into two kinds of sets:

e Those staying at a leaf of 77 . This means that the z-range of each of these
line segments is included in the z-range of the sheaf. We say that these line
segments are unclassified.

21



Figure 7: The upper envelope of 100 line segments. The upper left drawing depicts
the upper envelope of 100 line segments. Then from left to right, and top to bottom,
we first compute groups of size 10, 20, ..., 90 and apply the marriage-before-conquest
algorithm on the set of line segments resulting from the vertical decompositions of
their upper envelopes.
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e Those lying in an internal node of Z7 . This means that all the line segments,
whose lowest common ancestor of the abscissee of their endpoints is the ab-
scissa a;, cross the vertical line z = a;. Their upper envelope is linear in the
number of line segments. We say that these segments are classified.

Following the communication of J. Hershberger*’, we notice that the upper
envelope of the line segments allocated into a same internal level of Z7 is linear in
the number of line segments. Indeed, the upper envelope of the segments allocated to
a given internal node is linear (see Ref.47) because all these segments cross a vertical
line and the segments of two nodes of a same internal level are separated by a vertical
line by virtue of the interval tree. Let n; denote the number of line segments at level
i, 1 <14 < [log p]. By grouping the line segments of each internal level of the interval
tree into groups of size p and computing for each group the vertical decomposition
of their upper envelope, we obtain an O(% + log p)-coloration, i.e. a partition of the
original set of n line segments into ZP:OS’ Pl [2:] = O(% + log p) subsets of pairwise
non-intersecting line segments resulting from the vertical decomposition of their
upper envelope. We also color the unclassified line segments (those staying at a
leaf of the interval tree) as follows: to the i-th line segment attached to a given leaf
of the interval tree, we give it the color (¢,2). Here, 2 means the unclassified line
segments. Note that i < [2]. Moreover, two line segments with color (i,2) do not
intersect since they belong to two different sheaves and are therefore z-separated.

Thus, globally, after an O(n logp)-preprocessing time required for building the
lazy interval tree, we obtain a 0(27" + log p)-coloration of a new created set of O(n)
line segments which has the same upper envelope as @. We run the O(nlogh +
kh)-time algorithm upon this new set. Since k = 27”+logp, we obtain an O(nlog h+
%"h + hlogp) = O((n + h)log h)-time algorithm with linear storage.

For the case of k-intersecting generalized segments, we note that the complexity
of the upper envelope of the n; k-intersecting segments at the i-th level of the interval
tree is O(A(n;i, k +1))*7. Tt follows that the complexity of the upper envelopes (one
upper envelope per group) of the n k-intersecting segments is O(n3(h,k+1)). Thus,
we can compute the upper envelope of k-intersecting segments in time O((n3(h, k+
1) + h)log h). The space requirement has also been reduced to O(nf3(h,k + 1)). A
challenging problem is to design an algorithm that computes the upper envelope of n
functions intersecting pairwise in at most m points in less than O(A(n,m +1)logn)
operations. Probably, if a better result is found, it may yield straightforwardly to a
better output-sensitive algorithm since the crucial step of our method is to compute
partitionned sets.

As a final remark, to underline the power of the grouping scheme, we show how
in the case of line segments we can obtain again an O(n log h)-time algorithm using
ray shooting procedures. As before, we create [%] groups of size p, compute their
upper envelopes and preprocess these upper envelopes (which can be viewed as
simple polygons, each of them of size O(pa(p))) for ray shooting. For each group,
the time for computing its upper envelope and preprocess it for ray shooting is
O(plogp)*®4°. Thus, the total time for the preprocessing step is O(nlogp). The
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Figure 8: Building the lazy interval tree.

ray shooting query time of a group is O(logp). Then, the procedure walks from
x = —oo to ¢ = oo as follows: consider that the algorithm at some stage has
found a portion of the upper envelope (a line segment) and therefore knows (by the
rightmost endpoint e of that facet) which line segment s will support the following
portion of the upper envelope. Then, for each group (in fact each simple polygon),
we shoot a ray from the endpoint e following the direction of s. Finally, among the
% terminations, we choose the one that shorten the most the line segment s. The
cost of this algorithm is O(nlog p+ (3 logp+ %)h). If p = h then the algorithm has
time complexity O(nlogh). We use again the technic of approximation in order to
achieve that bound.

6. Concluding Remarks

We have applied the marriage-before-conquest paradigm to the computation of
the convex hull of n planar convex objects of fixed type m. We first described a
linear-time algorithm to compute the bridge of the convex hull at a given oriented
line. Then, we investigated the case where the family of objects consists of k sub-
sets of non-overlapping objects. For that case, we designed an O(nlogh + kh)-time
algorithm where h denotes the output-size. As a byproduct, we obtain an optimal
©(n log h)-time algorithm for computing the convex hull of a set of non-overlapping
objects. Moreover, if each object cannot intersect more than § others then we design
an O(nlogh + 6h)-time algorithm. Finally, we transformed the problem of comput-
ing the convex hull of O to computing the convex hull of a set 7 partitioned into
non-overlapping subsets such that CH(O) = CH(7). (We use nonoutput-sensitive
algorithms in order to get 7.)

The size of the partition of 7, i.e. the number of non-overlapping subsets, de-
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pends on the size of the output. Since we do not know the output-size, we iteratively
estimate it. We finally choose a good estimate to compute the convex hull of a set
of n planar convex objects of fixed type m in O(nB3(h, m)log h) time where 3(h, m)
is an extremely slowly growing function. We can follow the same scheme for com-
puting the upper envelope of possibly partially defined functions. In that case, the
bridge at a given oriented line is the maximal piece of the lower envelope intersected
by that line and can be computed trivially in linear time. Therefore, when com-
puting the convex hull of objects, one might first compute the dual functions and
apply the upper envelope algorithm. However, computing directly the convex hull
remains interesting in the case of k-colored partitions because, in that case, one
does not need to apply the grouping scheme.

All  these algorithms can be easily parallelized onto EREW PRAM
multi-computers, following the algorithm of S. AkI®®5!, D.G. Kirkpatrick and R.
Seidel” proved that Q(nlogh) is a lower bound for computing the convex hull of a
set of n points where h is the number of hull vertices. Can we improve that lower
bound in the case of convex objects of fixed type m? It would also be interesting
to find other applications of this method and to generalize it to higher dimensions.
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