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Abstract. This paper address the problem of online learning finite
statistical mixtures of exponential families. A short review of the
Expectation-Maximization (EM) algorithm and its online extensions is
done. From these extensions and the description of the k-Maximum Like-
lihood Estimator (k-MLE), three online extensions are proposed for this
latter. To illustrate them, we consider the case of mixtures of Wishart dis-
tributions by giving details and providing some experiments. Keywords:
Mixture Modeling, Online learning, k-MLE, Wishart distribution.

1 Introduction

Mixture models are a powerful and flexible tool to model an unknown smooth
probability density function as a weighted sum of parametric density functions
fj(x; θj):

f(x; θ) =

K∑
j=1

wjfj(x; θj), with wj > 0 and

K∑
j=1

wj = 1, (1)

where K is the number of components of the mixture. The maximum likelihood
principle is a popular approach to find the unknown parameters θ = {(wj , θj)}j
of f . Given χ = {xi}Ni=1 a set of N independent and identically distributed

observations, the maximum likelihood estimator θ̂(N) is defined as the maximizer
of the likelihood, or equivalently of the average log-likelihood:

l̄(θ;χ) = N−1
N∑
i=1

log

K∑
j=1

wjfj(xi; θj). (2)

For K > 1, the sum of terms appearing inside a logarithm makes this optimiza-
tion quite difficult.

The goal of this paper is to propose such a kind of estimator but for the online
setting, that is when observations xi are available one after another. This case
appears when dealing with data streams or when data sets are large enough not
to fit in memory. Ideally, online methods aim to get same convergence properties
as batch ones while having a single pass over the dataset. This topic receives
increasing attention due to the recent challenges associated to massive datasets.



The paper is organized as follows: Section 2 recalls the basics of Expectation-
Maximization (EM) algorithm and some of its online extensions. Section 3 de-
scribes the k-MLE technique which is derived from the formalism of EM. In the
same section, two online versions of k-MLE are proposed and detailed. Section
4 gives an example of the mixture of Wishart distributions and provides some
experiments before concluding in Section 5.

2 A short review of online mixture learning

Before reviewing some online methods, one has to recall the basics of mixture
modeling with the Expectation-Maximization (EM) algorithm [1] in the batch
setting.

2.1 EM for mixture learning

Let Zi be a categorical random variable over 1, ...,K whose parameters are {wj}j ,
that is, Zi ∼ CatK({wj}j). Also, assuming that Xi|Zi = j ∼ fj(·; θj), the
unconditional mixture distribution f in Eq. 1 is recovered by marginalizing their
joint distribution over Zi. Obviously, Zi is a latent (unobservable) variable so
that the realizations xi of Xi (resp. (xi, zi) of (Xi, Zi)) is often viewed as an
incomplete (resp. complete) data observation. For convenience, we consider in
the following that Zi is a random vector [Zi,1, Zi,2, . . . , Zi,k] where Zi,j = 1 iff.
Xi arises from the j-th component of the mixture and 0 otherwise3. Similarly to
Eq. 2, the average complete log-likelihood function can be written as:

l̄c(θ;χc) = N−1
N∑
i=1

log

K∏
j=1

(wjfj(xi; θj))
zi,j ,

= N−1
N∑
i=1

K∑
j=1

zi,j log(wjfj(xi; θj)), (3)

where χc = {(xi, zi)}Ni=1, is the set of complete data observations. Here comes
the EM algorithm which optimizes l̄(θ;χ) (proof in [1]) by repeating two steps
until convergence. For iteration t:

E-Step Compute Q(θ; θ̂(t), χ) = Eθ̂(t) [l̄c(θ;χc)|χ]. Since l̄c is linear in zi,j , this step
amounts to compute:

ẑ
(t)
i,j = Eθ̂(t) [Zi,j = 1|Xi = xi] =

ŵ
(t)
j fj(xi; θ̂

(t)
j )∑

j′ ŵ
(t)
j′ fj′(xi; θ̂

(t)
j′ )

. (4)

3 Thus, Zi is distributed according to the multinomial law MK(1, {wj}j).



M-Step Update mixture parameters by maximizingQ over θ (i.e., Eq. 3 where hidden

values zi,j are replaced by ẑ
(t)
i,j ).

ŵ
(t+1)
j =

∑N
i=1 ẑ

(t)
i,j

N
, θ̂

(t+1)
j = arg max

θj∈Θj

N∑
i=1

ẑ
(t)
i,j log (fj(xi; θj)) (5)

Remark that while ŵ
(t+1)
j is always known in closed-form whatever fj are,

θ̂
(t+1)
j are obtained by component-wise specific optimization involving all

observations.

More generally, the improvement of l̄(θ;χ) is guaranteed whatever the increase
of Q is in the M-Step. This leads to the Generalized EM algorithm (GEM) when
partial maximization is performed.

2.2 Online extensions

For the online setting, it is now more appropriate to denote θ̂(N) the current
parameter estimate instead of θ̂(t). In the literature, we mainly distinguish
two approaches according to whether the initial structure of EM (alternate
optimization) is kept or not.

The first online algorithm, due to Titterington [2], corresponds to the direct

optimization of Q(θ; θ̂(N), χ) using a second-order stochastic gradient ascent:

θ̂(N+1) = θ̂(N) + γ(N+1)I−1c (θ̂(N))∇θ log f(xN+1; θ̂(N)), (6)

where {γN} is a decreasing sequence of positive step sizes (γN = N−1 in the
original paper) and the hessian ∇2Q of Q is approximated by the Fisher Infor-

mation matrix Ic for the complete data (Ic(θ̂
(N)) = −E

θ̂
(N)
j

[ log p(x,z;θ)∂θt∂θ ]). A major

issue with that method is that θ̂(N) does not necessarily follow the parameters
constraints.

This problem is coped by the approach of Cappé and Moulines [3] who pro-
posed to replace the E-Step by a stochastic approximation step:

Q̂(N+1)(θ; θ̂(N), χ(N+1)) = Q̂(N)(θ; θ̂(N), χ(N))+

γN+1(Eθ̂(N) [l̄c(θ; {xN+1, zN+1})|xN+1]− Q̂(N)(θ; θ̂(N), χ(N))). (7)

Since the M-Step remains unchanged (maximizing the function θ 7→ Q̂(N+1)(θ)),
the constrains on parameters are automatically satisfied. This method is the
starting point of our proposals. One may also mention the “Incremental EM”
[4] which is not detailed here. Note that previous formalisms are not limited to
mixture models.



3 Online k-Maximum Likelihood Estimator

3.1 k-MLE for mixture learning

In this section, we describe the k-MLE algorithm, a faster alternative to EM, as
introduced in [5]. The goal is now to maximize directly l̄c(θ;χc). In the above

description of EM, value ẑ
(t)
i,j may be interpreted as a soft membership of xi

to the j-th component of the mixture. More generally, all values ẑ
(t)
i,j represent

a soft partition of χ which may be denoted by Ẑ(t). For fixed values of θ, the
partition which maximizes l̄c is a strict one:

max
Z

l̄c(θ;χc) = N−1
N∑
i=1

K
max
j=1

log (wjfj(xi; θj)) . (8)

Doing such a maximization (also called C-Step in Classification EM algorithm

[6]) after the E-Step in EM induces a split of χ into K subsets (χ =
⊔K
j=1 χ̂

(t)
j ).

Later on, note z̃
(t)
i,j the hard membership of xi at iteration t. Then, for a fixed

optimal partition, the M -step is simpler:

ŵ
(t+1)
j =

|χ̂(t)
j |
N

, θ̂
(t+1)
j = arg max

θj∈Θj

∑
x∈χ̂(t)

j

log fj(x; θj) (9)

The gain in computation time is obvious since a weighted MLE involving all ob-

servations is replaced by an unweighted MLE for each subset χ̂
(t)
j . The algorithm

is described in Alg. 1.

Algorithm 1: k-MLE (Lloyd’s batch method)

Input: A sample χ = {x1, x2, ..., xN}
Output: Estimate θ̂ of mixture parameters

1 A good initialization for θ̂(0) (see [5]); t = 0;
2 repeat

3 Partition χ =
⊔K
j=1 χ̂

(t)
j according to log ŵ

(t)
j fj(xi; θ̂

(t)
j ); // max. w.r.t. Z

foreach χ
(t)
j do

4 ŵ
(t+1)
j = N−1|χ̂(t)

j |; // max. w.r.t. wj’s

θ̂
(t+1)
j = arg maxθj∈Θj

∑
x∈χ̂(t)

j

log fj(x; θj); // max. w.r.t θj’s

5 t = t + 1;

6 until Convergence of the complete likelihood ;



3.2 Proposed online extensions

In order keep ideas from online EM (stochastic E-Step) and from k-MLE (hard

partition), the only possible modifications concern the assignment z
(N)
N+1 of the

new observation xN+1.

1. Online k-MLE: The most obvious heuristic is to maximize the complete
log-likelihood for xN+1. Indeed, unless all data is kept in memory, previous
assignments for past observations are fixed. Note that these assignments are
computed in order with mixture parameters θ(0), θ(1), . . . , θ(N−1). This leads to
the following rule:

z̃
(i)
i,j = 1 if j = arg max

j′=1..K
log(ŵ

(i−1)
j′ fj′(xi; θ̂

(i−1)
j′ )) and 0 otherwise. (10)

Clearly, this choice leads to a method which is similar to the Online CEM al-
gorithm [7]. Under the assumption that components are modeled by isotropic
gaussian, the MacQueens single-point iterative k-means [8] is also recovered.

2. Online Stochastic k-MLE: It is well-known that the strict partitioning can
give poor results in the batch setting when mixture components are not well
separated. This suggests to relax the strict maximisation and replace it by a
sampling from the multinomial distribution

z̃
(i)
i sampled from MK(1, {pj = log(ŵ

(i−1)
j fj(xi; θ̂

(i−1)
j ))}j). (11)

Same kind of strategy was used in the Stochastic EM algorithm [6].

3. Online Hartigan k-MLE: Analogously to the Hartigan’s version of k-MLE [9],
one can select among all possible assignments of xN+1 the one which maximizes
its complete likelihood after the M-step:

z̃
(i)
i,j = 1 if j = arg max

j′=1..K
log(ŵ

(i)
j′ fj′(xi; θ

(i)
j′ )) and 0 otherwise. (12)

Obviously, this heuristic induces a computational overhead since K M-Steps
have to be done.

To be useful, these methods require to be able to efficiently compute the
MLE for components parameters. In the following, we give details for the case
where these components belong to a (regular) exponential family (EF):

fj(x; θj) = exp {〈t(x), θj〉+ k(x)− F (θj)} ,

with t(x) the sufficient statistic, θj the natural parameter, k(·) the carrier mea-
sure and F the log-normalizer [10]. Under this assumption, the probability den-
sity function p(x, z; θ) is an EF4 which can be written for the i-th observation

4 The multinomial distribution is also an exponential family.



as:

log p(xi, zi; θ) =

K∑
j=1

〈zi,j , logwj〉+

K∑
j=1

〈zi,jt(xi), θj〉+

K∑
j=1

zi,jk(xi)−
K∑
j=1

zi,jF (θj) (13)

Taking into account the summation constraint for wj ’s, the M-Step reduces to
simple update formulas:

ŵ
(N+1)
j = (N + 1)−1

∑N+1
i=1 z̃

(i−1)
i,j , (14)

η̂
(N+1)
j = (

∑N+1
i=1 z̃

(i−1)
i,j )−1

∑N+1
i=1 z̃

(i−1)
i,j t(xi), (15)

where ηj = ∇F (θj) is the expectation parameter for the j-th component (see
details in [10]). Remark that these formulas can be easily turned into recursive
ones:

ŵ
(N+1)
j = ŵ

(N)
j + (N + 1)−1

(
z̃
(N)
N+1,j − ŵ

(N)
j

)
, (16)

η̂
(N+1)
j = η̂

(N)
j + (N + 1)−1

(
z̃
(N)
N+1,jt(xN+1)− η̂(N)

j

)
. (17)

Clearly, one can recognize a step of the stochastic gradient ascent method in the
expectation parameter space. Note that the functional reciprocal ∇F−1 must be
computable to get back into natural parameter space. Algorithm 2 summarizes
the Online Stochastic k-MLE.

4 Example: Mixture of Wishart distributions

4.1 Wishart distribution is a canonical (curved) exponential family

The (central) Wishart distribution [11] is the multidimensional version of the
chi-square distribution and it characterizes empirical scatter matrix estimator
for the multivariate gaussian distribution Nd(0, S). Its density function can be
decomposed as

Wd(X; θn, θS) = exp

{
〈θn, log |X|〉R + 〈θS ,−

1

2
X〉F + k(X)− F (θn, θS)

}
(18)

where (θn, θS) = (n−d−12 , S−1), t(X) = (log |X|,− 1
2X), k(X) = 0 and

F (θn, θS) =

(
θn +

(d+ 1)

2

)
(d log(2)− log |θS |) + logΓd

(
θn +

(d+ 1)

2

)
,

where Γd(y) = π
d(d−1)

4

∏d
j=1 Γ

(
y − j−1

2

)
is the multivariate gamma function de-

fined on R>0. 〈a, b〉R = a>b denotes the scalar product and 〈A,B〉F = tr(A>B)
the Fröbenius inner product (with tr the matrix trace operator). Note that this
decomposition is not unique.



Algorithm 2: Online Stochastic k-MLE for (curved) exponential families

Input: A sample generator G = x1, x2, ... yielding a data stream of observations,
a batch algorithm B for the same problem, Nw a positive integer

Output: For each observation xN+1 with N ≥ Nw an estimate θ̂(N+1) of
mixture parameters is yielded

// Warm-Up-Step

1 Get θ̂(N) = {ŵ(N)
j , θ̂

(N)
j }j from B with the Nw first observations of G;

2 N = Nw;

3 foreach component j in mixture do η̂
(N)
j = ∇F (θ̂

(N)
j );

4 foreach new value xN+1 from G do

5 z̃
(N)
N+1 sampled from MK(1, {pj = log(ŵ

(N)
j fj(xN+1; θ̂

(N)
j ))}j);

6 foreach component j in mixture do

7 ŵ
(N+1)
j = ŵ

(N)
j + (N + 1)−1

(
z̃
(N)
N+1,j − ŵ

(N)
j

)
;

8 η̂
(N+1)
j = η̂

(N)
j + (N + 1)−1

(
z̃
(N)
N+1,jt(xN+1)− η̂(N)

j

)
;

9 yield mixture parameters θ̂(N+1) = {ŵ(N+1)
j , θ̂

(N+1)
j = (∇F )−1(η̂

(N+1)
j )}j ;

10 N = N +1;

4.2 Details for the M-Step

Recall that find the MLE amounts to compute (∇F )−1 on the average of suffi-
cient statistics. In this specific case, the following system has to be inverted to
get values of (θn, θS) given (ηn, ηS):

d log(2)− log |θS |+ Ψd

(
θn +

(d+ 1)

2

)
= ηn, (19a)

−
(
θn +

(d+ 1)

2

)
θ−1S = ηS , (19b)

where Ψd the derivative of the logΓd should be inverted. As far as we know, no
closed-form solution exists but it can be easily solve numerically:

– Isolate θS in Eq. 19b: θS =
(
θn + (d+1)

2

)
(−ηS)−1

– Plug it in Eq. 19a and solve numerically the following one dimensional prob-
lem:

d log(2)− d log

(
θn +

(d+ 1)

2

)
+ log | − ηS |+ Ψd

(
θn +

(d+ 1)

2

)
− ηn = 0

(20)
with any root-finding method on ]d− 1,+∞[.

– Substitute the solution into Eq. 19b and solve the value for θS .

Whole process gives the (∇F )−1 function mentioned in line 9 of Alg. 2.



Line 8 of Alg. 2 amounts to compute the following update formulas:

η̂n
(N+1)
j = η̂n

(N)
j + (N + 1)−1

(
z̃
(N)
N+1,j log |XN+1| − η̂n(N)

j

)
, (21)

η̂S
(N+1)
j = η̂S

(N)
j − (N + 1)−1

(
z̃
(N)
N+1,j

1
2XN+1 + η̂S

(N)
j

)
. (22)

4.3 Experiment on synthetic data-sets

In this section, we provide a preliminary empirical analysis of our proposed meth-
ods. The protocol is the following: pick a random Wishart mixture for K = 3
components (left) or K = 10 components (right), compute the Kullback-Leibler
divergence between the “true” mixture and the one yielded every iteration us-
ing a Monte Carlo approximation (104 samples). The initialization mixture θ̂(0)

is computed with k-MLE for the first 100 observations. The simulations are re-
peated 30 times for the Online Stochastic k-MLE so that it is possible to compute
mean, min, max and the first and third quartiles. Also, results of online EM are
reported.

From Fig. 1, one can observe a clear hierarchy between the algorithms espe-
cially when K = 10. One may guess that this dataset corresponds to the case
when clusters components are overlapping more. Thus, the soft assignment in
online EM outperforms other methods with an additional computational cost (i.e
all sufficient statistics and cluster parameters have to be updated). The proof of
convergence of Online Stochastic k-MLE still remain to be done while the reader
may refer to the section 3.5 of the article [7] for Online k-MLE.

Fig. 1. KL(f(·; θtrue)||f(·; θ̂(N)) for K = 3 (left) and K = 10 (right)

5 Conclusion

This paper addresses the problem of online learning of finite statistical mixtures
with a special focus on curved exponential families. The proposed methods are



fast since they require only one pass over the data stream. Further speed increase
may be achieved by using distributed computing for partial sums of sufficient
statistics (see [12]).
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