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École Polytechnique
E-mail: olivier.schwander@polytechnique.edu



Introduction

Matrix and Tensor Data Processing is a breakthrough in the domain of signal,
image and information processing with many potential applications in sensor
and cognitive systems engineering. The participants are experts in the areas of
theoretical mathematics or engineering sciences.
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Fréchet Metric Space, Homogeneous Siegel Domains & Radar Matrix
Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Frédéric Barbaresco

Matrix Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Rajendra Bhatia

Matrix Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Rajendra Bhatia

Use of Matrix Information Theory in Video Surveillance . . . . . . . . . . . . . . . 10

Manas Kamal Bhuyan

Geometric means of fixed rank positive semi-definite matrices. . . . . . . . . . . 12

Silvère Bonnabel, Anne Collard, and Rodolphe Sepulchre

Koszul-Vinberg cohomology in Information geometry. . . . . . . . . . . . . . . . . . . 14

Paul Mirabeau Byande and Michel Nguiffo Boyom

Applications of Information Geometry to Audio Signal Processing . . . . . . . 16

Arnaud Dessein and Arshia Cont

H/α Unsupervised Classification for Highly Textured Polinsar Images
Using Information Geometry of Covariance Matrices . . . . . . . . . . . . . . . . . . . 18

P. Formont, J.P. Ovarlez, F. Pascal, G. Vasile, and L. Ferro-Famil

Derivatives of Matrix Functions and their Norms . . . . . . . . . . . . . . . . . . . . . . 22

Priyanka Grover

On the Computational Instability of the Matrizant Analysis of the
Coupled Waveguides and a Solution to Overcome . . . . . . . . . . . . . . . . . . . . . 23

Trinath Karr

Doppler Information Geometry for Wake Turbulence Monitoring . . . . . . . . 25

Zhongxun Liu and Frédéric Barbaresco

Computational Information Geometry on Matrix Manifolds . . . . . . . . . . . . 26

Frank Nielsen



VIII

Mining Matrix Data with Bregman Matrix Divergences . . . . . . . . . . . . . . . . 28
Richard Nock

Laplacian matrix of a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Sukanta Pati

Geometry and Statistics for Computational Anatomy . . . . . . . . . . . . . . . . . . 33
Xavier Pennec

Fast and Fixed-Point SVD Algorithm for Face and Eye Tracking . . . . . . . . 36
Tapan Pradhan Aurobinda Routray and Supratim Gupta

Particle Filtering on Riemannian Manifolds. Application to Visual
Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Hichem Snoussi and Cédric Richard

Covariance Matrix Based Spectrum Sensing for Cognitive Radios . . . . . . . 45
Ganapathy Viswanath

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



Mathematical Morphology for
Matrix-Valued Images

Jesús Angulo

CMM-Centre de Morphologie Mathématique, Mathématiques et Systèmes, MINES
ParisTech; 35, rue Saint Honoré, 77305 Fontainebleau Cedex, France

jesus.angulo@mines-paristech.fr

Context. Mathematical morphology is a nonlinear image processing method-
ology originally developed for binary and greyscale images [9]. It is based on the
computation of maximum (dilation operator) and minimum (erosion operator)
in local neighbourhoods called structuring elements [10]. That means that the
definition of morphological operators needs an ordering relationship between
the points to be processed. Theory of morphological operators was then for-
mulated in the framework of complete lattices [7], where the basic structure is
a partial ordering and the existence of supremum and infimum for any set of
points should be guaranteed. Dilation and erosion can be also computed us-
ing an eikonal PDE [1]. In addition, dilation and erosion can be also studied
in the framework of convex analysis, as the supremum/infimum convolution in
the (max,+)/(min,+) algebras, which the corresponding connection with the
Legendre transform [8].

Matrix and tensor valued images appear nowadays in various image pro-
cessing fields and applications [11], e.g., structure tensor images representing
the local orientation and edge information, diffusion tensor magnetic resonance
imaging and covariance matrices in radar imaging.

State-of-the-art. Morphological operators and filters perform noise sup-
pression, contrast image enhancement, structure extraction and decomposition,
etc. [10]. The extension of mathematical morphology to matrix-valued images
has been addressed exclusively by Burgeth et al. [5] [6]. They have considered two
different approaches: the first one is based on the Löwner partial ordering [12],
where the sup/inf of matrices are computed using convex matrix analysis tools;
the other one corresponds to the generalization of the morphological PDE to
matrix data.

Aim of the study. The goal of this work is to introduce various alternatives
ways to extend mathematical morphology, which are different from those intro-
duced by Burgeth et al. In particular, focussing on positive definite symmetric
matrices, three different families of approaches are explored.

– Partial spectral ordering and inverse eigenvalue problem. By considering the
partial ordering based on a lexicographic cascade of eigenvalues, it is possible
to define the sup/inf of a set of matrices as the matrix having as eigenvalues
the sup/inf of eigenvalues. However, the definition of the orthogonal basis of
corresponding sup is not trivial. A few possible algorithms for this inverse
eigenvalue problem will be briefly mentioned.
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– Total orderings for input-preserving sup-inf operators. An alternative method-
ology to use the spectral ordering consists in defining as supremum of a set of
matrices, the matrix which is bigger according to the lexicographic priority
of eigenvalues or according to a given priority between some matrix invari-
ants associated to the eigenvalues. This kind of approaches is valid when a
total ordering is defined. Consequently, the spectral information should be
completed with additional conditions in the lexicographic cascade.
In cases where a pair of reference matrix sets is defined (typically, a training
set of matrices associated to the foreground and a training set of matrices
associated to the background), it is also possible to define a total ordering
according to the distances of each matrix to both reference sets. In such a
technique, the distance between matrices is the key element for the ordering.

– Asymptotic pseudo-morphological operators using counter-harmonic mean.
We have recently shown in [2] how the counter-harmonic mean [4] can be
used to introduce nonlinear operators which asymptotically mimic dilation
and erosion. The generalization of the counter-harmonic mean filter to matrix
images leads to a simple methodology for nonlinearization of matrix PDE
diffusion filtering.
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Stochastic Algorithms for Computing
p-Means of Probability Measures

Marc Arnaudon and Le Yang
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Abstract. We give a stochastic algorithm to compute the p-mean of a
probability measure µ whose support is contained in a regular geodesic
ball of a Riemannian manifold. We show the almost sure convergence of
this algorithm. Under a further regularity condition, an associated central
limite theorem is also proved. Moreover, it is shown that a deterministic
subgradient algorithm can also be used to compute the Riemmanian
median of µ.

1 Stochastic algorithms for computing p-means of
probability measures

Let M be a Riemannian manifold with Riemannian distance ρ. Assume that the
sectional curvatures K satisfy −β2 ≤ K ≤ α2. Let µ be a probability measure
with support included in a geodesic ball B(a, r) in M . Fix p ∈ [1,∞). We will
always make the following assumptions on (r, p, µ):

Assumption 1 The support of µ is not reduced to one point. Either p > 1 or
the support of µ is not contained in a line, and the radius r satisfies

r < rα,p with

{
rα,p = 1

2 min
{

inj(M), π2α
}

if p ∈ [1, 2)
rα,p = 1

2 min
{

inj(M), πα
}

if p ∈ [2,∞)
(1)

Under assumption 1,the function Hp : B(a, r) −→ R+, x 7−→
∫
M
ρp(x, y)µ(dy)

has a unique minimizer ep in M , the p-mean of µ, and moreover ep ∈ B(a, r). If
p = 1, e1 is the median of µ.

Theorem 1. Let (Pk)k≥1 be a sequence of independent B(a, r)-valued random
variables, with law µ. Let (tk)k≥1 ⊂ (0, Cp,µ] be a sequence of positive numbers
satisfying

∞∑
k=1

tk = +∞ and

∞∑
k=1

t2k <∞. (2)

Letting x0 ∈ B(a, r), define inductively the random walk (Xk)k≥0 by

X0 = x0 and for k ≥ 0 Xk+1 = expXk

(
−tk+1 gradXk

Fp(·, Pk+1)
)

(3)
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where Fp(x, y) = ρp(x, y), with the convention gradx Fp(·, x) = 0.
The random walk (Xk)k≥1 converges in L2 and almost surely to ep.

Theorem 2. Let (Xk)k≥0 be the time inhomogeneous M -valued Markov chain
defined in Theorem 1 with tk = min

(
δ
k , Cp,µ

)
, k ≥ 1 for some δ > 0. We define

for n ≥ 1 the rescaled TepM -valued Markov chain (Y nk )k≥0 by

Y nk =
k√
n

exp−1ep Xk. (4)

Assume that Hp is C2 in a neighborhood of ep, and that δ > C−1p,µ,K . The se-

quence of processes
(
Y n[nt]

)
t≥0

weakly converges in D((0,∞), TepM) to a diffusion

process yδ given by

yδ(t) =

d∑
i=1

t1−δλi

∫ t

0

sδλi−1〈δσ dBs, ei〉ei, t ≥ 0, (5)

where Bt is a standard Brownian motion on TepM , σ ∈ End(TepM) satisfies

σσ∗ = E
[
gradep Fp(·, P1)⊗ gradep Fp(·, P1)

]
,

(ei)1≤i≤d is an orthonormal basis diagonalizing the symmetric bilinear form
∇dHp(ep) and (λi)1≤i≤d are the associated eigenvalues.

1.1 A subgradient algorithm for computing median

Initializing x1 ∈ B(a, r),

Do xk+1 = expxk
(−tk H(xk)

|H(xk)| ),

While H(xk) 6= 0,

where

H(xk) =

∫
M\{x}

− exp−1x p

ρ(x, p)
µ(dp),

tk ∈ (0, ε), tk → 0,

∞∑
k=1

tk = +∞.
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Fréchet Metric Space, Homogeneous Siegel
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Information Geometry has been introduced by Indian scientist Calyampudi
Radhakrishna Rao [15] (http://www.crraoaimscs.org/) PhD student of R.A.
Fisher, and axiomatized by N. N. Chentsov [5], to define a distance between
statistical distributions that is invariant to nonsingular parameterization trans-
formations. C.R. Rao introduced this geometry in his 1945 seminal paper on
Cramer-Rao Bound (this bound was discovered in parallel by Maurice René
Fréchet [6] in 1939 and extended later to multivariate case by Georges Dar-
mois). We will see that this geometry could be considered in the framework of
Positive Definite Matrices Geometry for Complex circular Multivariate Laplace-
Gauss Law (see R. Bhatia [2]). For Doppler / Array / STAP Radar Processing,
Information Geometry Approach will give key role to Symmetric spaces and
Homogeneous bounded domains geometry. For Radar, we will propose Infor-
mation Geometry metric as Kähler metric, given by Hessian of Khler potential
(Entropy of Radar Signal given by − log det(R)). To take into account Toeplitz
structure of Time/Space Covariance Matrix or Toeplitz-Block-Toeplitz structure
of Space-Time Covariance matrix, Parameterization known as Partial Iwasawa
Decomposition [9] could be applied through Complex Autoregressive Model or
Multi-channel Autoregressive Model. Then, Hyperbolic Geometry of Poincaré
Unit Disk [14] or Symplectic Geometry of Siegel Unit Disk [17, 18] will be used
as natural space to compute p-mean (p=2 for mean, p=1 for median) of covari-
ance matrices via Fréchet/Karcher Flow [7, 10] for Weiszfeld algorithm extension
on Manifold and on Frchet Metric spaces. We have tested also stochastic flow
proposed by M. Arnaudon. This new mathematical framework will allow devel-
oping concept of OS (Ordered Statistic) for Hermitian Positive Definite Covari-
ance Space/Time Toeplitz matrices or for Space-Time Toeplitz-Block-Toeplitz
matrices. We will then define OS-HDRCFAR (Ordered Statistic High Doppler
Resolution CFAR) and OS-STAP (Ordered Statistic Space-Time Adaptive Pro-
cessing). This approach is based on the existence of a center of mass in the
large for manifolds with non-positive curvature that was proven and used by
Elie Cartan back in the 1920s [3]. The general case was employed by Calabi
in an unpublished note. In 1977, Hermann Karcher [10] has proposed intrinsic
flow to compute this barycenter, that we adapt for covariance matrices. This
geometric foundation of Radar Signal Processing is based on general concept
of Siegel domains [17, 18]. We will then give a brief history of Siegel domains
studies in Europe, Russia and China. In 1935, Elie Cartan [4] proved that ir-
reductible homogeneous bounded symmetric domains could be reduced to six
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types, included two exceptional ones. Four non-exceptionnal Cartans domains
are now called classical models, and considered as the higher dimensional ana-
logues of the Poincars unit disk [14] in the complex plane. After in the framework
of Symplectic Geometry [17, 18], Carl Ludwig Siegel has introduced first explicit
descriptions of symmetric domains, where the realization of bounded domains
as unbounded domains played fundamental role (for an important class of them,
these unbounded domains are Siegel domains of the first kind, with important
particular case of Siegel Upper Half Plane). In 1953, Loo-Keng Hua [8] obtained
the orthonormal system and the Bergman/Cauchy/Poisson kernel functions for
each of the four classical domains using group representation theory. Elie Car-
tan proved that all bounded homogeneous complex domains in dimension 2 and
3 are symmetric and conjectured that is true for dimension greater than 3.
Ilya Piatetski-Shapiro [13], after Hua works, has extended Siegel description to
other symmetric domains and has disproved the Elie Cartan conjecture that all
transitive domains are symmetric. A. Borel showed that if in a bounded homo-
geneous region a semisimple Lie group operates transitively, then that region
is symmetric. These results were strengthened by Hano and obtained in paral-
lel by Jean-Louis Koszul [11, 12] who also studied affinely homogeneous regions
that are fundamental for Information Geometry and real Hessian or complex
Kählerian geometries [16]. Piatetski-Shapiro introduced finally general defini-
tion of a Siegel domain of the second kind (all symmetric domains allow a gen-
eralization of Siegel tube domains), and has proved in 1963 with S.G. Gindikin
and E. Vinberg that any bounded homogeneous domain has a realization as a
Siegel domain of the second kind with transitive action of linear transforma-
tion. In parallel, E. Vinberg [19] worked on the theory of homogeneous convex
cones, as fundamental construction of Siegels domains (he introduced a special
class of generalized matrix T -algebras), and S.G. Gindikin worked on analytic
aspects of Siegels domains. More recently, classical complex Symmetric spaces
have been studied by F. Berezin [1]. With Karpelevitch, Piatetski-Shapiro ex-
plored underlying geometry of these complex homogeneous domains manifolds,
and more especially, the fibering of domains over components of the boundary.
Let a bounded domain, he constructed a fibering by looking at all the geodesic
that end in each boundary component and associating the end point to every
point on the geodesic. For our Radar STAP and Toeplitz-Block-Toeplitz covari-
ances matrices, we have used Berger fibering in Unit siegel Disk based on the
theorem that all symmetric spaces are fibered on a compact symmetric space
(Mostow decomposition).
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Matrix Inequalities

Rajendra Bhatia
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rbh@isid.ac.in

Inequalities, like the arithmetic-geometric mean inequality and the Cauchy-
Schwarz inequality, have long been used in almost all areas of mathematics. Their
matrix versions have been discovered in the last few years, and are equally im-
portant in several subjects. In this talk we will illustrate some general principles
that have been found to be very useful in deriving such inequalities.

We will focus on two themes. The first is the arithmetic-geometric mean
inequality ‖A1/2B1/2‖ ≤ 1

2‖A + B‖, where A and B are positive semidefinite
matrices. The second is the problem of estimating ‖f(A) − f(B)‖ in terms of
‖A−B‖ for functions of matrices. Both problems have common ingredients, and
both have generalisations that make them more attractive as well as useful.

Keywords: Matrix inequalities, positive definite matrix, arithmdetic-geometric
mean, perturbation bound
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Rajendra Bhatia

Theoretical Statistics & Mathematics Unit,
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7, S. J. S. Sansanwal Marg,
New Delhi-110 016, India

rbh@isid.ac.in

Averaging operations on positive definite matrices have been of interest in
operator theory, engineering, physics and statistics. Because of noncommutativ-
ity of matrix multiplication and because of subtleties of the partial order A ≥ B
on positive definite matrices, the geometric mean presents special difficulties.

The problem for a pair of matrices was solved in the 1970’s, and the theory
continues to find new uses in matrix analysis and applications. When more than
two matrices are involved, a satisfactory definition has been found only recently.
In 2005 the Riemannian barycentre of m matrices was proposed as a candidate
for their geometric mean. One of its important properties—monotonicity in the
m variables—has been established in 2010. Meanwhile the concept has been used
in diverse applications such as elasticity, imaging, radar, machine learning etc.
We will discuss the problem from the perspective of matrix analysis and operator
theory.

Keywords: Geometric mean of positive definite matrices, Riemannian mani-
fold, barycentre, matrix monotonicity.



Use of Matrix Information Theory in Video
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Manas Kamal Bhuyan
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The problem of visual inspection of outdoor environments (e.g., airports,
railway stations, roads, etc.) has received growing attention in recent times. The
work presented in this talk is a component of an extensive research work/project
to apply intelligent Closed-Circuit Television (CCTV) to enhance counter-terrorism
capability for the protection of mass transport systems. The purpose of intelli-
gent surveillance systems is to automatically perform surveillance tasks by ap-
plying cameras in the place of human eyes. Recently, with the development of
video hardware such as digital cameras, the video surveillance system is becom-
ing more widely applied and is attracting more researchers to develop fast and
robust algorithms. In this talk, the main focus will be given on the basic concept
of matrix recovery from corrupted sampled entries i.e., fundamental principle to
develop probably correct and efficient algorithms for recovery of low-dimensional
linear structure from non-ideal observations. The separation problem (i.e, how to
recover original data from the incomplete data) is one of the fundamental prob-
lems in Computer Vision. In this talk, some practical applications of Computer
Vision like Face Recognition, Handling Occlusions in Target Tracking and Back-
ground modelling for video surveillance by using Matrix Information Theory will
be highlighted. Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) are probably the most widely used subspace projection tech-
niques for face recognition. PCA and LDA are useful statistical techniques that
has found application in fields such as face/object recognition, and are a com-
mon techniques for finding patterns in data of high dimension. One approach
to coping with the problem of excessive dimensionality is to reduce the dimen-
sionality by combining features. Linear combinations are particularly attractive
because they are simple to compute and analytically tractable. In effect, lin-
ear methods project the high-dimensional data onto a lower dimensional space.
Principal Component Analysis seeks a projection that best represents the data
in a least-squares sense whereas, Linear Discriminant Analysis seeks a projection
that best separates the data in a least-squares sense. At one level, PCA and LDA
are very different: LDA is a supervised learning technique that relies on class la-
bels, whereas PCA is an unsupervised technique. Nonetheless, in circumstances
where class labels are available either technique can be used. One characteristic
of both PCA and LDA is that they produce spatially global feature vectors.
In other words, the basis vectors produced by PCA and LDA are non-zero for
almost all dimensions, implying that a change to a single input pixel will alter
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every dimension of its subspace projection. The talk will introduce the basics of
pattern recognition, with specific emphasis on statistical parametric methods for
face recognition and background modelling in a surveillance video. The audience
will be introduced to mathematical perspective (matrix information theory) of
the problem of pattern recognition for feature discriminatory and classification
techniques.

Keywords: Face Recognition, Principal Component Analysis, Linear Discrim-
inant Analysis, Background Modelling.
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Much research has been devoted to the matrix generalization of the geomet-
ric mean

√
ab of two positive numbers a and b to positive definite matrices (see

for instance Chapter 4 in [1] for an expository and insightful treatment of the
subject). The further extension of a geometric mean from two to an arbitrary
number of matrices is an active current research area [2, 3]. It has been increas-
ingly recognized that from a theoretical point of view as well as in numerous
applications, matrix geometric means are to be preferred to their arithmetic
counterparts for developing a calculus in the cone of positive definite matrices.

The fundamental and axiomatic approach of Ando [2] reserves the adjective
“geometric” to a definition of mean that enjoys the following properties:

(P1) Consistency with scalars: if A,B commute M(A,B) = (AB)1/2.
(P2) Joint homogeneity M(αA, βB) = (αβ)1/2M(A,B).
(P3) Permutation invariance M(A,B) = M(B,A).
(P4) Monotonicity. If A ≤ A0 (i.e. (A0 − A) is a positive matrix) and B ≤ B0,

the means are comparable and verify M(A,B) ≤M(A0, B0).
(P5) Continuity from above. If {An} and {Bn} are monotonic decreasing sequence

(in the Lowner matrix ordering) converging to A, B then lim(An ◦ Bn) =
M(A,B).

(P6) Congruence invariance. For any G ∈ Gl(n) we have M(GAGT , GBGT ) =
GM(A,B)GT .

(P7) Self-duality M(A,B)−1 = M(A−1, B−1).

The most famous geometric mean is probably the “Ando geometric mean”:
M(A,B) = A#B = A1/2(A−1/2BA−1/2)1/2A1/2. There are many equivalent
definitions of the Ando geometric mean. Notably, it coincides with the Rieman-
nian mean when the set of positive definite matrices is equipped with the Fisher
metric provided by information geometry (positive definite matrices are then
viewed as covariances of zero mean Gaussian random vectors).

The present work seeks to extend any geometric mean defined on the open
cone of positive definite matrices Pn to the the set of positive semi-definite
matrices of fixed rank p, denoted by S+(p, n). Our motivation is primarily com-
putational: with the growing use of low-rank approximations of matrices as a
way to retain tractability in large-scale applications, there is a need to extend
the calculus of positive definite matrices to their low-rank counterparts.
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The classical approach in the literature is to extend the definition of a mean
from the interior of the cone to the boundary of the cone by a continuity ar-
gument. As a consequence, this topic has not received much attention. This
approach has however serious limitations from a computational viewpoint be-
cause it is not rank-preserving. For instance the Ando’s geometric mean of two
semi-definite positive matrices of rank p < n/2 is almost surely null. Thus in
applications involving low-rank matrices, the use of such an extension is moot.

In this talk we will show how to turn any geometric mean of an arbitrary
number of positive definite matrices into a rank-preserving geometric mean
well-defined on the set of positive semi-definite matrices. The proposed rank-
preserving geometric mean is rooted in a Riemannian geometry recently studied
in [4], and which can be viewed as an extension of the Fisher metric to positive
semi-definite matrices. We will also discuss some filtering applications.

Fig. 1. Proposed mean in S+(2, 3). Matrices are viewed as flat ellipsoids. The com-
putation of the mean ellipsoid (in green) decouples into the computation of a mean
subspace of the ranges, and a geometric mean in Pp.
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Abstract. The main concern of this work is to relate some homolog-
ical algebra formalism to some topics in statistical theory. The goal is
the study of relationships between geometric invariants and statistical
estimator in statistical models.

Keywords: Koszul-Vinberg algebras, Maurer-Cartan polynomial, affine
structures, statistical model, Fisher metric, α-connections.

1 Introduction

A statistical model for a measurable set X is a family S = {pθ = p(., θ), θ ∈ Θ}
of probability distributions on X where Θ is an open submanifold of an euclidian
space Rn and the map θ ∈ Θ → pθ ∈ RX is injective and smooth. We are
interested in the group G of transformation which preserve the family S under
sufficient statistics.
In 1945 C.Rao [5] defined the so called Fisher (riemannian) metric, namely

gij(θ) =

∫
∂

∂θi
ln(pθ(x))

∂

∂θj
ln(pθ(x))pθ(x)dx.

He showed that the group G is a subgroup of isometries of (Θ, gij). The pair
(Θ, gij) is called the information geometry associated to S. He had written on the
importance of analysing statistical model from the perspective of Riemannian
geometry.
After this, there were a variety of efforts to pursue this line of research, but
unfortunately very few of these results which related directly back to statistical
problems [1]. For more than twenty years, the Fisher metric has been the only
known geometric invariant of a statistical model.
In 1972 Chentsov [2] pointed out that G-invariant linear connections are closely
related to Fisher metric. These connexions are called α-connections, α ∈ R. Let
f : X → R, x ∈ X and θ ∈ Θ we denote Eθ the expectation with respect to
the distribution pθ,

Eθ(f) =

∫
f(x)pθ(x)dx, lθ(x) = ln(pθ(x)).
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Consider the functions Γ
(α)
ij,k which maps point each θ to the following value:

(Γ
(α)
ij,k)θ = Eθ[(∂i∂j lθ +

1− α
2

∂ilθ∂j lθ)(∂klθ)]

where α is some arbitrary real number. The α-connexion is a connexion ∇(α)

with
g(∇(α)

∂i
∂j , ∂k) = Γ

(α)
ij,k.

In general, G-invariants structure in a statistical model S play a crucial role when
analysing the relationship between statistics/probability theory and the struc-
ture formed by introducing a metric and a connection on S. The Fisher metric
and the α-connections are uniquely characterized by this invariance property. It
is well known that locally flat connections correspond to affine structures[3].
We plan to investigate G-invariant affine structures in an information geometry.
The main statement to be proved here works in statistical model S admitting
coordinate functions yelding an efficient estimator.

Theorem 11 Let S be a model statistical admitting coordinates functions yeld-
ing an efficient estimator.

– If the Fisher metric is flat then all of the α-connections are locally flat.
– If the Fisher metric is not flat then there are exactly two flat α-connections

with α ∈ {−1, 1} .

The proof of the theorem makes case of the Koszul-Vinberg cohomology [4].
More generally it is to be noticed that the use of Koszul-Vinberg cohomology is
relevant in studying the developpement geometric aspect of the Jauge theory.

Acknowledgments. Paul Mirabeau Byande is supported by AUF/Grant: PC-
420/2460/247/BAC 2007.

References

1. Amari S. and Nagaoka H., Methods of Information Geometry . Translation of Ma-
thetmatical Monogragphs. AMS- OXFORD, vol 191.

2. N.N. Chentsov, statistical decision rules and optimal inference , Trans. of Math.
Mono. vol. 53, AMS, Rhodes Island, NY, 1972.

3. S. Kobayashi et K. Nomizu, Foundations of differential Geometry, Vols 1 et 2 Wiley-
Interscience Publishers, New york et London, 1969.

4. Nguiffo Boyom M. The cohomology of Koszul-Vinberg algebras, Pacific J. Math.
Vol 225,N1 (2006) 119-153.

5. C.R. Rao, Information and accuracy attainable in the estimation of statistical pa-
rameters, Bull. of the Cal. Math. Soc., 37:81-91, 1945



Applications of Information Geometry to
Audio Signal Processing

Arnaud Dessein? and Arshia Cont

IRCAM, CNRS UMR 9912
1 place Stravinsky, 75004 Paris, France

{arnaud.dessein,arshia.cont}@ircam.fr

In this talk, we present some applications of information geometry to audio
signal processing. We seek a comprehensive framework that allows to quantify,
process and represent the information contained in audio signals. In digital audio,
a sound signal is generally encoded as a waveform, and a common problematic
is to extract relevant information about the signal by computing sound features
from this waveform. A key issue in this context is then to bridge the gap between
the raw signal or low-level features (e.g. attack time, frequency content), and the
symbolic properties or high-level features (e.g. speaker, instrument, music genre).

We address this issue by employing the theoretical framework of information
geometry. In general terms, information geometry is a field of mathematics that
studies the notions of probability and of information by the way of differential
geometry [1]. The main idea is to analyze the geometrical structure of differen-
tial manifold owned by certain families of probability distributions which form
a statistical manifold. We aim to investigate the intrinsic geometry of families
of probability distributions that represent audio signals, and to manipulate in-
formative entities of sounds within this geometry.

We focus on the statistical manifolds related to exponential families. Expo-
nential families are parametric families of probability distributions that encom-
pass most of the distributions commonly used in statistical learning. Moreover,
exponential families equipped with the dual exponential and mixture affine con-
nections possess two dual affine coordinate systems, respectively the natural
and the expectation parameters. The underlying dually flat geometry exhibits
a strong Hessian dualistic structure, induced by a twice differentiable convex
function, called potential, together with its Legendre-Fenchel conjugate. This
geometry generalizes the standard self-dual Euclidean geometry, with two dual
Bregman divergences instead of the self-dual Euclidean distance, as well as dual
geodesics, a generalized Pythagorean theorem and dual projections.

However, the Bregman divergences are generalized distances that are not
symmetric and do not verify the triangular inequality in general. From a com-
putational viewpoint, several machine learning algorithms that rely on strong
metric properties possessed by the Euclidean distance are therefore not suit-
able anymore. Yet, recent works have proposed to generalize some of these al-
gorithms to the case of exponential families and of their associated Bregman

? Part of this work was completed while the author was visiting the Japanese-French
Laboratory for Informatics, Tokyo, Japan.
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divergences [2–6]. It is thus possible, with a single generic implementation, to
consider numerous and widely used statistical models or divergences, in algo-
rithms such as centroid computation and hard clustering (k-means), parameter
estimation and soft clustering (expectation-maximization), proximity queries in
ball trees (nearest-neighbors search, range search).

We discuss the use of this powerful computational framework for applica-
tions in audio. The general paradigm is the following. The audio signal is first
represented with sound features. We then model these features with probability
distributions and apply the tools of information geometry onto these distribu-
tions. In particular, it allows to redefine the notion of similarity between two
signals in an information setting by employing the canonical divergence of the
underlying statistical manifold. This paradigm has been recently investigated for
audio data mining in [7]. We show in particular how to segment audio streams
into quasi-stationary chunks that form consistent informative entities. These en-
tities can then be treated as symbols for applications such as music similarity
analysis, musical structure discovery, query by similarity, audio recombination
by concatenative synthesis, and computer-assisted improvisation.

Acknowledgments. This work was supported by a doctoral fellowship from
the UPMC (EDITE) and by a grant from the JST-CNRS ICT (Improving the
VR Experience).
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The recently launched POLSAR systems are now capable of producing high
quality polarimetric SAR images of the Earth surface under meter resolution.
The additional polarimetric information allows the discrimination of different
scattering mechanisms. In [1] was introduced the entropy-alpha-anisotropy (H/α/A)
classification based on the eigenvalues of the polarimetric covariance matrix
(CM). This CM is usually estimated, under homogeneous and Gaussian as-
sumptions, with the well known Sample Covariance Matrix (SCM) which is
Wishart distributed. Based on this decomposition, the unsupervised classifica-
tion of the SAR images can be performed by an iterative algorithm based on
complex Wishart density function. It uses the H/α decomposition results to
get an initial segmentation into eight clusters, then the K-means clustering is
implemented by considering the polarimetric CM as the feature vectors. This
technique needs however to derive by a classical Euclidian mean operation the
averaged CM of each center of class and to compute by Wishart distance the
miminal distance between each pixel CM and with all the class centers.

The decrease of the resolution cell offers the opportunity to observe much
thinner spatial features than the decametric resolution of the up-to-now available
SAR images but also lead to more complicated effects like spatial heterogeneity.
Hence, some areas usually considered as random backscattering mechanisms can
become punctual deterministic backscattering mechanisms. The usual techniques
of classification, detection, speckle filtering, used for decametric resolution, have
to be adapted to these new challenging problems. For high resolution SAR im-

? The author would like to thank the DGA for funding this research.
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ages, recent studies have shown that the spatial heterogeneity of the observed
scene leads to non-Gaussian clutter modelling. One commonly used fully polari-
metric non-Gaussian clutter model is the compound Gaussian model: the spatial
heterogeneity of the SAR image intensity is taken into account by modelling the
polarimetric clutter information m-vector k (in the monostatic case, m = 3)
as a SIRV (Spherically Invariant Random Vector), i.e. the product between the
square root of a scalar random variable τ (texture) and an independent, zero
mean, complex circular Gaussian random vector z (speckle) and characterized
by an unknown Covariance Matrix M:

k =
√
τ z, (1)

in this model, the variable τ can represent the spatial variation of the intensity
of the wave vector k from pixel to pixel. All the polarimetric information (phase
relationships within the wave vector) is so contained only in the covariance ma-
trix M. Relatively to a given pixel (equivalently to a given τ), the wave vector
is then Gaussian.

In homogeneous and Gaussian clutter assumption, the texture τ is assumed
to be constant and to be the same for all the pixels. In that case, the statistic
of the secondary data is Gaussian and the covariance matrix (called the Sample
Covariance Matrix) can be estimated by the Maximum Likelihood (ML) Theory
with a set of N secondary data ki, i ∈ [1, N ] as:

M̂SCM =
1

N

N∑
i=1

ki k
H
i (2)

In the SIRV model, the covariance matrix is generally an unknown parameter
which can be estimated from Maximum Likelihood (ML) Theory. In [2], Gini et

al. derived the ML estimate M̂FP of the covariance matrix M for deterministic
texture, which is the solution of the following equation:

M̂FP = f(M) =
m

N

N∑
i=1

ki k
H
i

kHi M̂−1FP ki
, (3)

This approach has been used in [3] by Conte et al. to derive a recursive algo-
rithm for estimating the solution matrix MFP called the Fixed Point Covariance
matrix. This algorithm consists in computing the Fixed Point of f using the se-
quence defined by Mi+1 = f(Mi) and M0 = I. It has been shown in [2] and [3]
that the estimation scheme from (2), developed under the deterministic texture
case, yields also an Approximate ML (AML) estimator under stochastic tex-
ture hypothesis. This study has been completed by the work of Pascal et al. [4],
which recently established the existence and the uniqueness of the Fixed Point
estimator of the normalized covariance matrix, as well as the convergence of the
recursive algorithm whatever the initialization.

The aim of this proposed paper is twofold. Firstly, we propose in this paper
to briefly recall original results obtained recently in [5] for the joint Maximum
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Likelihood estimation of the texture and the polarimetric CM. These results,
based on the above Fixed Point CM estimate, allowed to derive a new distance
for SIRV CM and to propose a new technique of speckle filtering (PWF) in
heterogeneous environment. Secondly, we introduce a metric-based mean for the
space of positive-definite Hermitian covariance matrices. An emerging theory
[6–8] allows to take into account the fact that Euclidian space can not describe
the space of positive-definite Hermitian CM. Rigorously, the averaged covariance
matrix Mωl

(SCM or Fixed Point) of a H/α/A cluster l can not be computed
with the Euclidean metric, i.e. usual arithmetic mean as:

Mωl
=

1

K

K∑
k=1

Ml
k (4)

where Ml
k, k ∈ [1,K] are the K covariances matrices of all pixels belonging

to the class ωl in the H/α plane. It is well known that after few iterations of
the unsupervised classification, all the centers of class move significantly within
the H/α plane leading a more difficult physical interpretation to the final clas-
sification. The mean associated with the Riemannian metric corresponds to the
geometric mean:

Mωl
= arg min

Mω∈P(m)

K∑
k=1

∣∣∣∣∣∣log
(
MωM

l
k

−1)∣∣∣∣∣∣2
F

(5)

where ||.||F stands for the Frobenius norm and P(m) is the set of the Hermitian
definite-positive covariance matrices of size m. The solution can easily be found
using a simple gradient algorithm.

We discuss further in the paper the use of the Riemannian mean and we use
differential geometric tools to give a characterization of this mean. We can show
that the centers of class will remain more stable during the iteration process,
leading to a different interpretation of the H/α/A classification. This technique
can be applied both on classical SCM and on Fixed Point CM. Used jointly with
the Fixed Point CM estimate, this technique can give nice results when dealing
with high resolution and highly textured polarimetric SAR images classification.
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Perturbation or error bounds of various functions have been of great interest
for a long time. Mean value theorem and Taylor’s theorem come handy for this
purpose. While the former is useful in estimating ‖f(A + X) − f(A)‖ in terms
of ‖X‖ and requires the norms of the first derivative of the function, the latter
is useful in computing higher order perturbation bounds and needs norms of the
higher order derivatives of the function.

In this talk, we shall discuss derivatives of all orders of some well known
functions of matrices (determinant, permanent, tensor powers, symmetric and
antisymmetric tensor powers etc.). We shall also give norms of these derivatives
and derive their perturbation bounds using the above tools.

Keywords: Derivatives, norms, perturbation bound, determinant, permanent,
tensor power, antisymmetric tensor power, symmetric tensor power
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Abstract. Wave coupling is a phenomenon between multiple intercon-

necting domains that have one or more physical parameters getting ex-

changed at their interface. Aero-acoustic wave coupling between inter-

acting domains is due to the vibrating fluid columns at the interface. It

is due to the independently sustainable pressure fields of the individual

acoustic domains across the finite valued interface impedance. An al-

ternate model of solution to such systems begins with the representative

matrix of the set of differential equations, where the matrix has the differ-

ential coefficients as its constituent elements.[1, 2] A disordered matrix,

representing a set of coupled waveguides, i.e., acoustic streamlines, is a

common prospect of the analysis. It yields numerical instability during

application of boundary conditions leading to inaccurate prediction of

performances and, mathematically, functional discontinuities. From the

application point of view, such systems are always evaluated by the rel-

ative strength of its physical parameters across the streamline with the

help of a set of boundary conditions. The philosophy of virtual (pseudo)

boundary conditions at the intermediate nodes of the vector to con-

tain the matrix elements and thus the consequent numerical instabilities

have been discussed herewith. Physical applications with its historical

development and numerous applied insights have been provided for the

visualization of its theoretical contexts. [3, 4] So also, it verifies the effec-

tiveness of simplified algorithms/numerical schemes that can effectively

replace its complex counterparts in present day practices.[5, 6]

1 Introduction

Many of the computational and numerical analysis have working limitations.
Some of those limitations are inherent to their mathematical model and its sub-
sequent convergence. On the other hand, for some, though they are theoretically
stable and convergence is not an issue, there are practical limitations owing to
machine limitations. One such case arises from the mere sizes of numbers be-
ing generated during matrix analysis. Mathematically, astronomical sizes of the
matrix elements are not a subject of concern as long as the normalised/reduced



24

matrix has not been the subject of interest.

In matrix applications, the purpose of the matrix is purely a linear operator
that transforms the system variables/vectors across a definite space. If the prac-
ticality lies only with few elements of the vector and their relative values, the
corresponding operator, in the process, gets reduced upon the application of the
suitable boundary conditions. This is one way of normalising the system matrix.
Among many practical applications, the wave attributes of phase, impedance
or pressure perturbation across the boundary of the traversing domains are of
subjective importance. In this work, the case of multiple interacting waveguides
those interact through a weak separator has been considered. A weak separator
is technically symbolised by a low value of boundary impedance.

2 Concept

In the presented case, the reduction of the matrix by applying the boundary
conditions leads to the numerical instabilities. This error is due to the normal-
isation of the large numerical valued matrix components. The present method
works out a simplified scheme that consists of three sub-steps.

1. Splitting the system matrix to several sub-matrices through segmentation.
2. Generating the pseudo boundary conditions (as there exist no boundary

conditions physically) at the intermediate nodes of those sub-matrices.
3. Reducing the smaller sub-matrices with those pseudo boundary conditions

independently before multiplying the reduced matrices to generate the final
transfer matrix.
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Radar Doppler processing is closely related to the robust estimation of covari-
ance matrices. With the methods of information geometry, we consider all the
Toeplitz Herimitian Positive Definite covariance matrices of order n as a man-
ifold Ωn. Here, geometries of covariance matrices based on two kinds of radar
data models are presented. For the radar time series modeled by complex circu-
lar multivariate Gaussian distribution, the robust distance between two Radar
Hermitian SPD (Symmetric Positive Definite) matrices is derived with the the-
ory of information geometry. For the radar time series modeled by a complex
autoregressive process, Kahler geometry is introduced and the coordinate of Ωn
is parameterized by the reflection coefficients G = [P0 µ1 · · · µn], which are de-
rived from maximum entropy method of Doppler spectral analysis and uniquely
determined by the covariance matrix of radar time series. Based on Affine Infor-
mation Geometry theory, Kahler metric on G is defined by the Hessian of Kahler
potential function given by entropy of autoregressive process and the distance
between any two autoregressive models is derived. Hence, the Doppler entropy
for a radar cell is defined by the distance between regularized maximum order
autoregressive model (maximum Doppler lines) and the autoregressive model of
order 1 (minimum Doppler lines). Finally, a radar detector based on Doppler
entropy assessment is proposed. This advanced Doppler processing chain will be
implemented by GPU processing for wake vortex real time monitoring in the
airport.

Keywords: Information Geometry, Kahler Geometry, Wake Turbulence, Radar
Monitoring



Computational Information Geometry on Matrix

Manifolds

Frank Nielsen
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In this talk, I will illustrate information-theoretically flavored algorithmic meth-
ods on the space of symmetric positive definite (SPD) matrices. SPD matrices
occur as tensors in many science and engineering fields such as materials sci-
ence, image analysis, statistics, finance, machine learning, radar, and robotics,
just to name a few. The space of SPD matrices can be endowed with a geometric
structure in several ways: vector space, Riemannian space (Lie group), and more
broadly under the framework of differential information geometry (Finsler space,
etc).
We shall focus on the matrix information manifolds implied by a divergence func-
tion, representing the dissimilarity measure of matrices. Three classes of generic
divergences built on top of a convex contrast function, termed Csiszár, Burbea-
Rao, and Bregman divergences, and their interactions will be discussed. We then
present basic algorithmic tools for processing and characterizing efficiently finite
sets of SPD matrices: center points, clustering, and Voronoi diagrams.
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Bregman divergences are a key component of information geometry ([1],[2]), for
which it has been formally shown that they shape supervised and unsupervised
classification to such a precision that they bring remarkable design capabilities
and analyses for algorithms ([11, 9, 10]). Pioneered by earlier works on quantum
entropy [12], more recent works have begun to extend Bregman divergences to
handle linear operators ([5, 7, 13, 14]). In a first part of this talk, I will review and
compare some possible matrix-based extensions of Bregman divergences, two of
the main being ([4, 7, 14]):

Dψ(L||N) = Tr (Dψ) + λ>(I−Q)ν̃ , (1)

Dψ(L||N) = Tr (DψQ) , (2)

where Q is a particular doubly stochastic matrix, Dψ is a matrix collecting Breg-
man divergences between eigenspectra, and λ, ν̃ are vectors related to eigenval-
ues of L,N (respectively). Divergences like von Neumann divergences, Umegaki’s
relative entropy, logdet divergence or Mahalanobis divergences can be brought in
such forms. In the meantime, algorithms known as on-line learning algorithms,
one of the best examples of a sophisticated mix between (Bregman divergences-
based) geometric and algorithmic features, have gradually been tailored ([6, 15])
to crafting portfolios in a theory pioneered by Harry Markowitz more than fifty
years ago ([8]). Markowitz narrowed down the traditional expected utility model
and assumed that investors only care for mean and variance. The mean-variance
portfolio theory was born. Recently, authors have begun to show that the mean-
variance theory is in fact a particular case of a mean-divergence theory ([3]),
which calls to exponential families of distributions to model a market’s behav-
ior (and not simply Gaussians, that fit to Markowitz model), and, hence, to
Bregman divergences to model distortions between the market’s “natural” and
observed behaviors.
In a second part of this talk, I will present the basics of the model, in particular
when observed behaviors are matrices. Connection with on-line learning algo-
rithms for matrix data shall also be presented, calling to results and algorithms
of ([14, 7]).
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Let G be a simple graph on vertices 1, . . . , n. The adjacency matrix A(G) (or A)
of G is a n×n matrix with (i, j)-th entry aij = 1 if i is adjacent to j (i ∼ j) and
aij = 0 otherwise. The Laplacian matrix L(G) (or L) is defined as D − A(G),
where D is the diagonal degree matrix of G.

• It is known that L = QQt, where Q is the vertex-edge incidence matrix. For
any vector x we have xtLx =

∑
i∼j

(xi − xj)2. The Laplacian matrix is a positive

semidefinite matrix. The smallest eigenvalue λ1(L) = 0 and 11, the vector of all
ones, is a corresponding eigenvector.

• Fiedler [6] observed that the second smallest eigenvalue λ2(L) is positive if and
only if G is connected. He termed this eigenvalue as the algebraic connectivity
of G viewing it as an algebraic measure of the connectivity of the graph. The
corresponding eigenvectors of L are popularly known as the Fiedler vectors of
G.

• Many researcher have studied different properties and applications of L(G). We
refer the reader to the survey article by Merris [12] and references therein for a
general background. It is said [9] that “λ2(L(G)) is a measure of the stability
and the robustness of the network dynamic system”.
We shall note here a few interesting results relating Laplacian matrix with the
graph structure.

• [G. Kirchhoff, Anal. Phys. Chem, 1847] Let L(i|j) denote the submatrix ob-
tained from L by deleting row i and column j. Then (−1)i+j detL(i|j) is the
number of spanning trees in G.

• [Fiedler, 1975] Let G be a connected graph. Let Y be a Fiedler vector. Then
the subgraph induced by the vertices v in G for which Y (v) ≥ 0 is connected and
the subgraph induced by the vertices v in G for which Y (v) ≤ 0 is connected.
Let G be a connected graph and Y a Fiedler vector. We call v a characteristic
vertex if Y (v) = 0 and Y (w) 6= 0 for some vertex w. We call an edge uv a char-
acteristic edge if Y (u)Y (v) < 0. The characteristic set C(G, Y ) is the collection
of all characteristic elements.

• [10, 3] Let G be a connected graph and Y a Fiedler vector. Then any two
characteristic elements lie on a simple cycle which contains no more characteristic
elements. Either C(G, Y ) is a single vertex or it is contained in a block B of G.
In the first case C(G,X) = {v}, for any Fiedler vector X and in the second case
C(G,X) is contained in B for any Fiedler vector X.

• [7, 11, 3] Let T be a tree and Y a Fiedler vector. Suppose that C(T, Y ) = {k}.
Let P be a path that starts from k. Then (i) either Y (vi) > 0, increase and
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concave down along P , (ii) or Y (vi) < 0, decrease and concave up along P , (iii)
or Y (vi) = 0, along P . A similar statement can be made when C(T, Y ) is an
edge.
Extremizing algebraic connectivity among graphs with some graph theoretic
constraints have drawn a good amount of attention, see for example [5, 8, 13, 14].

• Let T be a tree, k it’s characteristic vertex and B a branch at a vertex u
which does not contain k (a component of T − u not containing k). Let w
be the vertex of B adjacent to u; v be a vertex in T such that v

∑
u and

dist(k, v) = dist(k, u) + 1. Put T ′ = T − uw + vw. Then λ2(L(T ′)) ≤ λ2(L(T )).
That is, the algebraic connectivity decreases if move the branch B away from
the characteristic set.
More general results can be found in [2].
The concept of ‘resistance distance’ has been studied by many researchers, see
for example [1] and the references therein. Let M = L+, the Moore-Penrose
inverse of L. The resistance distance between i and j is defined as r(i, j) =
mii + mjj − 2mij . Let R denote the matrix with entries r(i, j). We note a few
known results below.

• Let G be a connected graph. Then r(i, j) ≤ dist(i, j), equality holds if and
only if there is a unique i-j-path. Furthermore, r(i, j)+r(j, k) ≥ r(i, k) (triangle
inequality).

• R−1 = − 1
2L+ 1

τtRτ ττ
t, where τi = 2−

∑
j∼i

r(i, j). Generalizes inverse of distance

matrix for a tree, as dist(i, j) = r(i, j) holds for trees.

• Let G be connected and i ∼ j. Denote k(G) the number of spanning trees in
G and by k′(G) the number of spanning trees in G containing ij. Then r(i, j) =
k′(G)
k(G) .

• Let G be connected and λi denote the ith smallest Laplacian eigenvalue of G.

Then
∑
i

∑
j

r(i, j) = 2
n∑
i=2

1
λi

.
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Over the last 30 years, there was an explosion of imaging modalities allows ob-
serving both the anatomy in vivo and in situ at multiple spatial scales (from
cells to the whole body), multiple time scales (beating heart, growth, aging,
evolution of species), and on multiple subjects. The combination of these new
observation means and of the computerized methods is at the heart of compu-
tational anatomy, an emerging discipline at the interface of geometry, statistics
and image analysis which aims at developing algorithms to model and analyze
the biological shape of tissues and organs. The goal is to estimate representative
organ anatomies across diseases, populations, species or ages, to model the organ
development across time (growth or aging), to establish their variability, and to
correlate this variability information with other functional, genetic or structural
information (e.g. fiber bundles extracted from diffusion tensor images). From an
applicative point of view, a first objective is to understand and to model how
life is functioning at the population level, for instance by classifying patholo-
gies from structural deviations (taxonomy). A second application objective is to
better drive the adaptation of generic models of the anatomy (atlas) into patient-
specific data (personalization) in order to help therapy planning (before), control
(during) and follow-up (after).
Understanding and modeling the shape of organs is made difficult by the absence
of physical models for comparing different subjects, the complexity of shapes,
and the high number of degrees of freedom implied. The general method is to
identify anatomically representative geometric features (points, tensors, curves,
surfaces, volume transformations), and to describe and compare their statistical
distribution in different populations. As these geometric features most often
belong to manifolds that have no canonical Euclidean structure, we have to
rely on more elaborated algorithmic basis. The Riemannian structure proves
to be a powerful and consistent framework for computing simple statistics on
finite dimensional manifolds [7, 8] and can be extend to a complete computing
framework on manifold-valued images [9]. For instance, the choice of a convenient
Riemannian metric on the space of positive define symmetric matrices (tensors)
allows to generalize consistently to tensor fields many important geometric data
processing algorithms such as interpolation, filtering, diffusion and restoration
of missing data. This framework is particularly well suited to the statistical
estimation of Diffusion Tensor Images [5], and can also be used for modeling the
brain variability from sulcal lines drawn at the surface of the cerebral cortex [4].
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To move from simple point-wise features to curves, surfaces and deformations,
we believe that the embedding vector space of currents provide an interest-
ing computational environment. It was introduced in the field by Glaunes and
extended by Durrleman [2, 1] to a generative shape model which combines a
random diffeomorphic deformation model a la Grenander & Miller, that encodes
the geometric variability of the anatomical template, with a random residual
shape variability model (a la Kendall) on the deformed template. We applied
the efficient algorithmic toolbox developed for handling statistics on currents to
the analysis of the shape of the right ventricle of the heart in a population of
Tetralogy of Fallot patients The resulting statistical model of the remodeling
of the ventricle during growth turns out to have an anatomically meaningful
interpretation [6]. The extensions of this type of methodology to longitudinal
evolution estimations in populations is currently one of the most active topic
in computational anatomy. We present here a simple model where we combine
a static inter-subject change of coordinate system with a time-warp to trans-
form the generic scenario of deformation at the population level to the subject
specific longitudinal observations. When applied to different species (here bono-
bos vs chimpanzees) or to diseases (autism vs control), this model suggests that
the change in the speed of evolution might be more important than the shape
differences [3].
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This article proposes an application of fast fixed-point Singular Value Decompo-
sition (SVD) algorithm for face and eye tracking in real-time. The application is
meant for on-board detection and classification of drowsiness and loss of atten-
tion of human drivers from the ocular features such as PERCLOS (PERcentage
CLOSure of eyes) and saccadic (quick) movement of iris.There is an increasing
trend in accidents on road due to drowsiness and loss of attention. Non in-
trusive drowsiness detection system will be effective for alerting drowsy vehicle
drivers. PERCLOS has been a standard parameter to indicate drowsiness. How-
ever, recently saccadic movements have been reported to carry vital information
during early stages of drowsiness. For measurement and quantification of these
parameters we propose eigen space based classification of the eye images so as to
determine the state of eyelids (fully open, partially open or closed) and state of
iris (left, right, centre ) with respect to incoming frames with time.The follow-
ing issues need to be considered while implementing the system on a real-time
embedded platform.
1. Response time and power consumption of the embedded system
2. Vibration and noise problems in the vehicle
3. Variation of illumination level during operation The system is expected to

Fig. 1: Block diagram of the proposed system
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operate in two phases i.e. training or customization and operation or detection.
While in training phase (Path 1, fig. 1) the subject is expected to position him-
self in front of the camera as per the automated instructions such that a set
of different face and eye positions are acquired. Eigen eye space is created on-
line using fast fixed-point SVD algorithm from the training set. In detection
phase (Path 2, fig. 1) test image is projected on to the eigen space and weight
vectors obtained are used for detecting face. Similarly we can detect eyes also.
The weight vectors of eyes obtained are compared for eye classification. Similar
method is applied for iris detection and classification.The following variants of
SVD algorithm with floating-point format have been tested for the purpose.
1. Jacobi Method 2. QR Like Algorithm 3. Golub-Kahan-Reinsch Algorithm
4. Tridiagonalization and Symmetric QR Iteration [ alternatively Divide-and-
Conquer Method or Bisection and Inverse Iteration may be used]Eye detection
algorithms have been implemented in single board computer (SBC) and in smart
camera NI 1742. Fixed-point implementation of SVD algorithm was carried out
in DSP (TMS320C55XX). Eye detection with spectacles needs to be explored
further.
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Recently, a general scheme of particle filtering on Riemannian manifolds has
been proposed in [1]. In addition to the nonlinear dynamics, the system state
is constrained to lie on a Riemannian manifold M, which dimension is much
lower than the whole embedding space dimension. The Riemannian manifold
formulation of the state space model avoids the curse of dimensionality from
which suffer most of the particle filter methods. Furthermore, this formulation is
the only natural tool when the embedding Euclidean space cannot be defined (the
state space is defined in an abstract geometric way) or when the constraints are
not easily handled (space of positive definite matrices). In order to illustrate the
effectiveness of the proposed differential-geometric framework, we consider the
problem of visual tracking. The specificity of our modeling is the extension of the
hidden state (velocity and position) by jointly estimating the state covariance.
As the state covariance is a positive definite matrix, the Euclidean space is not
suitable when tracking this covariance. Instead, one should exploit the differential
geometric properties of the space of positive definite matrices, by constraining the
estimated matrix to move along the geodesics of this Riemannian manifold. The
proposed sequential Bayesian updating consists thus in drawing state samples
while moving on the manifold geodesics.

1 Particle filtering on Riemannian manifolds

The aim of this section is to propose a general scheme for the extension of the
particle filtering method on a Riemannian manifold. The hidden state x is con-
strained to lie in a Riemannian manifold (M, g,∇) endowed with a Riemannian
metric g and an affine connection ∇. The system evolves according to the fol-
lowing nonlinear dynamics:

{
xt ∼ px(xt | xt−1, ut) , x ∈M
yt ∼ py(yt | xt, ut),

(1)

where the Markov chain (random walk) px(xt | xt−1, ut) on the manifold M is
defined according to the following generating mechanism:

1. Draw a sample vt on the tangent space Txt−1M according to a pdf pv(.).
2. x is obtained by the exponential mapping of vt according to the affine con-

nection ∇.
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In other words, a random vector vt is drawn on the tangent space Txt−1M
by the usual Euclidean random technics. Then, the exponential mapping allows
the transformation of this vector to a point xt on the Riemannian manifold. The
point xt is the endpoint of the geodesic starting from xt−1 with a random initial
velocity vector vt.

As a generating stochastic mechanism is properly defined on the manifold,
the particle filtering is naturally extended. It simply consists in propagating the
trajectories on the manifold by the random walk process, weighting the particles
by the likelihood function and sampling with replacement.

Based on particle trajectories {x̂(i)
0:T }, classical particle filtering algorithm

provides a simple way to approximate point estimates. In fact, any quantity of
interest h(x) can be estimated by its a posteriori expectation, minimizing the
expected mean square error. The empirical mean of the transformed particles
h(x(i)

t ) represents an unbiased Mont-Carlo estimation of the a posteriori ex-
pectation. Averaging in the manifold context is no more a valid operation: The
empirical mean could be located outside the manifold or the averaging itself
does not have a meaning in the absence of a summation operator on the mani-
fold. In order to obtain a valid point estimate, one should rather minimize the
mean square error, where the error is evaluated by the geodesic distance D on
the manifold (related to the connection ∇). Following the work of Fréchet [2],
the point estimate can be defined by the intrinsic mean (also called Riemannian
barycenter). The intrinsic mean has the following expression:

x̂t = arg minxt∈M E
[
(D(xt, st))2] = arg minxt∈M

∫
(D(xt, st))2p(st | y1..T )dµst

where the expectation operator is computed with respect to the a posteriori
probability density p(st | y1..T ) and a dominating measure dµ.

This seminar will illustrate the effectiveness of the geometric filtering frame-
work in visual tracking, where the state to be estimated is the motion affine
transformation [4].
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Abstract. Spectrum sensing is one of the most important components in
any cognitive radio system that allows usage of the underutilized portions
of the radio spectrum. First worldwide standard for cognitive radios to
operate in the recently available TV bands is being formulated by IEEE
802.22 Working Group. For this standard to succeed, it is necessary that
the presence of TV signals is detected using a reliable sensing mech-
anism. Spectrum sensing algorithm using statistical covariance and its
variants have attracted lot of attention recently. Spectrum sensing al-
gorithms based on statistical covariances ([1]) have advantages over the
conventional approach based on energy detection. Covariance based sig-
nal detection does not require apriori knowledge of noise power. Spectral
covariance of the received signal for signal detection was proposed in [2].
The proposed algorithm exploits statistical correlation of the signal, in
particular the pilot signal in frequency domain. Detection performance of
this technique shows improved sensitivity compared to other pilot detec-
tion algorithms. The properties of the eigenvalue of the covaraince matrix
have also been used to detect the presence of radio signal. Random ma-
trix theory has been employed to derive the probability of false alarm and
probability of missed detection for eigenvalue based signal sensing. In this
paper we propose to discuss different spectrum sensing approaches based
on statistical covariance matrix and compare the performance metrics of
each approach. Further, we will also suggest techniques to improve the
performance of covariance based spectrum sensing approach. Techniques
to apply these alogrithms to a wider class of signals will also be discussed
in this paper.

1 Introduction

Explosive growth in the number of wireless devices operating in the unlicensed
as well licensed bands has resulted in severe shortage of radio spectrum. The
multitude of wireless networks and protocols (e.g., Wi-Fi, Bluetooth, WiMax
etc.) operating in the unlicensed bands and vying for their share of the spectrum
has lead to interference and performance degradation for all the users. However,
recent studies by the Federal Communication Commission (FCC) [3] in US and
OFCOM have shown that at any given time and in any given geographic locality,
less than 10% of the available spectrum in the licensed band is utilized. To exploit
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these under utilized parts of the spectrum (also referred to as white spaces or
spectrum holes), the FCC has advocated development of a new generation of
programmable, smart radios that can dynamically access various parts of the
spectrum, including the licensed bands. Such radios would operate as secondary
users in the licensed bands. These radios are required to possess the capabilities
of spectrum usage sensing, environment learning and interference avoidance with
the primary users of the licensed spectrum bands while simultaneously ensuring
the quality of service (QoS) requirements of both the primary and secondary
users. Radios with such capabilities are referred to as cognitive radios (CRs).

2 Signal Model

In a single radio based sensing approach, even the weak signals must be detected
to avoid causing interference to primary receivers within its transmission zone.
The basic hypothesis problem for transmitter detection is usually formulated as:

x(t) =

{
n(t) H0,

h · s(t) + n(t) H1

(1)

where x(t) is the signal received by the cognitive radio, s(t) is the transmitted
signal of the primary user, n(t) is the Additive White Gaussian Noise (AWGN)
and h is the amplitude gain of the channel. For the theoretical analysis we assume
h is equal to one for simplicity. H0 is the null hypothesis for the scenario that
there is no primary user on the channel. H1 is the alternative hypothesis that
there exists a primary user currently transmitting on the channel. In general,
by increasing the duration of time (up to a certain extent) for which the test
statistics is averaged, the hypothesis can be tested arbitrarily well. The prob-
abilities of interest for spectrum sensing are the probability of detection (Pd),
which defines, at hypothesis H1, the probability of sensing algorithm having de-
tected the presence of the primary signal and the probability of false alarm (Pfa),
which defines, at hypothesis H0, the probability of sensing algorithm detecting
the presence of the primary signal.
The statistical covariance matrix is computed based on the received signal x(t).
The test statistics are derived based on the difference in the correleation prop-
erties of the signal and noise.
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