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Abstract—We present a generalization of Bregman Voronoi
diagrams induced by a Bregman divergence acting on a
representation function. Bregman divergences are canonical
distortion measures of flat spaces induced by strictly con-
vex and differentiable functions, called Bregman generators.
Considering a representation function further allows us to
conveniently embed the not necessarily flat source space into
a dually flat space for which the dual Voronoi diagrams
can be derived from an equivalent power affine diagram.
We explain the fundamental dualities induced by the pair of
Legendre convex conjugates coupled with a pair of conjugate
representations. In particular, we show that Amari’s celebrated
family of α-divergences and Eguchi and Copas’s β-divergences
are two cases of representational Bregman divergences that are
often considered in information geometry. We report closed-
form formula for their centroids and describe their dual
Voronoi diagrams on the induced statistical manifolds.

Keywords-Voronoi diagrams, centroids, power diagrams,
Bregman divergences, f -divergences, α-divergences, β-
divergences.

I. INTRODUCTION AND PRIOR WORK

Let P = {P1, ..., Pn} ∈ X be a finite point set with
respective vector coordinates p1, ...,pn ∈ Rd in a given
Cartesian frame. The Voronoi diagram partitions the space
according to proximal regions vor(Pi) defined with respect
to a distance function D as

vor(Pi) = {X ∈ X | D(X,Pi) ≤ D(X,Pj) ∀j 6= i}.

The ordinary Voronoi diagram in Euclidean geometry is
defined for the d-dimensional Euclidean distance

D(X,Y ) = ‖x− y‖ =

√√√√ d∑
i=1

(xi − yi)2.

Note that the ordinary Voronoi diagram is the same for any
monotonously increasing function of the chosen distance
function D(·, ·). Thus the ordinary Voronoi diagram can also
be defined equivalently for the squared Euclidean distance
D′(X,Y ) =

∑d
i=1(xi − yi)2 = D2(X,Y ).

Voronoi diagrams are fundamental data-structures of com-
putational geometry [1]. They have been generalized by
considering various types of objects (e.g., segments) and
distances (e.g., Lp metrics). Leibon and Letscher [2] studied
the Voronoi diagram in Riemannian geometry. Onishi and

Imai [3], [4] considered the Voronoi diagram from the stand-
point of information geometry [5]. Information geometry
is primarily concerned with the intrinsic geometries of the
statistical manifold of probability distributions; The funda-
mental distance measuring the separation of two probability
distributions with densities p(x) and q(x) (interpreted as two
points P and Q of the statistical manifold) is the Kullback-
Leibler (KL) divergence:

KL(P ||Q) = KL(p(x)||q(x)) =
∫
x

p(x) log
p(x)
q(x)

dx ≥ 0.

For discrete probability measures with mass functions {pi}i
and {qi}i interpreted as d-dimensional points of Rd+,∗, the
discrete KL divergence is defined as

KL(P ||Q) = KL({pi}i||{qi}i) =
d∑
i=1

pi log
pi
qi
≥ 0.

Onishi and Imai [3], [4] studied the dual Voronoi diagrams
induced by a general distortion measure (called a divergence
that is not necessarily symmetric nor satisfying the triangle
inequality) using the framework of information geome-
try [5]. This seminal study was further refined by Nielsen et
al. [6], [7] under the framework of Bregman divergences [8]
that induces all dually flat geometries, including the self-dual
Euclidean geometry. Note that 2D Voronoi diagrams can
be interactively rasterized [9] using the graphics processor
(GPU).

In this paper, we further extend the study of Voronoi
diagrams in information-theoretic spaces. We first present
in Section II the notion of Bregman divergences coupled
with a pair of conjugate representation functions. We show
that non-flat geometries induced by α-divergences [5] and
β-divergences [10] can be cast into this Bregman repre-
sentational framework. Section III describes the notion of
generalized Bregman centroids, and reports closed form
solutions for α-means [11] and β-means [10]. Section IV
generalizes the Bregman Voronoi study of Nielsen et al. [6],
[7] to the case of dual representational Bregman Voronoi
diagrams.



II. GENERALIZING BREGMAN DIVERGENCES

A. Bregman divergences and dually flat spaces

Let F be a strictly convex and differentiable function:
F : Rd → R. The Bregman divergence [8] between any two
vector points p and q associated with the generator F is

BF (p||q) = F (p)− F (q)− 〈p− q,∇F (q)〉, (1)

where ∇F (x) denote the gradient of F at x = [x1 ... xd]T .
Choosing F (x) = xTx =

∑d
i=1 x

2
i yields the squared Eu-

clidean distance: ‖p− q‖2. Setting F (x) =
∑d
i=1 xi log xi

(the Shannon’s negative entropy) yields the Kullback-Leibler
divergence (KL):

∑d
i=1 pi log pi

qi
+qi−pi also known as the

relative entropy.
The divergence BF can be written in a dual form using

Legendre transformation. Let x∗ = ∇F (x) be the one-to-
one mapping defining another (non-linear) dual coordinate
system in Rd. The dual Bregman generator

F ∗(x∗) = max
x∈Rd
{〈x,x∗〉 − F (x)}

is convex in x∗, and called the Legendre convex conjugate
F ∗. Strict convexity and differentiability is required in order
to have the involution property F ∗∗ = F . Note that we have
∇F ∗ = (∇F )−1, see [6].

Thus the Bregman divergence originally defined by a
convex generator F in Eq. 1, can be rewritten into a
canonical form emphasizing on the convex conjugates F
and F ∗ (with x∗ = ∇F (x)):

BF (p||q) = F (p) + F ∗(q∗)− 〈p,q∗〉. (2)

It follows a dual divergence BF∗ such that BF (p||q) =
BF∗(q∗||p∗).

The two coordinate systems x and x∗ define a dually
flat structure in Rd such that c(λ) = (1 − λ)p + λq is
the F -geodesic and c∗(λ) = (1 − λ)p∗ + λq∗ is the dual
F ∗-geodesic passing through P and Q, two “straight” lines
with respect to the dual coordinate system x/x∗. These two
dual geodesics coincide only for the generalized quadratic
generator F (x) = xTAx, where A � 0 is a positive-definite
matrix. In this case, we obtain the classical Euclidean
geometry (self-dual geodesics for F (x) = 1

2x
Tx = F ∗(x∗)

since ∇F (x) = x). See [5].

B. Representation functions and generalized Bregman diver-
gences

For sake of simplicity, consider decomposable Bregman
divergences:

BF (p||q) =
d∑
i=1

BF (pi||qi),

where BF (p||q) is a 1D Bregman divergence acting on
scalars. With a slight abuse of notation, we write F (x) =

∑d
i=1 F (xi) for a decomposable generator F . Consider a

strictly monotonous representation function k(·) that may
introduce a non-linear coordinate system xi = k(si) (and
x = k(s) = [k(s1) ... k(sd)]T ), where s = [s1 ... sd]T

denote the source coordinate system. Since k(·) is strictly
monotonous, the mapping is bijective and si = k−1(xi)
(with s = k−1(x)). We have the Bregman generator

U(x) =
d∑
i=1

U(xi) =
d∑
i=1

U(k(si)) = F (s)

with F = U ◦ k. The dual 1D generator

U∗(x∗) = max
x
{xx∗ − U(x)}

induces the dual coordinate system x∗i = U ′(xi), where U ′

denotes the derivative of U . We note for short ∇U(x) =
[U ′(x1) ... U ′(xd)]T . The dual separable generator is

U∗(x∗) =
d∑
i=1

U∗(x∗i ),

and the canonical separable representational Bregman diver-
gence follows

BU,k(p||q) = U(k(p)) + U∗(k∗(q∗))− 〈k(p), k∗(q∗)〉,
(3)

with k∗(x∗) = U ′(k(x)). This is in essence “quite” identical
to Eq. 2 by setting F = U ◦ k. However it turns out that
although U is a strictly convex and differentiable function
and k a strictly monotonous function, F = U ◦k may not be
strictly convex (e.g., the α-divergences described in Table I).

We can restate the representational Bregman divergence
using a single coordinate system with a k-representation
following Eq. 1

BU,k(p||q) = U(k(p))−U(k(q))−〈k(p)− k(q),∇U(k(q))〉 .
(4)

This is the Bregman divergence acting on the k-
representation:

BU,k(p||q) = BU (k(p), k(p)). (5)

Note that for Bregman divergences of Eq. 1 with iden-
tity representation function k(·), the dual representation
k∗(x∗) = ∇F (x) is not anymore the identity function. Thus
function k(·) can be seen as a (non-linear) embedding of the
source space into a dually flat space. In particular, we show
next that the renown α-divergences [5] fit this generalization,
although these divergences are characterized by constant cur-
vature geometries [12]. It follows the dual representational
divergence is BU∗,k∗(p∗||q∗) = BU,k(q||p).



C. Information geometry, α-divergences and β-divergences

In information geometry, α-divergences [5] on positive
arrays (unnormalized discrete probabilities) are defined for
α ∈ R as

Dα(p||q) =



∑d
i=1

4
1−α2

(
1−α

2 pi + 1+α
2 qi − p

1−α
2

i q
1+α

2
i

)
α 6= ±1∑d

i=1 pi log pi
qi

+ qi − pi = KL(p||q)
α = −1∑d

i=1 qi log qi
pi

+ pi − qi = KL(q||p)
α = 1

(6)

Amari’s α-divergences are dual in the sense that
Dα(p||q) = D−α(q||p). These divergences are a special
case of Csiszár f -divergences [13] associated to any convex
function f satisfying f(1) = f ′(1) = 0

Cf (p||q) =
d∑
i=1

pif

(
qi
pi

)
. (7)

Indeed letting f be the parametric family of functions in
Eq. 7 be

fα(x) =
4

1− α2

(
1− α

2
+

1 + α

2
x− x

1+α
2

)
(8)

yields the formula of Eq. 6 of α-divergences. These α-
divergences have proven useful in statistics [5]. Table I
presents these α-divergences as representational Bregman
divergences. Note that Fα = Uα ◦ kα = 2

1+αx and
F ∗α = F−α = U−α ◦ k−α = 2

1−αx. These functions are
not Legendre conjugates since they are not strictly convex.
Indeed, these functions are only linear, and the Legendre
transform is ill-defined. However, the functions Uα and U∗α
are proper Legendre convex conjugates. Thus the non-linear
α-embedding obtained by using the kα-representation allows
one to embed the α-geometry into a dually flat space. Note
that kα is a strictly monotonous increasing function.

Another important class of parameterized divergences are
the family of β-divergences that have proven handy for
robust estimations in statistics [14]. The β-divergences [10]
are defined on positive arrays as

Dβ(p||q) =


∑d
i=1 qi log qi

pi
+ pi − qi = KL(q||p)

β = 0∑d
i=1

1
β+1 (pβ+1

i − qβ+1
i )− 1

β qi(p
β
i − q

β
i )

β > 0
(9)

β-divergences are also representational Bregman diver-
gences as shown in Table I (with U0(x) = expx). Note that
Fβ(x) = 1

β+1x
β+1 and F ∗β (x) = xβ+1−x

β(β+1) are degenerated

to linear functions for β = 0, and that kβ is a strictly
monotonous increasing function.

Lemma 1: The α-divergences and β-divergences are rep-
resentational Bregman divergences. Their underlying geome-
tries can be embedded into dually flat spaces.

III. CENTROIDS AND BARYCENTERS

The centroids (and barycenters) with respect to represen-
tational Bregman divergences are generalized means [15],
[11] that let intervene both the potential function and the
representation function. The right-sided barycenter bR and
the left-sided barycenter bL of n points p1, ...,pn with
associated weights w1, ..., wn (such that ‖w‖ = 1 and all
wi ≥ 0) are the unique minimizers

bR = arg min
c∈X

n∑
i=1

wiBU,k(pi||c), (10)

bL = arg min
c∈X

n∑
i=1

wiBU,k(c||pi). (11)

It follows from [15] that the right-sided and left-sided
barycenters are respectively a k-mean, and a ∇F -mean (for
stricly convex F = U ◦ k) or the k-representation of a ∇U -
mean (for degenerated F = U ◦ k):

bR = k−1

(∑
i

wik(pi)

)
, (12)

bL = k−1

(
∇U∗

(∑
i

wi∇U(k(pi))

))
(13)

Proof:

min
c

1
n

∑
i

BU,k(pi||c)

≡ min
c

1
n

∑
i

U(k(pi))− U(k(c))

−
∑
i

〈k(pi)− k(c),∇U(k(c))〉

≡ min
c
−U(k(c))−

〈
1
n

∑
i

k(pi)− k(c),∇U(k(c))

〉

≡ min
c
BU,k

(
1
n

∑
i

k(pi)||k(c)

)
≥ 0

It follows that this is minimized for k(c) = 1
n

∑
i k(pi)

since BU,k(p||q) = 0 iff. p = q. Since k is strictly
monotonous, we get c = k−1( 1

n

∑
i k(pi)).

Note that k−1 ◦ U−1 = (U ◦ k)−1 so that bL is
merely a (U ◦ k)-mean in general. Again in case F is not
strictly convex, we need to consider the U -mean on the k-
representation (e.g., α-means). The symmetrized barycenter
can be computed using the similar bisection search described
in [15]. This allows us to easily get closed form solutions



α Left-sided Right-sided

α = −1 (KL)

α = − 1
2

α = 0 (squared Hellinger)

α = 1
2

α = 1 (KL∗)

Figure 1. Voronoi diagrams for the family of α-divergences. The right-sided (resp. left-sided) Voronoi diagram is affine for α = 1 (resp. α = −1).



β Left-sided Right-sided

β = 0 (KL)

β = 1

β = 2

Figure 2. Voronoi diagrams for the family of β-divergences. The right-sided Voronoi diagram is affine.



Divergence Convex conjugate functions Representation functions

Bregman divergences U k(x) = x

BF , BF∗ U ′ = (U∗′)−1

U∗ k∗(x) = U ′(k(x))

α-divergences(α 6= ±1) Uα(x) = 2
1+α

( 1−α
2
x)

2
1−α kα(x) = 2

1−αx
1−α

2

Fα(x) = 2
1+α

x U ′α(x) = 2
1+α

( 1−α
2
x)

1+α
1−α

F ∗α(x) = 2
1−αx U∗α(x) = 2

1−α ( 1+α
2
x)

2
1+α = U−α(x) k∗α(x) = 2

1+α
x

1+α
2 = k−α(x)

β-divergences(β > 0) Uβ(x) = 1
β+1

(1 + βx)
1+β
β kβ(x) = xβ−1

β

Fβ(x) = 1
β+1

xβ+1 U ′β(x) = (1 + βx)
1
β U∗β

′(x) = xβ−1
β

F ∗β (x) = xβ+1−x
β(β+1)

U∗β (x) = xβ+1−x
β(β+1)

k∗β(x) = x

Table I
EXAMPLES OF REPRESENTATIONAL BREGMAN DIVERGENCES WITH THEIR CONJUGATE REPRESENTATION FUNCTIONS.

for the left/right sided α-means and β-means, extending the
seminal result of Amari on α-means [11] (see Table II). For
example, for α 6= 1, we have kα(x) = 2

1−α (x
1−α

2 − 1) and
k−1
α (y) = (1 + 1−α

2 y)
2

1−α . Applying the generalized right-
sided centroid mean formula, we get

c = k−1

(
1
n

n∑
i=1

k(pi)

)
(14)

=

(
1 +

1− α
2

1
n

2
1− α

n∑
i=1

(p
1−α

2
i − 1)

) 2
1−α

(15)

= n−
2

1−α

(
n∑
i=1

p
1−α

2
i

) 2
1−α

(16)

which corresponds to the α-means of Amari [11]. Our
method yields a short proof of Theorem 2 of [11].
α-means are thus generalized means that are written
as k−1

α ( 1
n

∑
i kα(pi)). Note that since Dα(p||q) =

D−α(q||p), we have the left-sided α-mean is a right-sided
−α-mean, and vice-versa. Similarly, the right-sided β-means
is a generalized mean obtained for kβ(x) = xβ−1

β and

k−1
β (x) = (1 + βx)

1
β . Note that we obtain the same right-

sided means for the α-means and β-means by taking β =
1−α

2 . Having these generalized Bregman centroids defined,
we can further extend1 the Bregman k-means centroid-
based clustering method [17] to that class of representational
distortion measures, by first transforming the point set P to
its k-representation Pk = {k(p1), ..., k(pn)}.

1Furthermore, the remarkable bijection [16] of regular Bregman diver-
gences with regular exponential families [16] extends to these embedded
representations. (Straightforwardly, we get the notions of representational
exponential families with the soft expectation-maximization clustering tech-
nique computed as a soft Bregman clustering on the embedded datasets.)

IV. REPRESENTATIONAL BREGMAN VORONOI
DIAGRAMS

Since the distance is an asymmetric divergence
(D(P ||Q) 6= D(Q||P ) with D = BU,k), we distinguish
two left-sided and right-sided Voronoi diagrams defined by
their Voronoi cells [6]:

vorR(Pi) = {X | D(X||Pi) ≤ D(X||Pj) ∀j 6= i},
vorL(Pi) = {X | D(Pi||X) ≤ D(Pj ||X) ∀j 6= i},

For a representational Bregman divergence, we have

D(k(p)||k(q)) = D∗(k∗(q∗)||k∗(p∗)),

so their the Voronoi diagrams have the same combinatorial
complexity (mapping k(·) is monotonous). Thus, we focus
w.l.o.g. in the following on the right-sided Voronoi diagram.

A. Generalized Bregman Voronoi diagrams as lower en-
velopes

Voronoi diagrams can be obtained as minimization dia-
grams [1]:

min
i∈{1,...,n}

BU,k(x||pi).

This minimization diagram is equivalent to mini fi(x) with

fi(x) = 〈k(pi)− k(x),∇U(k(pi))〉 − U(k(pi)).

The functions fi’s are linear in k(x) and denote hyper-
planes. Thus by mapping the points P to the point set
Pk, we obtain an affine minimization diagram that can be
computed from the optimal half-space intersection algorithm
of Chazelle [18]. Once the embedded Voronoi diagram
is computed, we pull back this diagram by the strictly
monotonous k−1 function.

Lemma 2: The Voronoi diagram of n d-dimensional
points with respect to a representational Bregman diver-
gence has complexity O(nd

d
2 e). It can be computed in

O(n log n + nd
d
2 e) time. It follows that the left/right sided

Voronoi diagrams with respect to the α-divergences or β-
divergences have complexity O(nd

d
2 e).



Means Left-sided Right-sided

Generic k−1
(
∇U∗

(∑n
i=1

1
n
∇U (k(pi))

))
k−1

(
1
n

∑n
i=1 k(pi)

)
α-means (α 6= ±1) n

− 2
1+α

(∑n
i=1 p

1+α
2

i

) 2
1+α

n
− 2

1−α

(∑n
i=1 p

1−α
2

i

) 2
1−α

β-means (β > 0) 1
n

∑n
i=1 pi n

− 1
β

(∑n
i=1 pβi

) 1
β

Table II
LEFT-SIDED AND RIGHT-SIDED α-MEANS AND β-MEANS.

To illustrate this theorem, consider the right-sided α-
bisectors

Hα(p,q) : {x ∈ X |Dα(p||x) = Dα(q||x)}

for α 6= ±1. We get

Hα(p,q) :
∑
i

1− α
2

(pi − qi) + x
1+α

2 (q
1−α

2 − p
1−α

2 ) = 0.

Let X = [x
1+α

2
1 ... x

1+α
2

d ]T . Plugging X into the bisector
equation (a special case of linearization), we get a hyper-
plane bisector:

Hα(p,q) :
∑
i

Xi(q
1−α

2 −p
1−α

2 )+
∑
i

1− α
2

(pi− qi) = 0.

It follows that the right-sided α-Voronoi diagram is affine in
the k(x) = x

1+α
2 representation with complexity O(nd

d
2 e).

Indeed, we have

D(X||Pi) = BU,k(x||pi) ≤ D(X||Pj) = BU,k(x||pj)
⇐⇒ BU (k(x)||k(pi)) ≤ BU (k(x)||k(pj)).

Note that right-sided β-Voronoi diagrams are affine for
β > 0. Indeed, the β-bisector

Hβ(p,q) : {x ∈ X |Dβ(p||x) = Dβ(q||x)}

yields an equation linear in x:

Hβ(p,q) :
d∑
i=1

1
β + 1

(pβ+1
i − qβ+1

i )− 1
β
xi(p

β
i − q

β
i ) = 0.

B. Generalized Bregman Voronoi diagrams from power di-
agrams

Let the power distance of a point x to a Euclidean
ball B = B(p, r) defined by ||p − x||2 − r2. The power
diagram [19] of n balls Bi = B(pi, ri), i = 1, . . . , n is
the minimization diagram of the corresponding n functions
Di(x) = ||pi − x||2 − r2. The power bisector of any two
balls B(pi, ri) and B(pj , rj) is the radical hyperplane of
equation

2〈x,pj − pi〉+ ||pi||2 − ||pj ||2 + r2j − r2i = 0.

Power diagrams are affine diagrams. Aurenhammer [19], [1]
proved that any affine diagram is identical to the power
diagram of a set of corresponding balls. Note that although
some balls may have an empty cell in their power diagram,
this case never occurs for representational Bregman diver-
gences since BU,k(pi||pi) = 0. The mapping identifying the
power bisector with the representational Bregman bisector
is given by [6]

pi → ∇U(k(pi))

ri = 〈U(k(pi)), U(k(pi))〉+ 2U(k(pi))− 〈pi, U(k(pi))〉 .

V. CONCLUDING REMARKS

We have generalized the study of Bregman Voronoi
diagrams [6], [7] by introducing an extra representation
function. The representation function can be interpreted
as an embedding of the source space into a dually flat
space. It followed that the dual Voronoi diagrams of n d-
dimensional points with respect to the α-divergences [5] and
β-divergences [10] can be constructed efficiently from power
diagrams, and that their complexity is upper bounded by
O(nd

d
2 e). We can extend the notion of dual triangulations [7]

and generalize the smallest enclosing ball algorithms [20],
[21] to these representational Bregman divergences. Mod-
ern data analysis is focusing on recovering the topology,
intrinsic dimension and underlying geometry of datasets. A
challenging research axis is to learn from a dataset acquired
with an unknown coordinate system both the underlying
geometry (i.e., distance function) and the embedding (i.e.,
representation function), while reducing as efficiently as
possible the risk of overfitting.
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