Fundamentals of 3D

Lecture 6:
Metric ball trees/Texture synthesis
Advanced coordinate pipelines
Fourier analysis/interpolation

Frank Nielsen
nielsen@lix.polytechnique.fr
``Texture Synthesis by Non-parametric Sampling"
Alexei A. Efros and Thomas K. Leung
IEEE International Conference on Computer Vision (ICCV'99),

http://graphics.cs.cmu.edu/people/efros/research/EfrosLeung.html
Stochastic texture synthesis

Source Image I_s

Target Image I_t

Scanline

L-shape window

$$SSD(x_s, y_s; x_t, y_t) = \sum_{l} \sum_{c} \text{LShape}(l, c) \left(I_s[x_s + c, y_s + l] - I_t[x_t + c, y_t + l] \right)^2$$

$$(x_s, y_s) = \arg\min_{(x,y) \in I_s} SSD(x, y; x_t, y_t).$$

Fast nearest neighbor queries in high dimensions
Ball tree data structures for nearest neighbor search

Compute a k-means on S with k=2
Split S into S1 and S2 according to the two centroids
Perform recursion on S1, and S2 until |S1|<n0 and |S2|<n0
Nearest neighbor queries using ball trees

Pruning some of the nodes:
Let $\text{NN}(q)$ denote the current best nearest neighbor of q

if $||q-c|| - r_q > r_c$ then PRUNE (do not explore the subtree)

At leaves, perform the naive linear search, and potentially update $\text{NN}(q)$
Careful seeding for k-means:
Perform just a careful initialization!!

Interpolate between the two methods:

Let $D(x)$ be the distance between x and the nearest cluster center. Sample proportionally to $(D(x))^\alpha = D^\alpha(x)$

Original Lloyd’s: $\alpha = 0$
Furthest Point: $\alpha = \infty$
k-means++: $\alpha = 2$

1a. Choose an initial center c_1 uniformly at random from \mathcal{X}.
1b. Choose the next center c_i, selecting $c_i = x' \in \mathcal{X}$ with probability $\frac{D(x')^2}{\sum_{x \in \mathcal{X}} D(x)^2}$.
1c. Repeat Step 1b until we have chosen a total of k centers.

Theorem: k-means++ is $\Theta(\log k)$ approximate in expectation.
Nearest neighbors

query

21x21 patches.

Vp-trees worked best (=fastest) for image patches.... [ECCV'08]
Vantage point trees (or vp-trees)

Partition the data according to a vantage point and a distance threshold. **Relative distances** are thus used.

First split

Split from a vantage point:
- Inner part
- Outer part

do split recursion
Vantage point trees: Pruning condition

If \(d(q, p) > r_p + r \) prune the inner branch
If \(d(q, p) < r_p - r \) prune the outer branch

For \(r_p - r \leq d(q, p) \leq r_p + r \) we have to inspect both branches
Many ways to partition the point sets

(a) kd-Tree
(b) PCA Tree
(c) Ball Tree
(d) vp-Tree

![Graphs showing construction cost and search improvement for different partitioning methods: kd-Tree, PCA Tree, Ball Tree, k-Means, vp-Tree(k), vp-Tree(δ).]
GPGPU: General Purpose GPU

GPU cores

Tracking ROIs (region of interest)

<table>
<thead>
<tr>
<th>Descripteur</th>
<th>Dimension</th>
<th>ANN-C++</th>
<th>BF-CUDA</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3</td>
<td>1m 33s</td>
<td>53s</td>
<td>1.8</td>
</tr>
<tr>
<td>CP</td>
<td>5</td>
<td>2m 05s</td>
<td>1m 05s</td>
<td>1.9</td>
</tr>
<tr>
<td>CG</td>
<td>5</td>
<td>2m 35s</td>
<td>1m 07s</td>
<td>2.3</td>
</tr>
<tr>
<td>CGP</td>
<td>7</td>
<td>4m 27s</td>
<td>1m 19s</td>
<td>3.3</td>
</tr>
<tr>
<td>C₃</td>
<td>11</td>
<td>6m 40s</td>
<td>1m 17s</td>
<td>5.2</td>
</tr>
<tr>
<td>C₃P</td>
<td>13</td>
<td>5m 43s</td>
<td>1m 12s</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Distance au k=2 plus proche voisin

C: couleur (YUV)
C₃: 3x3 neigh in Y
G: gradient
P: position
k=3
Log-Polar coordinates

\[\rho = \log \sqrt{x^2 + y^2}, \]
\[\theta = \arctan \frac{y}{x}. \]

\[\rho = \log \sqrt{(x - x_o)^2 + (y - y_o)^2}, \]
\[\theta = \arctan \frac{y - y_o}{x - x_o}. \]
Log-Polar coordinates

Scales and rotations become translations

\[\mathbf{S}_s \mathbf{x} = (sx, sy) \rightarrow (\log s + \rho(\mathbf{x}), \theta(\mathbf{x})), \]

\[\mathbf{R}_\phi \mathbf{x} = (x \cos \phi + y \sin \phi, y \cos \phi - x \sin \phi) \rightarrow (\rho(\mathbf{x}), \phi + \theta(\mathbf{x})). \]

Data reduction for retinal images...
Spherical coordinates

\[\mathbf{r} = \begin{bmatrix} \cos \phi \sin \theta \\ \sin \phi \\ \cos \phi \cos \theta \end{bmatrix} \]

\[\theta = \arctan \frac{x}{z} \quad \text{and} \quad \phi = \arctan \frac{y}{\sqrt{x^2 + z^2}}. \]
Spherical coordinates

High Resolution Full Spherical Videos
Frank Nielsen, ITCC'02
Cylindrical coordinates

\[\theta = \arctan \frac{x}{z}, \quad s = \frac{y}{\sqrt{x^2 + z^2}}. \]

Panoramic image stitching:

Align by a translation into the cylindrical coordinate map...
Environment maps

Equirectangular, mirror ball, cubic, etc.
Environment maps: Mirror ball

Mapping \(\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \frac{r'_x}{2 \sqrt{r_x^2 + r_y^2 + (r_z^2 + 1)^2}} + \frac{1}{2} \\ \frac{r'_y}{2 \sqrt{r_x^2 + r_y^2 + (r_z^2 + 1)^2}} + \frac{1}{2} \end{bmatrix} \)
Environment maps for reflections

Blinn, 1976

1982

Interface, 1985
Lance Williams

http://www.debevec.org/ReflectionMapping/
Environment maps for reflections

Best environment map for real-time graphics?

Dual paraboloid (2 images front/back only)
Transformations and their invariants
Taxonomy of projections:

- **Orthographic**
 - Isometric
 - Others

- **Parallel**
 - Cabinet

- **Oblique**
 - Cavalier
 - Others

- **SCOP**
 - 1-Point
 - 2-Point
 - 3-Point
 - Cyclograph

- **Perspective**
 - MCOP
 - Caustic
 - Others
Multiple centers of projections (MCOP)

Reconstruction from a single MCOP images
Generalizes epipolar geometry
Resolution dependent
Acquisition Example
Multiple centers of projections (MCOP)

Difficult to obtain in practice...
Localization
Multiple centers of projections (MCOP)

The art of depiction...
Stereo cyclographs...
Image backward vs forward mapping

Image warping

FORWARD_MAPPING(I_s, f)
1. \(<\text{Create a warped image } I_d \text{ by forward mapping }\>)
2. \(<f: \text{ warping function }>)
3. Initialize an empty image I_d
4. \(<\text{for all image lines }>)
5. for \(y \leftarrow 1\) to \(h_d\)
6. do \(<\text{for all column pixels }>)
7. for \(x \leftarrow 1\) to \(w_s\)
8. do \(<\text{Compute the source-to-destination mapping }>)
9. \((u, v) \leftarrow f(x, y)\)
10. \(<\text{Round coordinates to integers }>)
11. \(<\text{no interpolation required }>)
12. \((u_r, v_r) \leftarrow ([u], [v])\)
13. \(<\text{Should check index bounds }>)
14. \(I_d[u_r, v_r] = I_s[x, y]\)

BACKWARD_MAPPING(I_s, f)
1. \(<\text{Destination image } I_d \text{ of dimension } w_d \times h_d \>)
2. for \(v \leftarrow 1\) to \(h_d\)
3. do for \(u \leftarrow 1\) to \(w_d\)
4. do \((x, y) = g(u, v)\)
5. \(<\text{Backward mapping requires resampling }>)
6. \(I_d[u, v] = \text{RESAMPLE}(I_s, x, y)\)

Resampling
Interpolation
Image Blending: Alpha channel

\[I[i, j] = \alpha[i, j]F[i, j] + (1 - \alpha[i, j])B[i, j], \]

\[I = \alpha F + (1 - \alpha) B, \]

Interpretation at the microscopic level...
Image sampling/reconstruction

Discrepancy ?

Continuous functions (Analog world) ↔ Discrete images (Digital devices)

Reconstruction

Aliasing

Sampling

Rate ?
Zone plate: Aliasing/ringing effect

1024x1024

256x256
downsampled using bilinear interpolation
Continuous versus discrete convolutions

\[(f \otimes g)(x) = \int_{t=-\infty}^{\infty} f(t)g(x-t)dt = \int_{t=-\infty}^{\infty} g(t)f(x-t)dt = (g \otimes f)(x).\]

\[C[i,j] = A \otimes B = \sum_k \sum_l A[k,l] B[i-k, j-l].\]

\[
G = \frac{1}{273} \begin{bmatrix}
1 & 4 & 7 & 4 & 1 \\
4 & 16 & 26 & 16 & 4 \\
7 & 26 & 41 & 26 & 7 \\
4 & 16 & 26 & 16 & 4 \\
1 & 4 & 7 & 4 & 1
\end{bmatrix}
\]
Fourier analysis

\[f(x + T) = f(x) \]

Fourier discovered that all periodic signals can be represented as a sum (eventually infinite) of sinusoidal waves: \(\sin(\cdot) \) functions, the basis functions.

Let \(f(\cdot) \) denote the continuous function in the spatial domain and \(F(\cdot) \) denote the dual complex function, also called spectral function.

Euler formula (period 2\(\pi \))

\[
\exp(i x) = \cos x + i \sin x
\]

\[
\exp(i x) = \cos x + i \sin x = \cos(x + 2\pi) + i \sin(x + 2\pi) = \exp(i(x + 2\pi))
\]
Fourier analysis: Duality spatial/spectral domain

Spatial domain

\[f(x, y) = \int_{u=-\infty}^{\infty} \int_{v=-\infty}^{\infty} F(u, v) \exp \left(i2\pi(ux + vy) \right) dudv. \]

Spectral domain

\[F(u, v) = \int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} f(x, y) \exp \left(-i2\pi(ux + vy) \right) dxdy. \]

\[F(u, v) = A(u, v) + iB(u, v) \]
Fourier analysis: Phase/amplitude

\[F(u, v) = A(u, v) + iB(u, v) \]

Polar coordinates:

\[F(u, v) = |F(u, v)| \exp(i\phi(u, v)) \]

\[P(u, v) = A^2(u, v) + B^2(u, v) \]

Amplitude \quad \text{Phase}

\[|F(u, v)| \quad \phi(u, v) = \arctan \frac{B(u, v)}{A(u, v)} \]
Fourier analysis: Convolution theorem

Convolution in spatial domain is a multiplication in Fourier domain

$$\mathcal{F}(f \otimes g) = \sqrt{2\pi}(\mathcal{F}f) \times (\mathcal{F}g) = \sqrt{2\pi}F \times G$$

Convolution in frequency domain is a multiplication in spatial domain

$$F \otimes G = \sqrt{2\pi}\mathcal{F}(f \times g)$$
Fourier analysis: Discrete transformations

\[f_j = \frac{1}{n} \sum_{k=0}^{n-1} x_k \exp(-2\pi i \frac{jk}{n}), \quad \forall \ 0 \leq j \leq n - 1 \]

\[x_k = \sum_{j=0}^{n-1} f_j \exp(2\pi i \frac{jk}{n}) \]

\[F(u, v) = \frac{1}{wh} \sum_{x=0}^{w-1} \sum_{y=0}^{h-1} f(x, y) \exp\left(-2\pi i \left(\frac{ux}{w} + \frac{yv}{h}\right)\right) \]

\[f(x, y) = \sum_{u=0}^{w-1} \sum_{v=0}^{h-1} F(u, v) \exp\left(2\pi i \left(\frac{ux}{w} + \frac{yv}{h}\right)\right) \]
Interpolation/reconstruction filters

Bilinear interpolation

\[c_{x,y} = (1 - x')y' c_{i,j+1} + x' y' c_{i+1,j+1} + (1 - x')(1 - y') c_{i,j} + x'(1 - y') c_{i+1,j} \]
Interpolation/reconstruction filters

Sinc (Lanczos) is ideal low-pass filter (infinite support)

The sinc function
\[\text{sinc}(x) = \frac{\sin \pi x}{\pi x} \]

Ideal low-pass filter

Fourier domain

Fourier transform

Spatial domain

Windowed sinc
Mr Angry
Mrs Calm

Low/high frequency perception
Phase correlation

Stitch by 2D translation two images

\[f_2(x, y) = f_1(x + x_t, y + y_t) \]

\[F_2(u, v) = F_1(u, v) \exp(-2\pi i (u x_t + v y_t)) \]

\[\frac{F_1(u, v) F_2^*(u, v)}{|F_1(u, v) F_2^*(u, v)|} = \exp(2\pi i (u x_t + v y_t)) \]

Cross-power spectrum

FFT can be computed in \(O(n \log n) \) time

\(F^* \) is the conjugate function
Phase correlation: Detecting the peak

Sub-pixel accuracy if we fit a quadratic function

Clairvoyance system