

Fundamentals of 3D Lecture 6: Metric ball trees/Texture synthesis Advanced coordinate pipelines Fourier analysis/interpolation

Frank Nielsen nielsen@lix.polytechnique.fr

http://graphics.cs.cmu.edu/people/efros/research/EfrosLeung.html

``Texture Synthesis by Non-parametric Sampling" Alexei A. Efros and Thomas K. Leung IEEE International Conference on Computer Vision (ICCV'99),

Stochastic texture synthesis

Source Image \mathbf{I}_s

Target Image \mathbf{I}_t

Fast nearest neighbor queries in high dimensions

Ball tree data structures for nearest neighbor search

Compute a k-means on S with k=2 Split S into S1 and S2 according to the two centroids Perform recursion on S1, and S2 until |S1|<n0 and |S2|<n0

Nearest neighbor queries using ball trees

Pruning some of the nodes:

Let NN(q) denote the current best nearest neighbor of q

if ||q-c||-rq> rc then PRUNE (do not explore the subtree)

At leaves, perform the naive linear search, and potentially update NN(q)

Careful seeding for k-means: Perform just a careful initialization!!!

Interpolate between the two methods:

Let D(x) be the distance between x and the nearest cluster center. Sample proportionally to $(D(x))^{\alpha} = D^{\alpha}(x)$

Original Lloyd's: $\alpha = 0$

Furthest Point: $\alpha = \infty$

k-means++: $\alpha = 2$

- 1a. Choose an initial center c_1 uniformly at random from \mathcal{X} .
- 1b. Choose the next center c_i , selecting $c_i = x' \in \mathcal{X}$ with probability $\frac{D(x')^2}{\sum_{x \in \mathcal{X}} D(x)^2}$.
- 1c. Repeat Step 1b until we have chosen a total of k centers.

Theorem: k-means++ is $\Theta(\log k)$ approximate in expectation

21x21 patches.

Vp-trees worked best (=fastest) for image patches.... [ECCV'08]

Vantage point trees (or vp-trees)

Partition the data according to a vantage point and a distance threshold **Relative distances** are thus used.

Vantage point trees: Pruning condition

If $d(q, p) > r_p + r$ prune the inner branch If $d(q, p) < r_p - r$ prune the outer branch

For $r_p - r \leq d(q, p) \leq r_p + r$ we have to inspect both branches

Prune outer

Prune inner

Cannot prune

Many ways to partition the point sets

(a) kd-Tree

(b) PCA Tree

(d) vp-Tree

GPGPU: General Purpose GPU

GPU cores

Tracking ROIs (region of interest)

Descripteur	Dimension	ANN-C++	BF-CUDA	Gain
С	3	1m 33s	53s	1.8
CP	5	2m 05s	1m 05s	1.9
CG	5	2m 35s	1m 07s	2.3
CGP	7	4m 27s	1m 19s	3.3
C ₃	11	6m 40s	1m 17s	5.2
C ₃ P	13	5m 43s	1m 12s	4.8

Distance au k=2 plus proche voisin

C: couleur (YUV) C3: 3x3 neigh in Y G: gradient P: position k=3

Log-Polar coordinates

$$\rho = \log \sqrt{x^2 + y^2},$$
$$\theta = \arctan \frac{y}{x}.$$

$$\rho = \log \sqrt{(x - x_o)^2 + (y - y_o)^2},$$
$$\theta = \arctan \frac{y - y_o}{x - x_o}.$$

Log-Polar coordinates

Scales and rotations become translations

 $\mathbf{S}_{s}\mathbf{x} = (sx, sy) \longrightarrow (\log s + \rho(\mathbf{x}), \theta(\mathbf{x})),$

 $\mathbf{R}_{\phi}\mathbf{x} = (x\cos\phi + y\sin\phi, y\cos\phi - x\sin\phi) \longrightarrow (\rho(\mathbf{x}), \phi + \theta(\mathbf{x})).$

Data reduction for retinal images...

Spherical coordinates High Resolution Full Spherical Videos Frank Nielsen, ITCC'02

(k)

Cylindrical coordinates

$$\theta = \arctan \frac{x}{z}, \qquad s = \frac{y}{\sqrt{x^2 + z^2}}.$$

Panoramic image stitching:

Align by a translation into the cylindrical coordinate map...

Environment maps

Equirectangular, mirror ball, cubic, etc.

Environment maps: Mirror ball

Environment maps for reflections

1982

Interface, 1985 Lance Williams

http://www.debevec.org/ReflectionMapping/

Environment maps for reflections

Abyss, Terminator 2 (1991)

Best environment map for real-time graphics?

Dual paraboloid (2 images front/back only)

Transformations and their invariants

Taxonomy of projections:

Multiple centers of projections (MCOP)

Reconstruction from a single MCOP images Generalizes epipolar geometry Resolution dependent

Acquisition Example

Multiple centers of projections (MCOP)

Difficult to obtain in practice... Localization

Multiple centers of projections (MCOP)

The art of depiction...

Stereo cyclographs...

Image backward vs forward mapping

4.

5.

6.

ForwardMapping (\mathbf{I}_s, f)

- 1. \triangleleft Create a warped image \mathbf{I}_d by forward mapping \triangleright
- 2. $\triangleleft f$: warping function \triangleright
- 3. Initialize an empty image \mathbf{I}_d
- 4. \triangleleft for all image lines \triangleright
- 5. for $y \leftarrow 1$ to h_s

6. do \triangleleft for all column pixels \triangleright

7. for $x \leftarrow 1$ to w_s

8. $do \triangleleft Compute the source-to-destination mapping \triangleright$

9.
$$(u,v) \leftarrow f(x,y)$$

- 10. \triangleleft Round coordinates to integers \triangleright
- 11. \triangleleft (no interpolation required) \triangleright
- 12. $(u_r, v_r) \leftarrow (\lfloor u \rceil, \lfloor v \rceil)$
- 13. \triangleleft Should check index bounds \triangleright

14.
$$\mathbf{I}_d[u_r, v_r] = \mathbf{I}_s[x, y]$$

BACKWARDMAPPING(\mathbf{I}_s, f)

- 1. \triangleleft Destination image \mathbf{I}_d of dimension $w_d \times h_d \triangleright$
- 2. for $v \leftarrow 1$ to h_d

3. do for
$$u \leftarrow 1$$
 to w_d

do (x, y) = g(u, v)

$$\triangleleft$$
 Backward mapping requires resampling \triangleright

 $\mathbf{I}_d[u, v] = \text{RESAMPLE}(\mathbf{I}_s, x, y)$

Image Blending: Alpha channel

$$\mathbf{I}[i,j] = \alpha[i,j]\mathbf{F}[i,j] + (1 - \alpha[i,j])\mathbf{B}[i,j],$$

$$\mathbf{I} = \alpha \mathbf{F} + (1 - \alpha) \mathbf{B},$$

Interpretation at the microscopic level...

Full semitransparent coverage $\left(\alpha = \frac{1}{2}\right)$

Image sampling/reconstruction

Zone plate: Aliasing/ringing effect

1024x1024

256x256 downsampled using bilinear interpolation

Continuous versus discrete convolutions

$$(f \otimes g)(x) = \int_{t=-\infty}^{\infty} f(t)g(x-t)dt = \int_{t=-\infty}^{\infty} g(t)f(x-t)dt = (g \otimes f)(x).$$

$$\mathbf{C}[i,j] = \mathbf{A} \otimes \mathbf{B} = \sum_{k} \sum_{l} \mathbf{A}[k,l] \mathbf{B}[i-k,j-l].$$

$$\mathbf{G} = \frac{1}{273} \begin{bmatrix} 1 & 4 & 7 & 4 & 1 \\ 4 & 16 & 26 & 16 & 4 \\ 7 & 26 & 41 & 26 & 7 \\ 4 & 16 & 26 & 16 & 4 \\ 1 & 4 & 7 & 4 & 1 \end{bmatrix}$$

Fourier analysis

$$f(x+T) = f(x)$$

Fourier discovered that *all periodic signals* can be represented as a sum (eventually infinite) of sinusoidal waves: $sin(\cdot)$ functions, the basis functions.

Let $f(\cdot)$ denote the continuous function in the spatial domain and $F(\cdot)$ denote the dual complex function, also called *s p e c tra 1 func tio n*.

Euler formula (period 2pi)

 $\exp(ix) = \cos x + i \sin x$

 $\exp(ix) = \cos x + i \sin x = \cos(x + 2\pi) + i \sin(x + 2\pi) = \exp(i(x + 2\pi))$

Fourier analysis: Duality spatial/spectral domain

Spatial domain

$$f(x,y) = \int_{u=-\infty}^{\infty} \int_{v=-\infty}^{\infty} F(u,v) \exp\left(i2\pi(ux+vy)\right) dudv.$$

Spectral domain

$$F(u,v) = \int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} f(x,y) \exp\left(-i2\pi(ux+vy)\right) dxdy.$$

$$F(u,v) = A(u,v) + iB(u,v)$$

Fourier analysis: Phase/amplitude

$$F(u,v) = A(u,v) + iB(u,v)$$

Polar coordinates:

Frequency magnitudes

$$P(u, v) = A^{2}(u, v) + B^{2}(u, v)$$

Power spectrum

$$F(u, v) = |F(u, v)| \exp(i\phi(u, v))$$

|F(u,v)|

$$\phi(u, v) = \arctan \frac{B(u, v)}{A(u, v)}$$

Phase

Amplitude

Fourier analysis: Convolution theorem

Convolution in spatial domain is a multiplication in Fourier domain

$$\mathcal{F}(f \otimes g) = \sqrt{2\pi}(\mathcal{F}f) \times (\mathcal{F}g) = \sqrt{2\pi}F \times G$$

Convolution in frequency domain is a multiplication in spatial domain

$$F \otimes G = \sqrt{2\pi} \mathcal{F}(f \times g)$$

Fourier analysis: Discrete transformations

 $F(u,v) = \frac{1}{wh} \sum_{x=0}^{w-1} \sum_{y=0}^{h-1} f(x,y) \exp\left(-2\pi i \left(\frac{xu}{w} + \frac{yv}{h}\right)\right)$ $f(x,y) = \sum_{u=0}^{w-1} \sum_{v=0}^{h-1} F(u,v) \exp\left(2\pi i \left(\frac{xu}{w} + \frac{yv}{h}\right)\right)$

Interpolation/reconstruction filters

Bilinear interpolation

$$\mathbf{c}_{x,y} = (1-x')y'\mathbf{c}_{i,j+1} + x'y'\mathbf{c}_{i+1,j+1} + (1-x')(1-y')\mathbf{c}_{i,j} + x'(1-y')\mathbf{c}_{i+1,j}$$

Interpolation/reconstruction filters

Sinc (Lanczos) is ideal low-pass filter (infinite support)

Mr Angry Mrs Calm

Phase correlation

Stitch by 2D translation two images

$$f_2(x,y) = f_1(x+x_t,y+y_t)$$

$$F_2(u, v) = F_1(u, v) \exp(-2\pi i(ux_t + vy_t))$$

$$\underbrace{\frac{F_1(u,v)F_2^*(u,v)}{|F_1(u,v)F_2^*(u,v)|}}_{(u,v)F_2^*(u,v)|} = \exp(2\pi i(ux_t + vy_t))$$

Cross-power spectrum

F* is the conjugate function

FFT can be computed in O(nlog n) time

Phase correlation: Detecting the peak

Sub-pixel accuracy if we fit a quadratic function

Translated Image + noise

Phase Correlation

(a) 400 millions of pixels (400-MP)

Clairvoyance system