INF555

Fundamentals of 3D |

Lecture 3.
Debriefing: Lecture 2
Rigid transformations
Quaternions
Iterative Closest Point (+Kd-trees)

Frank Nielsen
nielsen@lix.polytechnique.fr




Harris-Stephens' combined corner/edge detector

Depth discontinuity

Surface orientation
discontinuity

Reflectance
discontinuity (i.e.,
change in surface
material properties)

Illumination
discontinuity (e.q.,
shadow)







Harris-Stephens edge detector

Aim at finding good feature

IE J J —_Gradient with
— - - respect to x,
M Z W(Ji?, y) I IE times gradient
x.y | Ty ¥ | withrespecttoy

M

Sum over image region — area
we are checking for corner




Harris-Stephens edge detector

Measure the corner response as

~

R :dBtM—k(tI’ﬂCEM)E |

| Avoid computing
¢/~ eigenvalues

det M = ﬂlﬂz themselves.
traceM = A + 4,

(k — empirical constant, k = 0.04-0.06)

Algorithm:
— Find points with large corner response function R

(R > threshold)
— Take the points of local maxima of R






Edge thresholding hysterisis

Single threshold value for edges -> Streaking

Two thresholds: low and high

e |If a pixel value is above the high threshold, it is an edge.
e If a pixel value is below the low threshold, it is not an edge.
e If a pixel value is between the low and high thresholds,

it is an edge if it is connected to another edge pixel,
otherwise it is interpreted as noise.
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Edge hysteresis



Homogeneous coordinates and duality point/line

hom ogeniza tion

p =[xy > p =[xy 1

Inhomogeneous vector Homogeneous vector

dehomogenization (also known as

P erspective diVision)
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Projective plane P?

. T Ax
Equivalence class: s =1 | v=o
w Aw
L:axr+by+c=0, is equivalent to L : Aax+ Moy + Ae =0
Line coefficients stored in an inhomogeneous vector | = [ a b e }1

Equation of the line: L : F'p =0.

Point and line have same homogeneous representation:
A point can be interpreted as the coefficients of the line




Intersection of lines bl Sioring/

Cross-product of two vectors:

X VvV =z
uxv=det| ur uy, u = —v ¥ 1L

'UI' 1‘-y 'U;':_

Intersection point of two lines is obtained from their cross-product:

p=11x 12
P

Duality

v
Line passing through two « points » [1* and 12*:

I=p*=I1* x |12




Application:
Detection of line segment intersection

=|0lx]

Line segments intersect

Fress any key for another point sequence sample.

11=CrossProduct (p,q) ;s

12=CrossProduct (r, s) ;

// intersection point is the cross-product

//of the line coefficients (duality)
intersection=CrossProduct (11,12);
intersection.Normalize(); // to get back Euclidean point



Overview of duality in projective geometry

Point Line
T T

Representation || p = [ Ty w ] | = { a b c ]
Incidence pl1=0 'p =

(lines | passing through p) (points p on line |)
Degeneracy Collinearity: Concurrence:

det[py py ps] =0 det[ly l2 13] =0
Join | =p; < ps p=1 xl

(line passing through p; and p,) | (intersection point of lI; and Iy)
Infinity Ideal points: [ z y 0 }T Ideal line: [ 00 1 g

The determinant of three points represent the volume of their parallepiped. (p: x p2) - ps.



2D Transformations using homogeneous coordinates

Identity I: XE“’“ f | ' Translation T': ] QK\A

1 0 0 [ | A . 1 0 1 [ | -
= N
01 0 H - | 0 1 2 N -
0 0 1 | 0 0 1
] E\ Central Symmetry

Rotation R ] . C: ]
cos/ —smé@ 1 | D —1 0 0 ||
) [] | - [ ] |
sinfl  cos@ 1 0 —1 0 ] /:
0 0 1 0 0 1 B if‘i’b




2D Transformations using homogeneous coordinates

Y Symmetry Fy: H | X Symmetry Fy: H "\H/\ f'\}
10 0 . _1 0 0 S/
0 -1 0 :\ 0
0 0 1 \//E\:f\{? 1
IFJ""
X Shear Sy, Y Shear S, NIa
v F
(s=1): v HL*]/ (s=1): & 'bff
=4

1 1 0 f;;;,,,’ 1 0 0
01 0 1 1 0
0 0 1 0 0 1




Cartesian coordinate systems in 3D

y
Zéﬂ( y Y a yé»x

A - -
(index finger) (index finger) \ Z
\ \
1Y l|IIII
| I'|
-l N | lnog 0 o
-E V'@ O y | @lf >,
(middle finger) X (middle finger)
(thumb) X
(thumb)
Right-Handed Left-Handed

FIGURE 3.15  The right-handed (z = x Xy ) and left-handed (z =y xx = —xxy)
Cartesian coordinate systems.



3D Transformations using homogeneous coordinates

1 0 0 0
R _ 0 cosfl sinf 0O
Tl 0 —sinf cosf 0
0 0 0 1 |
[ cos) 0 —sinf 0 ]
R _ 0 1 0 0
Y| sinf 0 cosf 0
0 0 0 1 |
- cosf  sinf 0 0]
R. — —sinf cosf 0 0 R — RTRsz
0 0 1 0
0 0 0 1

Be careful: Gimbal lock



Euler rotation

R (roll. pitch, yaw) = R.. (roll) x R, (pitch) x R, (yaw)

R.(roll, pitch, yaw) = R(r, p.y) =

COST COSY —SINTSINpPsSINYy —SIN7Tcosp COSTSINY + SIn T sinpcosy
SIN 7 COS Yy + COSTSINPSINY  COST COS P Sin 7SI ¢y — COS 7" SIN P COS Y
— COS P SIN sin p COS P COS 1Y




Cross-product/outer product uwdet[ L ] — v

Ve l‘y L

Consider the cross-product as a matrix multiplication:

Outer-product
2
Uy (I Uglly Ugplly
T _ [ }— i 2 U, U
uu = Uy Uy Uy Uy | = Uglly Uy J.r.‘y -
e (1‘:3} Uglly Uyl ug

N’ ~
(3,1) (3.3)




Arbitrary matrix rotation:
Rodrigues' formula

R, = uu’ + cosf(I — uul) + [u] siné.
Equivalent to:

Ry = I+ [u],sinfd + [u]? (1 — cos#).

Rl_lf?:
cos@ +u(1 — cosf) uTuy(l—CDSQ)—u sinfl wy,sinf + uzu, (1 — cosf)
U, smﬂ—i—u u,(1 —cosf)  cosO+ u? 4 (1 —cos@) —uy sinf 4 w,u, (1 — cosé)
—uy sinf +u,u, (1 —cosb) u, 91119—i—uy .(1 —cosf) cosf+u? (1—('05-‘5‘)



Identity I: . Translation T: ) ﬁ‘
100 0 \J 1 0 0 —0.0268 ti-”
01 0 0 e T 0 1 0 0095 e
0010 %ﬁ\ 0 0 1 0.009
0 0 0 1 DU A 1 |

4

Rotation R.: Rotation R.:

(45°, z-axis) (45°, z-axis)

(2 v¥2 g 9] < 1L 0 & 07
ﬁ \/_é 0 0 Mi%-{ 0 2 _¥2 g
2 2 {ﬂ 2 2
0o 0 10 § 22 oz i
0 0 1] 0 0 0 1 ]




y-ax1s

Rotation R,:

(45°
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Rigid transformations D

Concatenation (non-commutative!)

DD, — | Bt ti|[Re t2] _ [ RiRy Ruty+t
RT —RTt
1

]
1

R t
ol 1

}:




Quaternions for rotations

Provide rotation operator that is invertible

Easy to invert scalars

For 2D vectors, invert using complex numbers...
For 3D vectors??? (-> 4D quaternions)

For dD vectors??? (-> 8D octonions)

Lectures on Quaternions

http://digital.library.cornell.edu/

LECTURES

QUATERNIONS:
) CONTATNING A SYSTEMATIC STATEMENT
A et Mathomatical Hlethod ;

UF WHICH THE F .E5 WELE 5
THE ROYAL IRISH ACADEMY;

AN WHIGH HaS SINCE FURNED THE EUBJECT OF SUCCESSIVE COURSES GF
LECTTRES, DELIVERED IN ths AND SUBSEQUENT TEARS,

THE HALLS OF TRINITY COLLEGE, DUBLIN :

RAMS, AND WITH SOME GEOMETRICAL ANL
PHYSICAL APPLICATIONS,

SIR WILLIAM ROWAN HAMILTON, LL D, M.R.L A,

TITR AMETIEAK SOCTETY OF ALTE AKD BTRRCRE
wF T

DUBLIN:
HODGES AND SMITH, GRAFTON-STREET,
BOQKSELLERS TO THE UNIVERSITY.
LONDON: WHITTAKER & €., AVE-MARIA LANE.
CAMBRIDGE: MACMILLAN & CO.
1853.

Sir William Rowan Hamilton



Quaternions: 1D real+3D imaginary

Real part (1D) Imaginary part (3D, i j k vectors)

Multiplication:

wiwy — Uy - Uy ]

qi1q2 =
Uy X U9 + wiu9 + wolqg

Norm (12)
lall = VI[ul[? + w?




Unit quaternions

. cos
q= |ul| =

usin

Rotation theta around an axis u: Quaternion representation:

q= [ CDS% 115'111% }T
For a given 3D point p, we compute its rotation Rp as

p=q0plg! gl=1

conjugate



Unit quaternions
for rotations

p'=Rp+— p'=q[0 p|"q"
(= [cos? usinf]?)

-1 — 2u§ — 2’1;:3 Qugtly — 2wu,  2uzu, + 2wu, 0
2 2

~ T . R(a) — 2uptty + 2wu, 1 —2uy —2u; 2uyu, — 2wu, 0

q=|w u] (@) 2ugu, — 2wuy  2uyu, +2wu, 1 -— 2’1@, — 21;:3 0

1

0 0 0




Conversion rotation matrix to quaternion

w = ++/trace(R) + 1

Tyz—Tzy
4w

11 = Tz —Tx=z

A

Tzy —Ty=z

4w




Spherical linear interpolation (SLERP)

LERP is non-sense for rotation matrices:

R.,\ = (1 — }.)R,[]. + /\R.l.

Ry =Rp+ )\(Rl — Ry) = LERP(RU R: )'l}

SLERP is using quaternion algebra:

a = (qa; ) a
61}‘ — (exp({?u))}‘ = exp(Afu) = cos A\ + (sin Af)u.

qisin(1 — A)# + qo sin A0
sin ¢

SLERP (1, &3 \) =

SLERP(q1.q2; A) ~p—0 (1 — A)q1 + Agq2 = LERP(q1. q2: M)



Spherical linear interpolation (SLERP)

Press any key to initialize another pair of points.

qy sin(1 — A\)# + o sin A0

sin

SLERP(qy, §2; \) =

Useful for computer graphics animation
(bone, skinning at articulation)

Spherical Linear Interpolation of Quaternions (L=0.390)




Bilateral filtering

Videos/demo



Gaussian filtering: Blur everything

Traditional spatial gaussian filtering

J(x) = Z logs 1($)

output = —| - 1put



Bilateral filtering

New! gaussian on the intensity difference filtering

i) e T i)

output =l . 1nput

Bilateral Filtering for Gray and Color Images, Tomasi and Manduchi 1998
.... SUSAN feature extractor...


http://www.cs.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Range fllterlﬂg

o i e |

T, = o

[

e

Domain
filtering




lterative Closest Point (ICP)




Align point sets obtained from range scanners

http://www-graphics.stanford.edu/projects/mich/



|CP for solving jigsaws

Solve stone jigsaws...



|ICP: Algorithm at a glance

e Start from a not too far transformation
* Match the point of the target to the source

 Compute the best transformation from point correspondence
» Reiterate until the mismatch error goes below a threshold

In practice, this is a very fast registration method...

A Method for Registration of 3-D Shapes. by: Paul J Bes/, Neil D M
IEEE Trans. Pattern Anal. Mach. Intell., Vol. 14, No. 2. (February 1¢



|ICP: Finding the best rigid transformation

Given point correspondences, find the best rigid transformation.

X = {21, ... ¥n} P =1{p1, - spn}

Observation/Target Source/Model

Find (R,t) that minimizes the squared euclidean error:
Ny

E(R,t) = — Z |lz; — Rp; — t||°
Pg_



Align the center of mass of sets:

1 N 1
SN LT ey L
1=1

P = {p; — pp} = {p;}



Finding the rotation matrix:

W:Zi\ri

i

1 L P;

Compute the singular value decomposition

W =

U

a1
0
O

02
O

O
O

03 |

Optimal transformation:

R=U0vVT



Registration of many point sets to a common atlas

..‘." ko wx ki
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3

Scoliotic Spine (Atlas of 307 patients)

Many variants of ICP method (truncated, robust, etc.)



What computational geometers say

In theory,
|CP may provably run very slowly for well-constructed point sets...

David Arthur; Serge1 Vassilvitskii
Worst-case and Smoothed Analysis of the ICP Algorithm, with an Application to the

k-means Method
FOCS 2006 => O(n/d)"d 1terations (exponential)

... but smooth analysis of ICP 1s polynomial

Theorem. With probability 1 — 2p ICP will finish after at most

D 2
O(n'ld (—) ;;_EM) iterations.
o

Since ICP always runs in at most O(u’.-nz}d iIterations, we can take

Jle— O(fﬁ-r'rzj_d to show that the smoothed complexity is polynomial.



Computing nearest neighbors in ICP...

 Naive
e Tree-l
e Tree-li

Nearest neighbor of q

iInear-time algorithm
Ke algorithm using kd-trees

Ke algorithm using metric ball trees

Challenging problem in very high-dimensions
(common to work up to dimension > 1000 nowadays)



Installez JOGL sur vos machines svp

Java OpenGL https://jogl.dev.java.net/

g 1 : . T
ﬁa Java.net The Source for Java Technology Collaboration Lo
My pages Communities java.net

Projects > general > gen-archive > games-core > jogl

Get Involved If yvou were registered and logged in, vou could join this project.

java-net Project

Request a Project Summary Java bindings for OpenGL
Project Help Wanted Ads Categories None
SILEESTETIEILEE License Berkeley Software Distribution (BSD) License
Submit Content 0 =) kb
I
Site Help wner(s) kbr

Welcome to the JOGL API Project!
Project tools _

Project home The JOGL project hosts the development version of the Java™ Binding for the OpenGL® API (J3R-231), and is designed to e JOGL Forums

Announcements provide hardware-supported 30 graphics to applications written in Java. JOGL provides full access to the APIs in the OpenGL « (OpenGlL Home

Dizcuzsion forums 2.0 specification as well as nearly all vendor extensions, and integrates with the AWT and Swing widget sets. Itis part of a suite + JOGL Demos

Mailing lists of open-source technologies initiated by the Game Technology Group at Sun Microsystems. o JOGL Users Guide

Documents & files Please see the JOGL demaos forillustrations of advanced OpenGL techniques now possible with the Java platform. : jl—gfagifgggi gginsﬁ;z:f; JoGaL

CVS Documentation is available for developers wishing to use JOGL in their applications as well as those wishing to build the e JavaOne 2006 BOF Slides on JOGL

— JOGL source tree. e JavaOne 2004 Presentation Slides on JOGL
e JavaOne 2003 Presentation Slides on JOGL

Search e JavaOne 2002 Slides on OpenGL for Java

L ]

| Sun Contributor Agreement (FAQ)
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