Fundamentals of 3D

Lecture 1 Follow-up/debriefing
Lecture 2: Convolutions and Filters
Matrix decompositions
Bentley-Ottman sweep line algorithm

Complexity: Time $O((n+I)\log n)$, memory $O(n+I)$
(Augmented dictionary on sweep line)

http://www.cs.uwaterloo.ca/~bjlafren/segint/index.htm

Memory/Time complexity of reporting intersections vs. enumerating them!
Labelling connected components (Union-Find)

Input: binary image Foreground/Background pixels
Output: Each connected component

Extracting one component
Useful in computer vision...

How many (large) objects?
A simple algorithm

Initially each pixel defines its own region
(labelled by say the pixel index: x+y*width)

Scan the image from left to right and top to bottom:

- If current pixel is background AND East pixel is background:
 Merge their regions into one = « connect » them

- If current pixel is background AND South pixel is background:
 Merge their regions into one = « connect » them

Extract regions (floodfilling or single pass algorithm)

How do we merge quickly disjoint sets?
Union-Find abstract data-structures

MakeSet\((x) \)
1. parent\((x) \) $\leftarrow x$
2. rank\((x) \) $\leftarrow 0$

\[
S_1 = \{a, b, c, d\} \quad S_2 = \{e, f, g\}
\]

\[
S = S_1 \cup S_2
\]

RANK=DEPTH

Visual Depiction
class UnionFind{
 int [] rank; int [] parent;
}

UnionFind(int n)
{int k;
 parent=new int[n];
 rank=new int[n];

 for (k = 0; k < n; k++)
 {parent[k] = k; rank[k] = 0; }
}

int Find(int k)
{while (parent[k]!=k) k=parent[k]; return k; }

int Union(int x, int y)
{
 x=Find(x);y=Find(y);
if (x == y) return -1; // Do not perform union of same set

 if (rank[x] > rank[y])
 {parent[y]=x;
 return x;}
 else
 { parent[x]=y;
 if (rank[x]==rank[y]) rank[y]++;return y;}
}

$S_1 = \{a, b, c, d\}$ $S_2 = \{e, f, g\}$
$S = S_1 \cup S_2$
Many applications of the union-find data-structure

- Variable name aliases.
- Pixels in a digital photo.
- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
Another example of union-find/segmentation: Volume catcher

http://www-ui.is.s.u-tokyo.ac.jp/~o/VolumeCatcher/
Yet another example of UF/segmentation: Inbetweening for cell animation

http://www.vuse.vanderbilt.edu/~bobbyb/pubs/sca06.html
Convolutions et filtres

Intensity = 0.3\text{red} + 0.59\text{green} + 0.11\text{blue}
Image Convolution

Roberts Cross (edge) detection

Discrete gradient (maximal response for edge at 45 degrees)

\[
\begin{array}{cc}
+1 & 0 \\
0 & -1 \\
\end{array} \quad \begin{array}{cc}
0 & +1 \\
-1 & 0 \\
\end{array}
\]

\(G_x \) \hspace{2cm} \(G_y \)

The two filters are 90 degrees apart (inner product is zero)

|\(|G| = \sqrt{G_x^2 + G_y^2} \) |

\[\theta = \arctan(G_y/G_x) - 3\pi/4 \]

Approximated by

\[
|G| = |P_1 - P_4| + |P_2 - P_3|
\]
Roberts Cross edge detector

Approximated by

\[|G| = |P_1 - P_4| + |P_2 - P_3| \]
Sobel edge detector

Approximated by

\[|G| = |(P_1 + 2 \times P_2 + P_3) - (P_7 + 2 \times P_8 + P_9)| + |(P_3 + 2 \times P_6 + P_9) - (P_1 + 2 \times P_4 + P_7)| \]
Sobel

Roberts Cross

Gaussian smoothing

\[G(x) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{x^2}{2\sigma^2}} \]

Normalize discrete Gaussian kernel to 1

Two parameters to tune:
- K, the dimension of the matrix
- Sigma, the smoothing width...
Blurring, low-pass filter eliminates edges...

Source

Sigma=1, 5x5

Sigma=2, 9x9

Sigma=4, 15x15
Mean filter = Uniform average

Source

Corrupted, Gaussian noise (sigma=8)

Mean filter 3x3
Mean filter = Uniform average

Source Corrupted, Gaussian noise (sigma=13) Mean filter 3x3
Median filter

<table>
<thead>
<tr>
<th>123</th>
<th>125</th>
<th>126</th>
<th>130</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
<td>124</td>
<td>126</td>
<td>127</td>
<td>133</td>
</tr>
<tr>
<td>118</td>
<td>120</td>
<td>150</td>
<td>125</td>
<td>134</td>
</tr>
<tr>
<td>119</td>
<td>115</td>
<td>119</td>
<td>123</td>
<td>133</td>
</tr>
<tr>
<td>111</td>
<td>116</td>
<td>110</td>
<td>120</td>
<td>130</td>
</tr>
</tbody>
</table>

Neighbourhood values:
115, 119, 120, 123, 124, 125, 126, 127, 150

Median value: 124

Source Corrupted, Gaussian noise (sigma=8) Median filter 3x3
Sharpening: Identity+Laplacian kernel

Source image

\[
S = \begin{bmatrix}
0 & -\lambda & 0 \\
-\lambda & 1 + 4\lambda & -\lambda \\
0 & -\lambda & 0
\end{bmatrix}
\]
Bilateral filtering

Traditional spatial gaussian filtering

\[J(x) = \sum_{\xi} f(x, \xi) \]

output \quad \longrightarrow \quad \text{input}
Bilateral filtering

New! gaussian on the intensity difference filtering

\[J(x) = \frac{1}{k(x)} \sum_{\xi} f(x, \xi) \; g(I(\xi) - I(x)) \; I(\xi) \]

Bilateral Filtering for Gray and Color Images, Tomasi and Manduchi 1998

.... SUSAN feature extractor...
Bilateral filtering

Traditional spatial gaussian filtering
The kernel shape depends on the image content.

\[
BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_s}(\|p - q\|) G_{\sigma_r}(\|I_p - I_q\|) I_q
\]

- **new** normalization factor
- **space** weight
- **range** weight
Bilateral filtering

Example of Bilateral filtering
- Low contrast texture has been removed

- Brute-force implementation is slow > 10min
 (but real-time with GPU and better algorithms)
Bilateral filtering

Origin image

Bilateral (3)
Results

Origin Image

One iteration

Bootstrapping

five iterations

http://people.csail.mit.edu/sparis/siggraph07_course/
Bilateral filtering extends to meshes

Source

Bilateral mesh denoising
Harris-Stephens edge detector

Aim at finding good feature

\[M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \]

Gradient with respect to x, times gradient with respect to y

Sum over image region – area we are checking for corner
Harris-Stephens edge detector

Measure the corner response as

Algorithm:
- Find points with large corner response function R ($R > \text{threshold}$)
- Take the points of local maxima of R
Harris-Stephens edge detector

Corner response R
Thresholding $R > cste$

Local maxima of R
Superposing local maxima on source images
Invariant to orientation but
Depends on the scaling of the image

- \(R \) depends only on eigenvalues of \(M \)
- \(R \) is large for a corner
- \(R \) is negative with large magnitude for an edge
- \(|R|\) is small for a flat region

All points will be classified as edges

Corner!
Application to feature matching for image panorama tools

http://www.ptgui.com/download.html
Matrix operations using JAMA
JAMA : A Java Matrix Package

Use JAMA library

```
javac -classpath Jama-1.0.2.jar filename.java
```

Summary of JAMA Capabilities

<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Manipulation</td>
<td>constructors, set elements, get elements, copy, clone</td>
</tr>
<tr>
<td>Elementary Operations</td>
<td>addition, subtraction, multiplication, scalar multiplication, element-wise multiplication, element-wise division, unary minus, transpose, norm</td>
</tr>
<tr>
<td>Decompositions</td>
<td>Cholesky, LU, QR, SVD, symmetric eigenvalue, nonsymmetric eigenvalue</td>
</tr>
<tr>
<td>Equation Solution</td>
<td>nonsingular systems, least squares</td>
</tr>
<tr>
<td>Derived Quantities</td>
<td>condition number, determinant, rank, inverse, pseudoinverse</td>
</tr>
</tbody>
</table>

Using JCreator

![Project Wizard](image)

http://math.nist.gov/javanumerics/jama/
Write a class wrapper around Jama

Essential operations are:

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CholeskyDecomposition</td>
<td>Cholesky Decomposition.</td>
</tr>
<tr>
<td>EigenvalueDecomposition</td>
<td>Eigenvalues and eigenvectors of a real matrix.</td>
</tr>
<tr>
<td>LUDecomposition</td>
<td>LU Decomposition.</td>
</tr>
<tr>
<td>Matrix</td>
<td>Jama = Java Matrix class.</td>
</tr>
<tr>
<td>QRDecomposition</td>
<td>QR Decomposition.</td>
</tr>
<tr>
<td>SingularValueDecomposition</td>
<td>Singular Value Decomposition.</td>
</tr>
</tbody>
</table>

http://www.bluebit.gr/matrix-calculator/
LU Decomposition of rectangular matrices

Product of a lower and upper triangular matrices

\[A = LU. \]

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix} =
\begin{bmatrix}
 l_{11} & 0 & 0 \\
 l_{21} & l_{22} & 0 \\
 l_{31} & l_{32} & l_{33}
\end{bmatrix}
\begin{bmatrix}
 u_{11} & u_{12} & u_{13} \\
 0 & u_{22} & u_{23} \\
 0 & 0 & u_{33}
\end{bmatrix}.
\]

\[
\begin{pmatrix}
 2 & -1 & 0 \\
 -1 & 2 & -1 \\
 0 & -1 & 2
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 \\
 -1/2 & 1 & 0 \\
 0 & -2/3 & 1
\end{pmatrix}
\begin{pmatrix}
 2 & -1 & 0 \\
 0 & 3/2 & -1 \\
 0 & 0 & 4/3
\end{pmatrix} \]
LU Decomposition of rectangular matrices

\[P^{-1}A = LU \]

\[\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \]

P permutation matrix

LU Decomposition for solving linear systems:

\[A\{x\} = \{b\} \]

\[LU\{x\} = \{b\} \]

\[L\{U.x\} = \{b\} \]

\[\{U.x\} = \{y\} \]

\[L\{y\} = \{b\} \]

Trivial to solve since L is lower triangular matrix
Matrix A = Matrix.random(3, 3);
Matrix b = Matrix.random(3, 1);
Matrix x = A.solve(b);

System.out.println("A="); A.print(6, 3);
System.out.println("b="); b.print(6, 3);
System.out.println("x="); x.print(6, 3);

LU Decomposition luDecomp = A.lu();
Matrix L = luDecomp.getL();
Matrix U = luDecomp.getU();
int[] pivot = luDecomp.getPivot();

System.out.println("L="); L.print(6, 3);
System.out.println("U="); U.print(6, 3);
for(int i=0; i<pivot.length; i++)
 System.out.print(pivot[i] + " ");
System.out.println("\n");
QR Decomposition

\[A = QR, \]

Q: Orthogonal matrix
R: Upper triangular matrix

Useful for solving least squares problem

```java
import Jama.*;

class QRDecompositionTest {
    public static void main(String args[]) {
        Matrix A=Matrix.random(3,3);
        QRDecomposition qr=new QRDecomposition(A);
        System.out.println("A=");A.print(6,3);
        Matrix Q=qr.getQ();
        System.out.println("Q=");Q.print(6,3);
        Matrix R=qr.getR();
        System.out.println("R=");R.print(6,3);
    }
}
```

A=

0.821 0.098 0.374
0.057 0.151 0.036
0.994 0.150 0.703

Q=

-0.637 0.131 0.760
-0.044 -0.990 0.134
-0.770 -0.052 -0.636

R=

-1.290 -0.185 -0.781
0.000 -0.145 -0.023
0.000 0.000 -0.158
Cholesky decomposition

\[A = LL^*, \]

For a **symmetric positive definite matrix** \(A \), Cholesky decomposition yields:

- \(L \) is a lower triangular matrix
- \(L^* \) is the conjugate transpose
import Jama.*;

class CholeskyDecompositionTest
{
 public static void main(String args[])
 {
 double [][] array=new double[3][3];
 int i,j;

 for(i=0;i<3;i++)
 for(j=0;j<=i;j++){
 array[i][j]=Math.random();
 array[j][i]=array[i][j];
 }

 Matrix A=new Matrix(array);
 CholeskyDecomposition cd=new CholeskyDecomposition(A);

 System.out.println("A=");A.print(6,3);
 Matrix L=cd.getL();
 System.out.println("L=");L.print(6,3);

 if (cd.isSPD())
 {L.times(L.transpose()).print(6,3);}
 }
}