
HD Compendium of statistical distances

Code: HD
Argument: Positive density

Hölder divergence (HD)

Consider two monotone embeddings17 ρ(·) and τ(·) of positive densities p̃, q̃ � ν. The Hölder divergence (HD) for α > 1 and conjugate
exponents 1

α + 1
β = 1 (β = α

α−1 > 1) between two positive densities p̃ and q̃ is defined by:

HDα,ρ,τ (p̃ : q̃) = − log
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ρ(p̃(x))αdν(x)
) 1
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τ(q̃(x))βdν(x)

) 1
β

 . (18)

When the default identity embedding ρ(x) = τ(x) = x is considered, we write concisely HDα (p̃ : q̃) for HDα,ρ,τ (p̃ : q̃). We may also
denote by (ρ, τ)-HD the HD divergence taken wrt. the ρ and τ monotone embeddings.

By construction from Rodgers-Hölder inequality18, the Hölder divergence is zero when:

ρ(p̃)α ∝ τ(q̃)β , ae. (19)

Thus the (ρ, τ)-HD defines a proper divergence on probability densities (ie., satisfying the law of indiscernability HDα,ρ,τ (p : q) = 0
iff. p(x) = q(x) ae.) when:

ρ−1(τ(x)
β
α ) = ρ−1(τ(x)

1
α−1 ) = x, α > 1, (20)

or equivalently when the inverse transformation is the identity function:

τ−1(ρ(x)α−1) = x, α > 1. (21)

Key properties

• The (ρ, τ)-HD is a projective divergence when the embeddings are homogeneous functions (like power functions):

∀λ, λ′ > 0, HDα,ρ,τ (λp̃ : λ′q̃) = HDα,ρ,τ (p̃ : q̃) , ρ(γx) = γaρ(x), τ(γx) = γbτ(x). (22)

Notable members

• The Bhattacharyya distance19 is a Hölder divergence in disguise for the square root embedding ρ(x) = τ(x) =
√
x of densities:

Bhat (p : q) = − log

∫ √
p(x)q(x)dν(x) = − log
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, (23)

since
∫ √

p(x)
2
dν(x) =

∫ √
q(x)

2
dν(x) = 1.

It follows that the Bhattacharyya distance can be extended to positive measures as follows:

Bhat (p̃ : q̃) = − log
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= − log
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A similar interpretation holds for the skewed Bhattacharyya distance20.

• The Cauchy-Schwarz divergence21 is the only symmetric Hölder divergence obtained for α = β = 2:

CSD (p̃, q̃) = − log

∫
p̃(x)q̃(x)dν(x)√∫

p̃(x)2dν(x))
∫
q̃(x)2dν(x)

. (25)

The Cauchy-Schwarz divergence is a log-ratio gap divergence derived from the Cauchy-Buniakovski-Schwarz inequality. This
divergence admits closed-form formulas for mixtures of exponential families with conic natural parameter space22.
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Notes

The Hölder divergence is derived from the Rodgers-Hölder inequality23 (log-ratio gap). Hölder divergences are studied in24 where
closed-form formulas are reported for distributions belonging to the exponential families with conic natural parameter spaces. This
inequality-induced Hölder divergence shall not to be confused with the score-induced Hölder divergence25.
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