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ABSTRACT

Statistical modeling of images plays a crucial role in modern
image processing tasks like segmentation, object detection
and restoration. Although Gaussian distributions are conve-
niently handled mathematically, the role of many other types
of distributions has been revealed and emphasized by natural
image statistics. In this paper, we consider a versatile class
of distributions called exponential families that encompasses
many well-known distributions, such as Gaussian, Poisson,
multinomial, Gamma/Beta and Dirichlet distributions, just to
name a few. For those families, we derive mathematical ex-
pressions for their Shannon entropy and cross-entropy, give
a geometric interpretation, and show that they admit closed-
form formula up to some entropic normalizing constant de-
pending on the carrier measure but independent of the mem-
ber of the family. This allows one to design algorithms that
can compare exactly entropies and cross-entropies of expo-
nential family distributions although some of them have stric-
tus sensus no known closed forms (eg., Poisson). We discuss
about maximum entropy and touch upon the entropy of mix-
tures of exponential families for which we provide a relative
entropy upper bound.

Index Terms— Entropy, Cross-entropy, Relative entropy,
Bregman divergence, Mixtures, Maximum entropy, Legendre
transformation.

1. INTRODUCTION

A growing body of work in image processing considers sta-
tistical distributions inferred from raw pixel data to perform
image tasks such as segmentation [1], object detection, in-
painting, deblurring and restoration. The use of statistical
mixture models such as Gaussian mixture models (GMMs)
to fit pixel data becomes commonplace. Although very con-
venient GMMs are not always the best mixtures as attested
by statistics empirically revealed in natural image collections.
Alternative choices to the Gaussian distribution and mixtures
thereof are thus gaining more and more attention. For exam-
ple, Bougila [2] considered Dirichlet distributions to carry out
image restoration. A key algorithmic component for manip-
ulating statistical data is to get a notion of distance between
distributions. The relative entropy has been consistently used

over the years as it is theoretically well sounded. However,
computing relative entropy and interpreting this measure in
terms of entropy and cross-entropy is often performed case by
case, according to the distribution family. See for example [3]
that reports entropies and their estimators for a few multivari-
ate distributions. We consider a large class of distributions,
called exponential families that include many of the usual
distributions (Gaussian, multinomial, Poisson, Beta/Gamma,
Dirichlet) and give mathematical expressions of their entropy,
cross-entropy and relative entropy. Although the relative en-
tropy is always in closed-form solution for those distributions,
it turns out that it may not be the case for the entropy nor
the cross-entropy. Nevertheless, we show that this is not cru-
cial as there exists for each exponential family an entropic
normalization constant that is shared by all members of that
class. Thus even if this constant is not in closed-form, it is not
necessary to take it into account for comparing entropies and
cross-entropies of members of the same class of exponential
families.

The paper is organized as follows: Section 2 introduces
the concepts of Shannon entropy, cross-entropy and relative
entropy as a measure for statistical distributions. Section 3 de-
scribes concisely exponential families. We prove in Section 4
that the relative entropies of exponential families amounts
to compute a Bregman divergence. Section 6 discusses on
the maximum entropy principle and the role of the Legen-
dre transform to solve easily MAXENT problems. It is fol-
lowed in Section 7 by an analysis of an upper-bound on the
relative entropy of mixtures of exponential families. Finally,
Section 8 wraps up the paper and hint at further perspectives.

2. ENTROPY, CROSS-ENTROPY, AND RELATIVE
ENTROPY

The Shannon entropy of a random variable P measures the
amount of uncertainty, and is defined by means of its un-
derlying distribution p(x) as H(P ) =

∫
p(x) log 1

p(x)dx =

−
∫
p(x) log p(x)dx = EP [− log p(x)]. Loosely speaking,

the entropy characterizes quantitatively the degree of fuzzi-
ness of an uncertain variable. The maximum entropy com-
munity investigates properties of random variables linked to
entropies; For example, a random variable that has maximum



entropy follows necessarily the uniform distribution. A ran-
dom variable with a given prescribed variance of maximum
entropy follows a Gaussian distribution, etc.

In coding theory, one seeks for low entropy codes that
uses the underlying structure of the language, at its best. Ef-
ficient codes stick close to the assumed real-world model,
and as such entropy measures the quality of the code com-
pared to the model. Since the true distribution P is un-
known to the observer (hidden by nature), we rather de-
fine the cross-entropy between two random variables as
H×(P,Q) = EP [− log q(x)] = −

∫
p(x) log q(x)dx to

measure the efficiency or accuracy of codes. The cross-
entropy measures the average number of bits that are wasted
by encoding events from an unknown distribution P with a
code designed on a model distributionQ = P̃ . The Kullback-
Leibler divergence or relative entropy1 between two distri-
butions P and Q with respective densities p(x) and q(x) is
defined according to their likelihood ratio p(x)

q(x) by

KL(p(x)||q(x)) =

∫
x

p(x) log
p(x)

q(x)
dx = EP

[
log

p(x)

q(x)

]
The Kullback-Leibler can be rewritten as

KL(p(x)||q(x)) = H×(p(x)||q(x))−H(p(x)) ≥ 0

Namely, the relative entropy is the difference of the cross-
entropy (inaccuracy) minus the entropy, with H(p(x)) =∫
x
p(x) log 1

p(x)dx andH×(p(x)||q(x)) =
∫
x
p(x) log 1

q(x)dx.

3. STATISTICAL EXPONENTIAL FAMILIES

In statistics, many common distribution families such as Pois-
son, Gaussian or binomial/multinomial distributions are class
members of a generic super-family called exponential fam-
ilies. A random variable X ∼ EF (θ) is said to belong to
the exponential families if and only if it admits the following
canonical rewriting of its underlying distribution:

pF (x; θ) = exp(〈t(x), θ〉 − F (θ) + k(x)), (1)

where 〈x, y〉 = xT y denotes the inner product, t(x) the suffi-
cient statistics, θ the natural parameters belonging to an open
convex space Θ, F (θ) aC∞ differentiable real-valued convex
function defined on Θ, and k(x) a carrier measure.

Since F (θ) = log
∫
x

exp{〈t(x), θ〉 + k(x)}dx (because∫
pF (x; θ)dx = 1), function F is called the log-normalizer2

and fully characterizes the family, with the natural parameter
θ denoting the member of the familyEF . A statistic is a func-
tion of the observations (like the sample mean or sample vari-
ance) that collects information about the distribution with the

1Relative entropy bears also frequently the name of information diver-
gence, information deviance and relative entropy, etc.

2Or cumulant function, log-partition Z(θ) in statistical physics with
F (θ) = logZ(θ). The log-normalizer is related to the Laplace transform.

goal to concentrate information for later inference. A statistic
is said sufficient if it allows one to concentrate information
obtained from random observations without loosing informa-
tion, in a sense that working directly on the observation sets
or its compact sufficient statistics yields exactly the same re-
sults. It can be shown from the Neyman-Pearson theorem, un-
der mild regularity conditions, that the class of distributions
admitting sufficient statistics are the exponential families [4],
the log-linear models. k(x) is a term related to the carrier
measure (using either Lebesgue or counting measure).

The exponential family is said univariate if x ∈ X is
unidimensional or multivariate, otherwise. The order of the
exponential family is the dimension of the natural parameter
space. The family of Gaussian distributions is univariate of
order 2.

Dealing with exponential families instead of particular
family members (like Gaussians or multinomials) allows one
to design generic solutions. For example, the maximum like-
lihood estimator for a i.i.d. sequence x1, ..., xn is given by
θ̂ = ∇F−1( 1

n

∑n
i=1 t(xi)), where∇F−1 denote the recipro-

cal gradient of F : ∇F−1 ◦ ∇F = ∇F ◦ ∇F−1 = Id.
Usually, exponential family parameters are handled not

in the natural parameters. For example, the Gaussian distri-
bution is commonly parameterized by λ = (µ, σ2), and not
θ = ( µσ2 ,− 1

2σ2 ) (see [4]). However, there is a one-to-one map
between these source parameters λ and the natural parameters
θ.

4. BREGMAN DIVERGENCES AND RELATIVE
ENTROPY OF EXPONENTIAL FAMILIES

A broad class of dissimilarity measures can be defined ac-
cording to a generator function: Bregman divergences. The
Bregman divergence associated to a real-valued strictly con-
vex and differentiable function F is defined by:

BF (p||q) = F (p)− F (q)− 〈p− q,∇F (q)〉.

Choosing F (x) =
∑
i x

2
i yields the squared Euclidean

distance. The relative entropy is obtained for F (x) =∑
i xi log xi. Note that Bregman generators F are defined

modulo affine terms: BF (p||q) = BG(p||q) for G(x) =
F (x) + 〈a, x〉+ b.

It can be shown that the relative entropy of two distri-
butions EF (θ) and EF (θ′) belonging to the same exponen-
tial family EF is always available in closed-form. Namely,
the relative entropy is equal to the Bregman divergence de-
fined by the log-normalizer on the swapped natural parame-
ters: KL(EF (θ)||EF (θ′)) = BF (θ′||θ).

Let us first prove that∇F (θ) = E[t(X)]. That is, that the
expectation of the sufficient statistics is equal to the Jacobian
of the log-normalizer calculated at the natural parameter. We



have F (θ) = log
∫
x

exp{〈t(x), θ〉+ k(x)}dx. It follows that

∇F (θ) =
[
∫
x
t(x) exp{〈t(x), θ〉+ k(x)}dx]j∫
x

exp{〈t(x), θ〉+ k(x)}dx

Since eF (θ) =
∫
x

exp{〈t(x), θ〉 + k(x)}dx, we get
∇F (θ) =

∫
x
t(x) exp{〈t(x), θ〉 − F (θ) + k(x)}dx. That

is, ∇F (θ) =
∫
x
t(x)pF (x; θ)dx = Eθ[t(x)]. (Thus if x

belongs to the sufficient statistics, we easily get closed-form
expression for the mean E[pF (x; θ)] of the distribution).

Similarly, the variance-covariance matrix of the suffi-
cient statistics is the Hessian of the log-normalizer calculated
at the natural parameter: Cov[t(X)] = ∇2F (θ), etc. In
fact, all moments of exponential families are finite, which
explains why the Cauchy distribution (of undefined mean)
does not belong to the exponential families. The proof of
the Kullback-Leibler/Bregman divergence equivalence for
exponential families follows:

KL(θp||θq) =

∫
x

p(x|θp) log
p(x|θp)
p(x|θq)

dx

KL(θp||θq) =
∫
x
p(x|θp)(F (θq)−F (θp)+〈θp − θq, t(x)〉)dx

=
∫
x
p(x|θp)(BF (θq||θp)+

〈θq − θp,∇F (θp)〉+ 〈θp − θq, t(x)〉)dx = BF (θq||θp) +∫
x
p(x|θp)〈θq − θp,∇F (θp)− t(x)〉)dx = BF (θq||θp) −∫

x
p(x|θp)〈θq − θp, t(x)〉dx+〈θq − θp,∇F (θp)〉 = BF (θq||θp)

since∇F (θ) =
[∫
x
t(x) exp{〈θ, t(x)〉 − F (θ) + k(x)}dx

]
.

Note that finite discrete distributions (say, of d events) are
exponential families in disguise: Those distributions are pre-
cisely multinomials with d− 1 degrees of freedom.

5. ENTROPY AND CROSS-ENTROPY OF
EXPONENTIAL FAMILIES

Let us write the relative entropy as the difference of the cross-
entropy minus the entropy: KL(p||q) = H×(p||q) − H(p).
Furthermore, consider the equivalence with Bregman diver-
gences for exponential families. Separating, the terms inde-
pendent of q from the other ones, we get:

KL(p||q) = BF (θq||θp)
= F (θq)− F (θp)− 〈θq − θp,∇F (θp)〉

KL(p||q) = F (θq)− 〈θq,∇F (θp)〉︸ ︷︷ ︸
∼H×F (θp||θq)

− (F (θp)− 〈θp,∇F (θp)〉)︸ ︷︷ ︸
∼HF (θp)

Since F is defined modulo affine terms ax + b in the Breg-
man divergence, and since the factor a leaves independent the
entropy/cross-entropy terms, we deduce that

H(P ) = HF (θp) = F (θp)− 〈θp,∇F (θp)〉+ b

Since H(p) ≥ 0, we necessarily have b ≥ 〈θp,∇F (θp)〉 −
F (θp). Thus we can compare exactly the entropy of two
members of the same exponential family since the constant
term b vanishes.
To determine explicitly the entropic normalization additive
constant b, we proceed as follows:
HF (θ) = −

∫
pF (x; θ) log pF (x; θ)dx. This is equal to

−
∫
pF (x; θ)〈t(x), θ〉dx−

∫
k(x)pF (x; θ)dx.

We get b = −
∫
k(x)pF (x; θ)dx = −E[k(x)], the mean of

the carrier measure for the exponential distribution. For stan-
dard carrier measure k(x) = 0, we thus get b = 0.

Theorem 1 The entropy of an exponential family EF is given
by H(P ) = HF (θp) = F (θp) − 〈θp,∇F (θp)〉 − EP [k(x)].
In particular, for standard zero carrier measure, we have
EP [k(x)] = 0, and the entropy in closed-form solution:
H(P ) = F (θp)− 〈θp,∇F (θp)〉.

Note that Gaussian distributions have zero carrier measure
(k(x) = 0), and thus their entropy is in closed-form. To give
yet another example, let us consider Rayleigh distribution
p(x;σ2) = x

σ2 exp
(
− x2

2σ2

)
that belongs to the exponential

families for the log-normalizer F (θ) = − log(−2θ), natural
parameter θ = − 1

2σ2 , sufficient statistic t(x) = x2, gradi-
ent F ′(θ) = − 1

θ and carrier measure k(x) = log x. Let
X ∼ Rayleigh(σ2), we have: H(X) = 1 + ln σ√

2
+ γ

2 ,

where γ = 0.57721566... stands for the Euler-Mascheroni
constant. This is the term related to the carrier measure
log x integrated over the distribution. Consider yet another
univariate exponential family: the Poisson distribution with
probability mass function p(x;λ) = λx exp(−λ)

x! . The entropy
is λ(1 − log λ) − E[k(x)] Since k(x) = − log x! (see [4]),
we have:
−E[k(x)] =

∑∞
k=0 pF (x;λ) log k! = e−λ

∑ λk log k!
k! . Al-

though the entropy is not in closed form, we nevertheless
end-up with the following closed-form relative entropy:
KL(P ||P ′) = λ′P − λP

(
1 + log

(
λP ′
λP

))
Once again, we insist on the fact that even if the entropy it-
self has non-closed form solution, we can always make ex-
act entropy/cross-entropy comparisons for distributions of the
same family members. Figure 1 illustrates graphically the en-
tropy, cross-entropy and relative entropy quantities for expo-
nential families.

6. MAXIMUM ENTROPY

The maximum entropy probability distribution is a probabil-
ity distribution whose entropy is maximized over all members
of a prescribed class of distributions. In physics, the principle
of maximum entropy states that the distribution with largest
entropy of the class should be chosen as it reflects the limit
configuration of the system over time. For exponential fam-
ilies, the maximum entropy optimization problem becomes:



θp

F

θq

F (θp)

F (θq)

BF (θq||θp) = H×
F (θp||θq)−HF (θp)

−H(θp)

H×(θp||θq)

Fig. 1. Visualizing the entropy, cross-entropy and relative en-
tropy of exponential families (for k(x) = 0).

maxθ∈ΘHF (θ). That is, choose the parameter θ for the
class of exponential family EF that maximizes its entropy.
Consider ηp = ∇F (θp) the dual expectation parameter of
the exponential family. The natural/expectation parameters
are related by the Legendre transformation. The Legendre
transformation of a convex function F yields a dual convex
function F ∗ such that F ∗(η) = maxθ 〈θ, η〉 − F (θ). Max-
imum is achieved for η = ∇F (θ). Legendre convex conju-
gates satisfy reciprocal gradient constraint: ∇F ∗ = (∇F )−1.
Thus the maximum entropy optimization problem becomes
maxθHF (θ) = maxθ F (θ) − 〈θ,∇F (θ)〉 − Eθ[k(x)]. As-
suming k(x) = 0, we get maxη −F ∗(η) ≡ minη F

∗(η), a
minimization problem for the dual Legendre convex conju-
gate. Provided the Legendre conjugate is in explicit closed
form, we retrieve easily the solution for the minimum of
the convex function F ∗. Otherwise, we apply any numer-
ical root-finding algorithm. (The Legendre dual F ∗ of the
log-normalizer F for the expectation parameter η yields the
Shannon negative entropy for the θ = η∗ = ∇F−1(η) mem-
ber: F ∗(η) = −H(pF (x; θ)).)

7. MIXTURE MODELS

Consider a mixture of exponential families with k compo-
nents expressed using the natural parameters: pF (x; θ1, ..., θk) =∑k
i=1 wipF (x; θi), with

∑k
i=1 wi = 1 and all wi ≥ 0. Mix-

ture of exponential families include the Gaussian mixture
models (GMMs), mixtures of Gamma distributions, mix-
ture of zero-mean Laplacians, etc. Given two mixtures of
exponential families, we can bound the relative entropy of

these distributions using Jensen’s inequality on the convex
Kullback-Leibler divergence as follows:
KL
(∑k

i=1 wipF (x; θi)||
∑k′

i=1 w
′
ipF (x; θ′i)

)
≤∑k

i=1

∑k′

j=1 wiw
′
jKL(pF (x; θi)||pF (x; θ′j))

=
∑k
i=1

∑k′

j=1 wiw
′
jBF (θ′j ||θi).

This bound is far too crude to be useful in practice. We
may consider approximating the relative entropy by matching
components of the mixture, and get the following approxima-
tion: KL(f ||g) =

∑k
i=1 wi minj BF (θ′j ||θi) + log wi

w′i
.

8. CONCLUSION

In this paper, we have explained how to derive a generic for-
mula for calculating the entropy, cross-entropy, and relative
entropy of statistical exponential families. Interestingly, even
if those entropies and cross-entropies do not admit closed-
form formula strictu senso, we have nevertheless shown how
to compare exactly those quantities as the normalization en-
tropic constant of an exponential family does depend only
on the expectation of the carrier measure, and is independent
of the family member for a given class. For the relative en-
tropy, that normalization constant vanishes, yielding always
a closed-form formula. We interpreted graphically those
entropy and cross-entropy quantities, and further showed
that maximum entropy problems solved well using Legendre
transform. Finally, we reported some upper-bound on the
relative entropy of mixtures of exponential families. Those
results extend to matrix distributions of the exponential fam-
ilies as well (eg., Weibull, Wishart, etc.) We hope that those
results will spur further interests in the image processing
community to consider generic exponential families instead
of the widely acknowledged Gaussian distribution. These
results can further be extended to the classes of Rényi, Tsallis
and α-entropies following [5].
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