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On the Chi Square and Higher-Order Chi Distances
for Approximating -Divergences

Frank Nielsen, Senior Member, IEEE, and Richard Nock

Abstract—We report closed-form formula for calculating the
Chi square and higher-order Chi distances between statistical
distributions belonging to the same exponential family with affine
natural space, and instantiate those formula for the Poisson and
isotropic Gaussian families. We then describe an analytic formula
for the -divergences based on Taylor expansions and relying on
an extended class of Chi-type distances.

Index Terms—Chi square distance, exponential families, Kull-
back–Leibler divergence, statistical divergences, Taylor series.

I. INTRODUCTION

A. Statistical Divergences: -divergences

M EASURING the similarity or dissimilarity between two
probability measures is met ubiquitously in signal pro-

cessing. Some usual distances are the Pearson and Neyman
chi square distances , and the
Kullback–Leibler divergence [1] defined respectively by:

(1)

(2)

where and are probability measures absolutely contin-
uous with respect to a reference measure , and and de-
note their Radon-Nikodym densities, respectively. Those dis-
similarity measures are termed divergences to contrast with
metric distances since they are oriented distances (i.e.,

) that do not satisfy the triangular in-
equality. In the 1960’s, many of those divergences were unified
using the generic framework of -divergences [3], [2], , de-
fined for an arbitrary functional :

(3)

where is a convex function dom
such that ). Indeed, it follows from Jensen inequality
that . Fur-
thermore, wlog., we may consider and fix the scale
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of divergence by setting , see [3]. Those -diver-
gences1 can always be symmetrized by taking

, with , and
. See Table I for a list of common

-divergences with their corresponding generators . In infor-
mation theory, -divergences are characterized as the unique
family of convex separable [3] divergences that satisfies the in-
formation monotonicity property [4]. Note that -divergences
may evaluate to infinity (that is, unbounded ) when
the integral diverge.

B. Stochastic Approximations of -Divergences

To bypass the integral evaluation of of Eq. (3) (often math-
ematically intractable), we carry out a stochastic integration:

(4)

with and IID. sampled from and ,
respectively. Those approximations, although converging to the
true values when , are time consuming and yield poor
results in practice, specially when the dimension of the obser-
vation space, , is large. In practice, -divergences can be effi-
ciently estimated from random samples emanating from and
(the datasets) by estimating the density ratio [7] (without es-

timating the distribution parameters). In this letter, we concen-
trate on obtaining exact or arbitrarily fine approximation for-
mula for -divergences by considering a restricted class of ex-
ponential families with given distribution parameters.

C. Exponential Families

Let denote the inner product for : The inner
product for vector spaces is the scalar product .
An exponential family [8] is a set of probability measures

dominated by a measure having their Radon-Nikodym
densities expressed canonically as:

(5)

for belonging to the natural parameter space:
. Since

, it follows that
. For full regular families [8], it can be proved that

function is strictly convex and differentiable over the open

1Beware that sometimes the and definitions are inverted in the liter-
ature. This may stem from an alternative definition of -divergences defined as

.
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TABLE I
SOME COMMON -DIVERGENCES WITH CORRESPONDING GENERATORS: EXCEPT THE TOTAL VARIATION, -DIVERGENCES ARE NOT METRIC [5]

TABLE II
EXAMPLES OF EXPONENTIAL FAMILIES WITH AFFINE NATURAL SPACE .
DENOTES THE COUNTING MEASURE AND THE LEBESGUE MEASURE

convex set . Function characterizes the family, and bears
different names in the literature (partition function, log-normal-
izer or cumulant function) and parameter (natural parameter)
defines the member of the family . Let dim
denote the dimension of , the order of the family. The map

is an auxiliary function defining a carrier mea-
sure with . In practice, we often con-
sider the Lebesgue measure defined over the Borel -algebra

of for continuous distributions (e.g., Gaussian),
or the counting measure defined on the power set -algebra

for discrete distributions (e.g., Poisson or multinomial
families). The term is a measure mapping called the suf-
ficient statistic [8]. Table II shows the canonical decomposi-
tion for the Poisson and isotropic Gaussian families. Interest-
ingly, any smooth distribution can be arbitrarily finely approx-
imated by a single distribution of an exponential family [10].
Notice that the Kullback–Leibler divergence between members

and of the same exponential
family amount to compute a Bregman divergence on swapped
natural parameters [11]: , where

, where
denotes the gradient.

II. AND HIGHER-ORDER DISTANCES

A. A Closed-form Formula

When and belong to the same restricted exponential
family , we obtain the following result:
Lemma 1: The Pearson/NeymanChi square distance between

and is given by:

(6)

(7)

provided that and belongs to the natural pa-
rameter space .
In that case, this implies that the chi square distances are al-

ways bounded. The proof relies on the following lemma:
Lemma 2: The integral

with for
and , , converges and equals
to , provided the natural
parameter space is affine.
Proof: Let us calculate the integral :

When , we have ,
hence the result.
To prove Lemma 1, we rewrite

, and
apply Lemma 2 for and (checking that

). The closed-form formula for the Neyman chi square
follows from the fact that .
Thus when the natural parameter space is affine, the Pearson/
Neyman Chi square distances and its symmetrization
between members of the same exponential family are available
in closed-form. Examples of such families are the Poisson, bi-
nomial, multinomial, or isotropic Gaussian families to name a
few. Let us call those families: affine exponential families for
short. Note that we can rewrite
with .

B. The Poisson and Isotropic Gaussian Cases

As reported in Table II, those Poisson and isotropic Gaussian
exponential families have affine natural parameter spaces .
• The Poisson family. For and ,
we have:

(8)
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To illustrate this formula with a numerical example, con-
sider and . Then, it comes that

.
• The isotropic Normal family. For and

, we have according to Table II:
. In that

case the distance is symmetric:

(9)

C. Extensions to Higher-order Vajda Divergences

The higher-order Pearson-Vajda and distances [6]
are defined by:

(10)

(11)

are -divergences for the generators and (with
). When , we have

(i.e., divergence
is never discriminative), and is twice the total
variation distance (the only metric -divergence). is the unit
constant. Observe that the “distance” may be negative for
odd (signed distance), but not . We can compute the
term explicitly by performing the binomial expansion:
Lemma 3: The (signed) distance ( ) between mem-

bers and of the same affine expo-
nential family is always bounded and equal to:

(12)

Proof:

(13)

(14)

(15)

Then the proof follows from Lemma 2 that shows
that

.
For Poisson/Normal distributions, we get:

(16)

(17)

Observe that for , we have

when , as

expected. The value is always bounded. For sanity check,
consider the binomial expansion for , we have:

, in accordance with Eq. (8). Consider a nu-
merical example: Let and ( ),
then , , , ,

, , , ,
, etc. This numerical example illustrates the al-

ternating sign of those -type signed distances. The series of
may diverge. Consider and ( ).

We have , , , ,
, , , , and

.

III. -DIVERGENCES FROM TAYLOR SERIES

Recall that the -divergence defined for a generator

is . Assuming
analytic, we use the Taylor expansion about a point :

, the power series expansion of , for
.

Lemma 4 (extends Theorem 1 of [6]): When bounded, the
-divergence can be expressed as the power series of higher
order Chi-type distances:

(18)

In the equality, we swapped the integral and sum according to
Fubini theorem since we assumed that , and

is a generalization of the defined by:

(19)

and by convention. Note that
is a -divergence for

(convex for even ). Eq. (18) yields a meaningful
numerical approximation scheme by truncating the series to the
first terms, provided that the Taylor remainder is bounded.
• Choosing , we approximate the

-divergence as follows (Theorem 1 of [6]):

(20)

where and
. Notice that by assuming the “fatness” of , we ensure

that .
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• Choosing (whenever ) and
affine exponential families, we get the -divergence in a
much simpler analytic expression:

(21)

(22)

Lemma 5: The bounded -divergences between members of
the same affine exponential family can be computed as an equiv-
alent power series whenever is analytic.
Corollary 1: A second-order Taylor expansion yields

. Since ( can always be renormalized) and
, it follows that

(23)

and reciprocally (
follows from the strict convexity of the generator). When

, this yields the well-known approximation [1]:
.

For affine exponential families, we then plug the closed-form
formula of Lemma 1 to get a simple approximation formula
of . For example, consider the Jensen-Shannon divergence
(Table I) with and . It follows
that . (For Poisson distribu-
tions and , we get 1.15% relative error).

A. Example 1: Revisited

Let us start with a sanity check for the distance between
Poisson distributions. The Pearson chi square distance is a -di-
vergence for with and
and for . Thus, with ,

, , and for . Recall
that

. Note that
for all . Thus we get: with

and . Thus, we obtain

, in accordance with Eq. (8).

B. Example 2: Kullback–Leibler Divergence

By choosing , we obtain the Kull-
back–Leibler divergence (see Table I). We have

, and hence , for (with
). Since , it follows that:

(24)

Note that for the case of KL divergence between members of
the same exponential families, the divergence can be expressed

in a simpler closed-form using a Bregman divergence [11] on
the swapped natural parameters. For example, consider Poisson
distributions with and , the Kullback–Leibler
divergence computed from the equivalent Bregman divergence
yields , the stochastic evaluation of Eq. (4) with

yields and the KL divergence obtained
from the truncation of Eq. (24) to the first terms yields the fol-
lowing sequence: , ,
, , , etc.

IV. CONCLUDING REMARKS

We investigated the calculation of statistical -divergences
between members of the same exponential family with affine
natural space. We first reported a generic closed-form formula
for the Pearson/Neyman and Vajda -type distance (always
bounded), and instantiated that formula for two affine exponen-
tial families: (1) Poisson and (2) isotropic Gaussian families.We
then considered the Taylor expansion of the generator at any
given point to deduce an analytic expression of -divergences
using Pearson-Vajda-type distances (Eq. (20) and Eq. (21)). In
practice, the -divergences can be well-approximated by the
truncated series when the Taylor exact remainder is bounded.
The convergence rate of the -divergence approximation de-
pends on the values of the successive derivatives of . A
second-order Taylor approximation yielded a fast estimation of
-divergences. This framework shall find potential applications
in signal processing and when designing inequality bounds be-
tween divergences.
A Java package that illustrates numerically the lemmata is

provided at: www.informationgeometry.org/fDivergence/
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