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Outline

A storytelling...

I Getting started with the framework of information geometry:
1. Shannon entropy and satellite concepts
2. Invariance and information geometry
3. Relative entropy minimization as information projections

I Recent work overview:
4. Chernoff information and Voronoi information diagrams
5. Some geometric clustering in information spaces
6. Summary of statistical distances with their properties

I Closing: Information Theory onward
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Chapter I.
Shannon entropy and
satellite concepts
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Shannon entropy (1940’s): Big bang of IT!
I Discrete entropy: probability mass function (pmf)

pi = P(X = xi ), xi ∈ X (0 log 0 = 0)

H(X ) =
∑

i=1

pi log
1
pi

= −
∑

i=1

pi log pi

I Differential entropy: probability density function (pdf)
X ∼ p with support X

h(X ) = −
∫

X
p(x) log p(x)dx

I Probability measure: random variable X ∼ P � µ

H(X ) = −
∫

X
log

dP
dµ

dP

H(X ) = −
∫

X
p(x) log p(x)dµ(x), p =

dP
dµ

Lebesgue measure µL, counting measure µc ,
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Discrete vs differential Shannon entropy
Entropy: Measure the (expected) uncertainty of a random variable
(rv)

H(X ) = −
∫

X
p(x) log p(x)dµ(x) = −EX [logX ] , X ∼ P

I Discrete entropy is bounded: 0 ≤ H(X ) ≤ log |X | with
support X

I Differential entropy...
I may be negative:

H(X ) =
1
2
log(2πeσ2), X ∼ N(µ, σ)

for Gaussians
I may be infinite when integral diverges:

H(X ) =∞

X ∼ p(x) = log(2)
x log2 x

for x > 2, with support X = (2,∞)
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Key property: Shannon entropy is concave...
Graph plot of Shannon binary entropy (H of Bernoulli trial):
X ∼ Bernoulli(p) with p = Pr(X = 1)

H(X ) = −(p log p + (1− p) log(1− p))

... and Shannon information −H(X ) (neg-entropy) is convex
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Maximum entropy principle (Jaynes [12], 1957):
Exponential families (Gibbs distribution)

I A finite set of D moment (expectation) constraints ti :

Ep(x)[ti (X )] = ηi

for i ∈ [D] = {1, . . . ,D}

I Solution (Lagrangian multipliers): =
Exponential Family [34]

p(x) = p(x ; θ) = exp (〈θ, t(x)〉 − F (θ))

where 〈a, b〉 = a>b: dot/scalar/inner product.
I MaxEnt : maxθ H(p(x ; θ)) such that Ep(x ;θ)[t(X )] = η,

t(x) = (t1(x), . . . , tD(x)) and η = (η1, . . . , ηD)

I Consider a parametric family {p(x ; θ)}θ∈Θ, θ ∈ RD , D: order
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Exponential families (EFs) [34]
I Log-normalizer (cumulant, partition function, free energy):

F (θ) = log
(∫

exp(〈θ, t(x)〉)
)

dν(x) ←
∫

p(x ; θ)dν(x) = 1

Here, F strictly convex, here C∞. p(x ; θ) = e〈θ,t(x)〉−F (θ)

I Natural parameter space:

Θ = {θ ∈ RD : F (θ) <∞}
I EFs have all finite order moments expressed using the

Moment Generating Function (MGF):

M(u) = E [exp(〈u,X 〉)] = exp(F (θ + u)− F (θ))

Geometric moments: E [t(X )l ] = M(l)(0) for order D = 1

E [t(X )] = ∇F (θ) = η, V [t(X )] = ∇2F (θ) � 0
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Example: MaxEnt distribution with fixed mean
and fixed variance = Gaussian family

I maxp H(p(x)) = maxθ H(p(x ; θ)) such that:

Ep(x ;θ)[X ] = η1(= µ),

Ep(x ;θ)[X 2] = η2(= µ2 + σ2)

Indeed, Vp(x ;θ)[X ] = E [(X − µ)2] = E [X 2]− µ2 = σ2

I Gaussian distribution is maxent distribution:

p(x ; θ(µ, σ)) =
1

σ
√
2π

exp

(
−1
2

(
x − µ
σ

)2
)

= e〈θ,t(x)〉−F (θ)

I sufficient statistic vector: t(x) = (x , x2)
I natural parameter vector: θ = (θ1, θ2) = ( µ

σ2 ,− 1
2σ2 )

I log-normalizer: F (θ) = − θ2
1

4θ2
+ 1

2 log
(
− π

θ2

)

I By construction,
E [t(x) = (x , x2)] = ∇F (θ) = η = (µ, µ2 + σ2)
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Entropy of an EF and convex conjugates

X ∼ p(x ; θ) = exp (〈θ, t(x)〉 − F (θ)) , Ep(x ;θ)[t(X )] = η

I Entropy of an EF:

H(X ) = −
∫

p(x ; θ) log p(x ; θ) = F (θ)− 〈θ, η〉

I Legendre convex conjugates [20]: F ∗(η) = −F (θ) + 〈θ, η〉
I H(X ) = F (θ)− 〈θ, η〉 = −F ∗(η) <∞ (always finite here!)
I A member of an exponential family can be canonically
parameterized either by using its natural parameter
θ = ∇F ∗(η) or by using its expectation parameter
η = ∇F (θ), see [34]

I Converting η-to-θ parameters can be seen as a MaxEnt
optimization problem. Rarely in closed-form!
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MaxEnt and Kullback-Leibler divergence

I Statistical distance: Kullback-Leibler divergence
Aka. relative entropy, P,Q � µ, p = dP

dµ , q = dQ
dµ

KL(P : Q) =

∫
p(x) log

p(x)

q(x)
dµ(x)

I KL is not a metric distance: asymmetric and does not satisfy
triangle inequality

I KL(P : Q) ≥ 0 (Gibb’s inequality) and KL may be infinite:

p(x) = 1
π(1+x2)

= Cauchy distribution

q(x) = 1√
2π

exp(− x2

2 ) = standard normal distribution

KL(p : q) = +∞ diverges while KL(q : p) <∞ converges.
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MaxEnt as a convex minimization program
I Maximizing concave entropy H under linear moment

constraints
≡ minimizing convex information

I MaxEnt ≡ convex minimization with linear constraints
(the ti (xj) are prescribed constants)

min
p∈∆D+1

∑

j

pj log pj (CVX)

constraints:
∑

j

pj ti (xj) = ηj , ∀i ∈ [D]

pj ≥ 0, ∀i ∈ [|X |]∑

j

pj = 1

∆D+1: D-dimensional probability simplex, embedded in RD+1
+
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MaxEnt with prior and general canonical EF
MaxEnt H(P) ≡ left-sided minP KL( P : U) wrt U

U: uniform distribution H(U) = log |X |.
maxP H(P) = log |X | −minP KL(P : U)
with KL amounting to “cross-entropy minus entropy”:

KL(P : Q) =

∫
p(x) log

1
q(x)

dx
︸ ︷︷ ︸

H×(P:Q)

−
∫

p(x) log
1

p(x)
dx

︸ ︷︷ ︸
H(p)=H×(P:P)

I Generalized MaxEnt problem: Minimize KL distance to
prior distribution h under constraints (MaxEnt is recovered
when h = U, uniform distribution)

min
p

KL(p : h)

constraints:
∑

j

pj ti (xj) = ηj , ∀i ∈ [D]

pj ≥ 0, ∀i ∈ [|X |],
∑

j

pj = 1
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Solution of MaxEnt with prior distribution

I General canonical form of exponential families
(using Lagrange multipliers for constrained optimization)

p(x ; θ) = exp(〈θ, t(x)〉 − F (θ))h(x)

I Since h(x) > 0, let h(x) = exp(k(x)) for k(x) = log h(x)

I Exponential families are log-concave (F is convex):

l(x ; θ) = log p(x ; θ) = 〈θ, t(x)〉 − F (θ) + k(x)

I Entropy of general EF [37]:

X ∼ p(x ; θ), H(X ) = −F ∗(η)− E [k(x)]

I many common distributions [34] p(x ;λ) are EFs with θ = θ(λ)
and carrier distribution dν(x) = ek(x)dµ(x) (eg., Rayleigh)
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Maximum Likelihood Estimator (MLE) for EFs
I Given observations S = {s1, . . . , sm} ∼iid p(x ; θ0), MLE:

θ̂m = argmaxθL(θ;S) =
∏

i

p(si ; θ)

≡ argmaxθl(θ;S) =
1
m

∑

i

l(si ; θ)

I “Normal equation” of MLE [34]:

η̂m = ∇F (θ̂m) =
1
m

m∑

i=1

t(si )

I MLE problem is linear in η but convex in θ:
minθ F (θ)−

〈 1
m

∑
i t(si ), θ

〉

I MLE is consistent: limm→∞ θ̂m = θ0

I Average log-likelihood [23]: l(θ̂m;S) = F ∗(η̂m) + 1
m

∑
i k(si )
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MLE as a right-sided KL minimization problem
I Empirical distribution: pe(x) = 1

m

∑m
i=1 δsi (x).

Powerful modeling: data and models coexist in the
space of distributions
pe � p(x ; θ) is absolutely continuous with respect to p(x ; θ)

min KL(pe(x) : pθ(x) )

=

∫
pe(x) log pe(x)dx −

∫
pe(x) log pθ(x)dx

= min−H(pe)− Epe [log pθ(x)]︸ ︷︷ ︸

≡ max
1
n

∑
δ(x − xi ) log pθ(x)

= max
1
n

∑

i

log pθ(xi ) = MLE

I Since KL(pe(x) : pθ(x)) = H×(pe(x) : pθ(x))−H(pe(x)), min
KL(pe(x) : pθ(x)) amounts to minimize the cross-entropy



16

Fisher Information Matrix (FIM) and CRLB [24]
Notation: ∂i l(x ; θ) = ∂

∂θi
l(x ; θ)

I Fisher Information Matrix (FIM) :

I = [Ii ,j ]ij , Ii ,j(θ) = Eθ[∂i l(x ; θ)∂j l(x ; θ)] , I (θ) � 0

I Cramér-Rao/Fréchet lower bound (CRLB) for an unbiased
estimator θ̂m with θ0 optimal parameter (hidden by nature):

V [θ̂m] � I−1(θ0) , V [θ̂m]− I−1(θ0) is PSD

I efficiency: unbiased estimator matching the CR lower bound

I asymptotic normality of MLE θ̂ (on random vectors):

θ̂m ∼ N

(
θ0,

1
m
I−1(θ0)

)
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Recap of Chapter I: Shannon cosmos

Shannon’s Big Bang: The story so far has begun with ...

I Shannon entropy H is concave
I MaxEnt yields exponential families
I Entropy of EFs P can either be expressed using θ natural or η

expectation parameterizations of EFs.
Converting η → θ by MaxEnt optimization

I Shannon information of EF −H(P) = F ∗(η) is convex
I MaxEnt amounts to min KL on left argument

(right argument is prescribed prior distribution)
I MLE for EFs amounts to min KL on right argument

(left argument is prescribed empirical distribution)
I Min variance of estimator is lower bounded by inverse of Fisher

Information Matrix (FIM): Cramér-Rao lower bound
I MLE is consistent, Fisher efficient, with asymptotic normality
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Chapter II.
Invariance and geometry
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Differential geometry from a convex function

Dual Geometry
induced by a

convex function

novel domain

Mathematical programming
LP, SDP (CP)

barrier function

Exponential family

Mixture family
(only component weights vary)

cumulant function

negative entropy

Game theory

strictly proper score

Linear systems
(ARMA time-series)

F

Shannon information F = −H is convex!
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Three remarkable properties of the KL divergence
I KL is a separable divergence:

KL(P,Q) =
∫
X kl(p(x) : q(x))dµ(x), where

kl(a : b) = a log a
b is a 1D function on scalars.

Squared Euclidean distance is separable but not the Euclidean
distance.

I KL satisfies the information monotonicity:

KL(P : Q) ≥ KL(PY : QY)

where XY is a coarse-grained quantization of X (Y = ]jIj :
a partition of X ). pY(y) =

∫
Ij p(x)dµ(x) for y ∈ Ij .

I KL is locally ≈∝ quadratic FIM form for arbitrary smooth
family distributions P,Q (not necessarily EFs):

KL(Pθ1 : Pθ2) =
1
2
M2

Iθ1
(θ1, θ2) + o(‖θ1 − θ2‖2)

MG (p, q) =
√

(p − q)>G (p − q) is a Mahalanobis distance
for G � 0
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Those 3 properties are satisfied by all
f -divergences [41]

If (X1 : X2) =

∫
x1(x)f

(
x2(x)

x1(x)

)
dν(x) ≥ f (1) = 0

where f is a convex function

f : (0,∞) ⊆ dom(f ) 7→ [0,∞]

such that f (1) = 0.

Jensen inequality: If (X1 : X2) ≥ f (
∫
x2(x)dν(x)) = f (1) = 0.

May consider f ′(1) = 0 and fix the scale of divergence (Iλf = λIf )
by setting f ′′(1) = 1.

f -divergences can always be symmetrized:

Sf (X1 : X2) = If (X1 : X2) + If �(X1 : X2)

with f �(u) = uf (1/u), and If �(X1 : X2) = If (X2 : X1), f � convex.
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Some common examples of f -divergences [41]

Kullback-Leibler belongs to the broad class of f -divergences

Name of the f -divergence Formula If (P : Q) Generator f (u) with f (1) = 0

Total variation (metric) 1
2
∫
|p(x)− q(x)|dν(x) 1

2 |u − 1|
Squared Hellinger

∫
(
√

p(x)−
√

q(x))2dν(x) (
√
u − 1)2

Pearson χ2
P

∫ (q(x)−p(x))2
p(x)

dν(x) (u − 1)2

Neyman χ2
N

∫ (p(x)−q(x))2
q(x)

dν(x)
(1−u)2

u

Pearson-Vajda χk
P

∫ (q(x)−λp(x))k

pk−1(x)
dν(x) (u − 1)k

Pearson-Vajda |χ|kP
∫ |q(x)−λp(x)|k

pk−1(x)
dν(x) |u − 1|k

Kullback-Leibler
∫
p(x) log p(x)

q(x)
dν(x) − log u

reverse Kullback-Leibler
∫
q(x) log q(x)

p(x)
dν(x) u log u

Triangular 1
2
∫ (q(x)−p(x))2

p(x)+q(x)
dν(x)

(u−1)2
2(1+u)

Squared triangular
∫ (p(x)−q(x))2

p(x)+q(x)
dν(x)

(u−1)2
2(1+u)

Squared perimeter
∫ √

p2(x) + q2(x)dν(x)−
√
2

√
1 + u2 − 1+u√

2

α-divergence 4
1−α2 (1−

∫
p

1−α
2 (x)q1+α(x)dν(x)) 4

1−α2 (1− u
1+α

2 )

Jensen-Shannon 1
2
∫

(p(x) log 2p(x)
p(x)+q(x)

+ q(x) log 2q(x)
p(x)+q(x)

)dν(x) −(u + 1) log 1+u
2 + u log u
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Invariance of f -divergences

I Diffeomorphism h : X → Y, y = h(x)

pY (y) = |J|−1pX (h−1(x)) ← rewrite density

with J the Jacobian matrix
(
∂yi
∂xj

)
i ,j

I f -divergences are invariant under differentiable and invertible
h.

Df (x : x ′) = Df (y : y ′)

← More generally, technically invariant to “sufficiency of
stochastic kernels” [50, 14].

I Conversely, integration measures invariant to diffeomorphisms
are f -divergences [52].
(Exhaustivity property for deterministic transformation)
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Covariance of Fisher Information Matrix

I Let θ = θ(η) and η = η(θ) be two 1-to-1 parameterizations.
From Legendre transformation: η = ∇F (θ) and θ = ∇F ∗(θ)

I J = [Ji ,j ]i ,j : Jacobian matrix Ji ,j = ∂θi
∂ηj

.

Iη(η) = J> × Iθ(θ(η))× J

Fisher information matrix depends on the parameterization
of the parameter space (covariant), but not the infinitesimal
length elements ds2(p) = 〈·, ·〉I (p): dsθ(θp) = dsη(ηp)
→ Fisher-Riemannian geometry (Hotelling 1930, Rao 1945)

In 2D, we can always diagonalize the FIM [58] by (θ, η) mixed
reparameterization. In general, cannot find a change of
coordinates to have diagonal FIM.
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Riemannian statistical manifolds with g =FIM
For univariate normal distributions (or location-scale families):
≡ Hyperbolic geometry [38]

cosh ρ(p1, p2) = 1 +
‖p1 − p2‖2

2y1y2
, g(p) =

[
1
y2

0
0 1

y2

]
=

1
y2 I

conformal (upper space model): g(p) = 1
y2
I
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Statistical manifolds: Differential Geometry (DG)

I Geometric structureM of parametric family {pθ}θ∈Θ

equipped with metric tensor g = I , the FIM:
Scalar product at each tangent plane Tp:

〈u, v〉p = u>I (θ(p))v

u ⊥p v ⇔ 〈u, v〉p = 0 (Fisher orthogonality)

I Riemannian geometry: geodesics are shortest paths that
parallel transport vectors using the Levi-Cevita metric
connection ∇0 induced by g .
The Riemannian distance is a metric distance.

I Affine differential geometry: dual geodesics preserving dual
parallel transports.
Distance is a non-metric divergence
(C 3 differentiable dissimilarity measure)
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Affine Diff. Geometry: Dually affine connections
I Two coupled affine connections

∏
and

∏∗
(and covariant derivatives ∇ and ∇∗)

I Property of inner product (keeps angles by parallel transport):

〈X ,Y 〉g = 〈
∏

X ,
∗∏
Y 〉

g

I Riemannian geometry:
∏

=
∏∗ =

∏
0

γ

(M, g,∇,∇∗)

X

Y

∏∗
Y ∏

X

〈X,Y 〉g = 〈
∏
X,

∏∗
Y 〉g
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Dual vector basis and covariance/contravariance
I Geometric objects (points, vectors, tensors) are parameterized

by coordinates that “arithmetize space”.
I Tangent planes Tp are vector spaces equipped with local
basis

I Vector v =
∑

i v
iei is expressed in a given basis

[e] = (e1, . . . , eD) with coordinates (v1, . . . , vD). The
coordinates of ei are ei [e] = (0, . . . , 0, 1, 0, . . . , 0).

I Under change of basis, tensor components change but
geometric tensor objects are invariant = “facts of universe”

I Aim at writing v i = 〈v , ei 〉 but this works only for orthonormal
coordinate systems: 〈ei , ej〉 = δij .

I Fortunately, there always exist a dual basis with reciprocal
basis vectors e j such that 〈ei , e j〉 = δji
(δji = 1 iff i = j , and 0 otherwise) so that:

v i = 〈v , e i 〉
I A vector can be manipulated either using its contravariant

components v i or using its dual covariant components vi
(Sylvester, 1853, modern terminology: covectors and 1-forms).
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Dually flat manifolds from a convex function F
Canonical geometry induced by strictly convex and differentiable
convex function F .

I Potential functions: F and Legendre convex conjugate G = F ∗

I Dual affine coordinate systems: θ = ∇F ∗(η) and η = ∇F (θ)

I Metric tensor g : written equivalently using the two
coordinate systems:

gij(θ) =
∂2

∂θi∂θj
F (θ), g ij(η) =

∂2

∂ηi∂ηj
G (η) , ∇2F (θ)∇2G (η) = I

I Divergence from Young’s inequality of convex conjugates:

D(P : Q) = F (θ(P)) + F ∗(η(Q))− 〈θ(P), η(Q)〉

This canonical divergence is a Bregman divergence when we
rewrite it using a single parameterization
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Recap of Chapter 2: Invariance and geometry
I f -divergence are separable divergences that satisfy
information monotonicity and locally proportional to
squared Fisher Mahalanobis distances

I A smooth dually flat manifoldM = (M, g ,∇,∇∗) can be
built from any strictly convex function F
Parameterizations: G = ∇2F (θ) or G ∗ = ∇2F ∗(η) with
GG ∗ = I
Metric tensor g :
contravariant components gij and covariant components g ij

I This explains the dual structure of “exponential family
manifold” or “mixture family manifold” met in information
geometry, among others

I Euclidean geometry is self-dual for F (x) = F ∗(x) = 1
2〈x , x〉.

The geometry of multivariate normal families with identical
covariance matrix.
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Chapter III.
Information Projections
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Dually affine connections: e/m-connections and
e/m-flats

I Exponential e-geodesics and mixture m-geodesics for
probability densities:

γm(p, q, α) : r(x , α) = αp(x) + (1− α)q(x)

γe(p, q, α) : log r(x , α) = αp(x) + (1− α)q(x)− F (t)

I In IG, e-connection corresponds to α = +1-connection (θ),
and m-connection corresponds to α = −1-connection (η)

∇(e) = ∇(1), ∇(m) = ∇(−1) α-connections

I Geodesics are straight lines in either θ or η parameterization
I e-flat is an affine subspace in θ-coordinate system

m-flat is an affine subspace in η-coordinate system



33

Projection, orthogonality and Pythagoras’ theorem

Recalling Euclidean geometry...
p

p∗

q

p∗ = minq ‖p− q‖2‖q − p∗‖2 + ‖p∗ − p‖2 = ‖p− q‖2

‖p− q‖ ≥ ‖p− p∗‖

Pythagoras’ theorem

Orthogonal projection
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Information projections: e-projection and
m-projection

I e-projection q∗e is unique if M ⊆ S is m-flat and minimizes
the m-divergence KL( q : p) (left-sided argument):

e-projection: q∗e = argmin
q

KL( q : p)

I m-projection q∗m is unique if M ⊆ S is e-flat and minimizes
the e-divergence KL(p : q ) (right-sided argument):

m-projection: q∗m = argmin
q

KL(p : q )

I-projection, rI-projection, KL-projection, etc.
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MaxEnt with prior q(x) as an information
projection

MaxEnt linear constraints define a m-flat

prior q

p∗ = minp KL(p : q) m-flat

e-projection

affine subspace
induced by
constraints

Ep(x;θ)[t(x)] = η

KL(p : q) = KL(p : p∗) + KL(p∗ : q)

m-geodesic

p

KL(p : q)

KL(p : p∗)

KL(p∗ : q)

Pythagorean theorem:

Pythagoras’ theorem, γm(p, p∗) ⊥FIM γe(p∗, q)
(Fisher orthogonality)
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MLE ≡ min KL: Information projection

Exponential Family Manifold (EFM) is e-flat

P

{Pθ = p(x|θ)}θ

P̂ (η = η̂ = 1
n

∑
i t(xi))

observed point

Space of probability distributions

m-projection, minKL(pe(x) : pθ(x) )

empirical distribution pe

e-flat

Exponential Family Manifold
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Observed point & sufficiency
I Remember MLE of EF is given in closed-form in η-coordinate

system:

η̂m =
1
m

m∑

i=1

t(si ) = ∇F (θ̂m)

... but to get θ, we need to compute ∇F−1 = ∇F ∗, or solve
MaxEnt problem.

I The point with η-coordinate 1
m

∑m
i=1 t(si ) is called the

observed point in information geometry.

I t(x) is called the sufficient statistics :

Pr(x |t, θ) = Pr(x |t)

All information about θ for inference is contained in t
Exponential families have finite sufficient statistics
= lossless statistical information compression
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Chapter IV.
Chernoff information
and Voronoi diagrams
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The Hypothesis Testing (HT) problem

Given two distributions hypothesis P0 and P1, classify observation x
(=decide) either as sampled from P0 or from P1?

x1 x2

p0(x)
p1(x)

x

P0: signal, P1: noise...
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The Multiple Hypothesis Testing (MHT) problem

Given a random variable X with n hypothesis H1 : X ∼ P1, ...,
Hn : X ∼ Pn, decide for a Identically and Independently Distributed
(IID) sample x1, ..., xm ∼ X which hypothesis holds true?

Pm
correct = 1− Pm

error = 1− Pm
e

Seek the asymptotic regime exponent α:

α = − 1
m

logPm
e , m→∞
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Bayesian hypothesis testing (preliminaries)

I prior class probabilities: wi = Pr(X ∼ Pi ) > 0
(with

∑n
i=1 wi = 1)

I conditional class probabilities: Pr(X = x |X ∼ Pi ).
I Total probability (mixture of classes):

Pr(X = x) =
n∑

i=1

Pr(X ∼ Pi )Pr(X = x |X ∼ Pi )

=
n∑

i=1

wi Pr(X |Pi )

I Let ci ,j = cost of deciding Hi when in fact Hj is true.
Matrix [cij ]= cost design matrix

I Let pi ,j(u) = probability of making this decision using rule u.
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Bayesian detector & Probability of Error

Minimize the expected cost for a rule r .
Special case: Probability of error Pe obtained for ci ,i = 0 (correct
classification) and ci ,j = 1 for i 6= j (misclassification):

Pe = EX


∑

i


wi

∑

j 6=i

pi ,j(r(x))






The maximum a posteriori probability (MAP) rule considers
classifying x :

MAP(x) = argmaxi∈{1,...,n} wipi (x)

where pi (x) = Pr(X = x |X ∼ Pi ) are the conditional probabilities.
→ MAP Bayesian detector minimizes Pe over all rules [13]
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Probability of error Pe and divergences

Without loss of generality, consider equal priors ( w1 = w2 = 1
2):

Pe =

∫

x∈X
p(x)min(Pr(H1|x),Pr(H2|x))dν(x)

(Pe > 0 as soon as supp(p1) ∩ supp(p2) 6= ∅)

From Bayes’ rule Pr(Hi |X = x) = Pr(Hi ) Pr(X=x |Hi )
Pr(X=x) = wipi (x)/p(x)

Pe =
1
2

∫

x∈X
min(p1(x), p2(x))dν(x)

Aka. “histogram intersection distance”.
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Bounding the Probability of error Pe

Trick: min(a, b) ≤ min
α∈(0,1)

aαb1−α for a, b > 0, upper bound Pe :

Pe =
1
2

∫

x∈X
min(p1(x), p2(x))dν(x)

≤ 1
2

min
α∈(0,1)

∫

x∈X
pα1 (x)p1−α

2 (x)dν(x).

Chernoff information:

C (P1,P2) = − log min
α∈(0,1)

∫

x∈X
pα1 (x)p1−α

2 (x)dν(x) ≥ 0,

Best error exponent α∗ [11] bounds proba. of error:

Pe ≤ wα∗
1 w1−α∗

2 e−C(P1,P2) ≤ e−C(P1,P2)

Bounding technique can be extended using any quasi-arithmetic
means [28, 22] (f -means or Kolmogorov-Nagumo means)



45

MAP decision rule for EFs and additive Bregman
Voronoi diagrams

KL(pθ1 : pθ2) = B(θ2 : θ1) = A(θ2 : η1) = A∗(η1 : θ2) = B∗(η1 : η2)

Canonical divergence (mixed primal/dual coordinates):

A(θ2 : η1) = F (θ2) + F ∗(η1)− θ>2 η1 ≥ 0

Bregman divergence (uni-coordinates, primal or dual):

B(θ2 : θ1) = F (θ2)− F (θ1)− (θ2 − θ1)>∇F (θ1)

Duality Bregman divergences with exponential families:

log pθi (x) = −B∗(t(x) : ηi ) + F ∗(t(x)) + k(x), ηi = ∇F (θi ) = η(Pθi )

Optimal MAP decision rule: Additive Bregman Voronoi diagram

MAP(x) = argmaxi∈{1,...,n}wipi (x)

= argmin
i∈{1,...,n}

B∗(t(x) : ηi )− logwi

→ nearest neighbor classifier [3, 23, 47, 51]
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MAP of EFs & nearest neighbor classifier
Bregman Voronoi diagrams (with additive weights) are affine
diagrams [3].

argmin
i∈{1,...,n}

B∗(t(x) : ηi )− logwi

Need to answer fast Bregman proximity queries:
I point location in arrangement [4] (small dims),
I Divergence-based search trees [51],
I GPU brute force [8].
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Geometry of the best error exponent: binary
hypothesis

On the exponential family manifold, Chernoff α-coefficient [5]:

cα(Pθ1 : Pθ2) =

∫
pαθ1(x)p1−α

θ2
(x)dµ(x) = exp(−J(α)

F (θ1 : θ2)),

Skew Jensen divergence [32] on the natural parameters:

J
(α)
F (θ1 : θ2) = αF (θ1) + (1− α)F (θ2)− F (θ

(α)
12 ),

Theorem: Chernoff information = Bregman divergence for
exponential families at the optimal exponent value:

C (Pθ1 : Pθ2) = B(θ1 : θ
(α∗)
12 ) = B(θ2 : θ

(α∗)
12 )
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Geometry of the best error exponent: binary
hypothesis on the exponential family manifold

P∗ = Pθ∗12 = Ge(P1,P2) ∩ Bim(P1,P2)

pθ1

pθ2

pθ∗12

m-bisector

e-geodesic Ge(Pθ1 , Pθ2)

η-coordinate system

Pθ∗12

C(θ1 : θ2) = B(θ1 : θ∗12)

Bim(Pθ1 , Pθ2)

Synthetic information geometry (“Hellinger arc”):
Exact characterization but not necessarily closed-form formula
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Geometry of the best error exponent: binary
hypothesis

“Chernoff distribution” P∗ [26]:

P∗ = Pθ∗12 = Ge(P1,P2) ∩ Bim(P1,P2)

e-geodesic (also sometimes called “Bhattacharrya arc”):

Ge(P1,P2) = {E (λ)
12 | θ(E

(λ)
12 ) = (1− λ)θ1 + λθ2, λ ∈ [0, 1]},

m-bisector:

Bim(P1,P2) : {P | F (θ1)− F (θ2) + η(P)>∆θ = 0},

Optimal natural parameter of P∗:

θ∗ = θ
(α∗)
12 = argmin

θ∈Θ
B(θ1 : θ) = argmin

θ∈Θ
B(θ2 : θ).

→ closed-form for order-1 family, or efficient bisection search [26].
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Geometry of the best error exponent: multiple
hypothesis

n-ary Multiply Hypothesis Testing (MHT) [13]: Bound Pe from
minimum pairwise Chernoff distance:

C (P1, ...,Pn) = min
i ,j 6=i

C (Pi ,Pj)

Pm
e ≤ e−mC(Pi∗ ,Pj∗ ), (i∗, j∗) = argmin

i ,j 6=i
C (Pi ,Pj)

Compute for each pair of natural neighbors [4] Pθi and Pθj , the
Chernoff distance C (Pθi ,Pθj ), and choose the pair with minimal
distance.

→ Closest Bregman pair problem for EFs
(Chernoff distance fails triangle inequality).
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Multiple hypothesis testing: Illustration

η-coordinate system

Chernoff distribution between
natural neighbours
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Recap of Chapter 4.

Bayesian multiple hypothesis testing [25] from the viewpoint of
computational information geometry.

I Probability of error Pe & best MAP Bayesian rule

I Pe upper-bounded by the Chernoff distance

I MAP rule = Nearest Neighbor classifier (additive Bregman
Voronoi diagram on the Exponential Family Manifold, EFM)

I Binary hypothesis: best error exponent from intersection primal
geodesic/dual bisector (synthetic information geometry)

I Multiple hypothesis: best error exponent from closest Bregman
pair for EFs
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Chapter V.
Geometric clustering in
information spaces
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Computing divergence-based centroids (survey)

c∗ = argmin
c

n∑

i=1

wiD(pi : c) ← weighted convex combination

I D=Bregman divergence → closed-form [2, 36]
I D=Jeffreys divergence (symmetrized KL): Jeffreys centroid

using Lambert W function [27]
I D=skew Jensen divergence → use Convex-ConCave Procedure

(CCCP) [33]. Skew Bhattacharrya distances on EFs amounts
to skew Jensen divergences on natural parameters

I Robust centroid: D=total Bregman →
closed-form [15, 59, 16], total Jensen divergence [43]
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Divergence-based Hard Clustering (survey)
I Baseline algorithm: Bregman k-means hard clustering [2]

with Bregman k-means++ initialization
In 1D, exact using dynamic programming [42])

I Extend to divergence-based centroid: Minimize∑
i wiD(pi : c), and prove the arg min is unique...

I When divergence-based centroid not in closed-form (say,
f -divergence centroids), use variational k-means [43]

I Introduce new classes of divergences to make clustering
provably robust: total Bregman divergences [15, 59, 16], total
Jensen divergences [43]. These are conformal
divergences [49]: D(p : q) = ρ(p, q)D ′(p : q) .
→ Applications to shape retrieval and biomedical imaging.

I To handle symmetrized divergences (SKL=Jeffreys), use mixed
clustering [46] with two dual centroids per cluster (in closed
form)
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Chapter VI.
Juggling with statistical

distances and
divergences
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From a historical view of statistical distances...
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... To a structural view of classes of distances

If (P : Q) =
∫
p(x)f

(
( q(x)p(x)

)
dν(x)

BF (P : Q) = F (P )− F (Q)− 〈P −Q,∇F (Q)〉

tBF (P : Q) = BF (P :Q)√
1+‖∇F (Q)‖2

CD,g(P : Q) = g(Q)D(P : Q)

BF,g(P : Q;W ) =WBF

(
P
Q : Q

W

)
Dv(P : Q) = D(v(P ) : v(Q))

v-Divergence Dv

total Bregman divergence tB(· : ·) Bregman divergence BF (· : ·)

conformal divergence CD,g(· : ·)

Csiszár f -divergence If (· : ·)

scaled Bregman divergence BF (· : ·; ·)

scaled conformal divergence CD,g(· : ·; ·)

Dissimilarity measure

Divergence

Projective divergence

γ-divergence

Hÿvarinen SM/RM

D(λp : λ′p′) = D(p : p′)

D(λp : p′) = D(p : p′)

one-sided
double sided

C3

Axiomatic approach, exhausitivity characteristics
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Calculating/estimating statistical distances
∫
X

I Closed-form formula for distributions of the same EF:
Shannon [37], Rényi [40], Tsallis [40], Sharma-Mittal [39]
(relative) entropies and relative entropies

I KL of mixtures is not analytic, but deterministic lower and
upper bounds [48] using log-sum-exp inequalities

I Unify Jeffreys (SKL) with Jensen-Shannon (JS) divergences
via a symmetric parametric family of divergences [19]

I Design tailored divergences for closed-form formula on
mixtures: Cauchy-Schwarz divergence [21], Jensen-Rényi
divergence [21], etc.

I Design projective divergences for inference of unnormalized
models [7, 44] (like PEFs: Polynomial Exponential
Families [45]): D(λp, λ′q) = D(p, q) for λ, λ′ > 0.
→ Useful for handling unnormalized probability models.

I etc.
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Conclusion:
Looking IT onward
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Computational Information Geometry

In a nutshell...

I Computation...
= science of transformations

I Information...
= science of communication

(between data and models)

I Geometry...
= science of invariance

... nice interactions of C & I & G for future of IT!
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IT onward: Computational Information Geometry
I Shannon information, the negative entropy, is convex, and thus

it induces a dually flat geometry. Bring insights in
MLE/MaxEnt as information projection.

I In many cases, the log-normalizer F of EFs is
computationally intractable (Ising/Potts models, Restricted
Boltzman Machines, etc.), and we need to consider non-MLE
inference schemes (CDs, SMs, RMs, etc.)

I Furthermore, most statistical learning machines have
singularities (FIM is degenerate → algebraic geometry [60])

I Alternative approach: Optimal transport (regularized) metric
(Wasserstein centroid [1], Sinkhorn distance [6, 18]) but
invariance is with respect to support geometry (not sufficient
statistic)

I Deep Learning have gigantic FIM describing the
neuromanifold that needs tailored inference strategies
(eg, Krönecker factorization with natural gradient)

I Distances for correlated random variables:
optimal copula transport for time-series datasets [17], etc.
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Thank you I
Geometric Sciences of Information (GSI) biannual conferences:

2013 2015

3rd edition GSI’17: www.gsi2017.org
Geometric Sciences of Information, Paris, Fall 2017

GSI Portal:
http://forum.cs-dc.org/category/72/
geometric-science-of-information

www.gsi2017.org
http://forum.cs-dc.org/category/72/geometric-science-of-information
http://forum.cs-dc.org/category/72/geometric-science-of-information
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Thank you II

Edited books:

2012 [31] 2014 [29] 2016 [30]
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Happy centennial birthday Claude E. Shannon!
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Two common dually flat manifolds in statistics

F

Statistics:
• Exponential family:
F (θ) = log

∫
exp(x>θ)dx

• Mixture family:
F (η) = C0(x)+

∑
i ηiFi(x)

Dual Geometry
induced by a

convex function
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KL of EF members ≡ Bregman divergences

I Kullback-Leibler divergence = Cross-entropy - entropy

KL(P : Q) =

∫
p(x) log

1
q(x)

dx
︸ ︷︷ ︸

H×(P:Q)

−
∫

p(x) log
1

p(x)
dx

︸ ︷︷ ︸
H(p)=H×(P:P)

I KL between two distributions of the same EF:

KL(P : Q) = EP

[
log

p(x)

q(x)

]
≥ 0

= BF (θQ : θP)

I Bregman divergence:

BF (θ1 : θ2) = F (θ1)− F (θ2)− 〈θ1 − θ2,∇F (θ2)〉
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KL and dual Bregman divergences
For P and Q belonging to the same exponential families

KL(P : Q) = EP

[
log

p(x)

q(x)

]
≥ 0

= BF (θQ : θP) = BF∗(ηP : ηQ)

= F (θQ) + F ∗(ηP)− 〈θQ , ηP〉
= AF (θQ : ηP) = AF∗(ηP : θQ)

with θQ (natural parameterization) and ηP = EP [t(X )] = ∇F (θP)
(moment parameterization).

I Young inequality at the heart of the canonical divergence:

F (x) + F ∗(y) ≥ 〈x , y〉 Young inequality

AF (x : y) = AF∗(y : x) = F (x) + F ∗(y)− 〈x , y〉 ≥ 0
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Simplifying a mixture model into a single
component [55]

m-projection of the mixture model m onto the e-flat (exponential
family manifold): Best single distribution that approximates an
exponential family mixture is found by taking the center of mass of
the moment parameters: η̄ =

∑
i wiηi .

m =
∑

i wipF (x|θi)

p∗ = pF (x|θ∗)

p = pF (x|θ)

e-flat MF

P p∗ = arg min KL(m : p)

KL(m : p) = KL(p∗ : p) + KL(m : p∗)

m-geodesic

e-geodesic

Exponential family manifold

mixture
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Mixture learning & mixture toolbox jMEF/PyMEF
Learning mixtures:

I Using the bijection of exponential families with Bregman
divergences log pF (x ; θ) = −BF∗(t(x) : η) + F ∗(η) + k(x),
Expectation Maximization for learning mixtures of EFs is
equivalent to soft Bregman k-means [2] (locally consistent
but global optimum difficult)

I k-MLE [23, 53] (hard EM, non consistent), add an extra stage
where we can choose the exponential family component (=
k-GMLE [57]). Monotonically converging.

I Learn a mixture by simplifying a Kernel Density Estimator
(KDE) [54]

I Learn jointly a set of mixtures (comixs) [56]

Toolbox (software libraries jMEF/PyMEF):

I Simplify a mixture (like multivariate normal mixture) by
entropic KL clustering [35] or by Fisher-Rao clustering [54]

I Hierarchical mixture models [10, 9] (level of details in CG)


