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The concepT of disTance express es  Th e dis To rTio n 
measure between any pair of entities lying in a 
common space. Distances are at the very heart of 
geometry, and are ubiquitous in science, needless 
to say in computational science. From the vantage 
point of physics, distances may be interpreted as the 
smallest amount of energy required to go from one 
location to the other, or to morph from one state to 
the other. Unfortunately, there is a lot of confusion in 
popular press about what is exactly meant by using the 
wording “distance.” For example, people quite often 
interchange “distance” with “metric” without caring 
much about the implicitly underlying mathematical 
properties: In this case, to know whether the triangle 
inequality axiom is satisfied or not. A great deal of 
efforts was achieved by Deza and Deza6 in 2006 by 
publishing the first dictionary of distances presenting 
succinctly but unambiguously the various properties 
of distortion measures (such as, metrics, semi-
metrics, distances, quasi-distances, divergences, etc.), 
and listing an extensive although non-exhaustive 
catalog of principal distances with their domain of 
applications encountered in both natural sciences 

(biology, chemistry, physics, and cos-
mology), and computer sciences (cod-
ing theory, data mining, and audio/
video processing).

Algorithm designers and research-
ers in computational sciences daily face 
the daunting task of choosing the most 
appropriate distance functions for solv-
ing their specific problems at hand. It 
is clearly understood nowadays that 
the usual flatland Euclidean distance 
is rarely appropriate for solving tasks 
on high-dimensional heterogeneous 
datasets that are rather lying on curved 
manifolds. A simple toy argument is to 
consider the task of averaging rotation 
matrices. Rotation matrices are ortho-
normal matrices of unit determinant. 
Unfortunately, the center of mass of a 
set of matrices, for example, the cen-
troid defined as the arithmetic mean 
of rotation matrices is not a rotation 
matrix so that a regularization method 
is required to cast the average matrix to 
the closest rotation matrix. Consider 
yet another example: partial 3D shape 
retrieval. In partial shape retrieval, a 
user queries a database of 3D objects 
with a given part. Solving this problem 
requires to consider an oriented dis-
tance to break the symmetry rule. That 
is, one would like the distance part to 
object to be greater than the distance 
object to part, for all parts belonging to 
the given object. Indeed, to clarify this 
point, consider the distance of a 3D 
wagon to a 3D train model consisting 
of a locomotive attached to several wag-
on units. This distance wagon to train 
should be strictly greater than the dis-
tance of the same 3D train to the said 
wagon. This kind of asymmetric prop-
erty is fulfilled by the relative entropy 
distance, known also as the Kullback-
Leibler divergence that acts on statis-
tical distributions. Liu et al.9 built an 
efficient and accurate 3D part search 
engine inspired by probabilistic text 
analysis technique by considering 3D 
objects as documents covering a small 
number of topics called “shape top-
ics.” They experimentally showed that 
the relative entropy distance behaves 
significantly better than the Euclidean 
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Then, given a query object, its signature 
data point is first computed (feature 
extractor) and its nearest-neighbor is 
searched for among all input signa-
tures. In practice, better classification 
methods such as the k-NN rule that 
consists in taking the majority class of 
the k nearest neighbors (NN), or using 
kernel machines such as popular sup-
port vector machines (SVMs) are em-
ployed. Geometrically speaking, the in-
put signatures yields a partition of the 
signature space into discrete elemen-
tary proximity volumes, called Voronoi 
cells that represent the locus of signa-
ture points closer to the cell’s signature 
than to any other input signature. Such 
a discrete Voronoi diagram implicitly 
encodes the shape of signature data 
points. Interestingly, Voronoi diagrams 
have been recently generalized to the 
parameterized family of Bregman di-
vergences10 as well, unifying both the 
classic ordinary Euclidean diagram 
with entropic statistical diagrams into 
a single unifying framework. 

Furthermore, we seek for efficiency 
reasons to reduce the number of input 
signatures to keep only its most repre-
sentative elements. This is achieved by 
using a technique called vector quan-
tization that clusters the points into 
groups such as to minimize the over-
all intra-cluster distance, while maxi-
mizing the inter-cluster distance. The 
seminal centroid-based k-means clus-

or vector space model weighted cosine 
distances. It is natural to ask oneself 
whether this Kullback-Leibler distance 
is the best ultimate distance function 
for 3D search engines or not?

It turns out that this subtle ques-
tion cannot be settled in a static way 
as it depends on the considered input 
database and on the not-yet-known on-
line queries to be processed in the fu-
ture. Otherwise, adversorial input sets 
could be purposely designed to prove 
the sub-optimality of any prescribed 
distance function. That is, distances 
need to be tuned up for every single in-
put set by a built-in learning process. 
Further, these algorithmic distances 
need to be dynamically maintained as 
objects are added, edited, or deleted in 
the database. This dynamic paradigm 
of selecting distances bears much 
similarity with the recent concept of 
self-improved algorithms1 that devote 
some of their computational time to 
learn distribution characteristics of 
the input data sets to be able to speed 
up the overall process.

Since the space of potential distance 
functions is uncountably infinite, de-
signing self-learning distance algo-
rithms need to proceed first by choos-
ing a small set of axiom rules (such 
as symmetry, or triangle inequality) 
specifying the type of distances, and 
yielding parameterized distance fami-
lies for each class. For example, back 
to 1991, Csiszár1 axiomatically derived 
the 1D parametric family of so-called 
Bregman-Csiszár distances by general-
izing the principles of orthogonal pro-
jection measures in least-square-type 
optimization problems. This general-
ization let us discovered some counter-
intuitive facts a priori, such as the non-
necessarily commutative property of 
orthogonal projections. The Bregman-
Csiszár parametric family includes the 
Kullback-Leibler and the Itakura-Saito 
divergences at its extremities. Thus 
learning the best Bregman-Csiszár dis-
tance for a given input amounts to find 
its best member subject to problem-
specific constraints. 

In information retrieval (IR) systems 
such as the former partial shape search 
engine, a set of features playing the role 
of signature are first extracted from ev-
ery single input element, and an overall 
appropriate distance function is prop-
erly defined on the signature space. 

ter algorithm originally established in 
1957 by Lloyd has also been recently 
generalized to its provably most ge-
neric class of distance measures by a 
breakthrough result of Banerjee et al.2 
in 2005: Namely, the class of Bregman 
divergences.

One can legitimately ponder wheth-
er such self-learning distance algo-
rithms are indeed the best suited strat-
egy to get the optimal solution. These 
tweaked algorithms are indeed presum-
ably the best whenever the objective or 
loss functions are unambiguously de-
fined from the input datasets. But no 
one would doubt on the subjective part 
of defining the “closest” 3D shape to a 
given collection of 3D shapes. Human 
perception then plays a determinant 
role, and answers are all but subjective, 
reflecting the different tastes of indi-
viduals. Therefore another recent line 
of research is to let users steer them-
selves the distance learning process 
by loosely entering preferences. These 
personal user preferences are entered 
either by clicking on the best subjective 
ranked item in a list of top matches, or 
by providing prior information such 
as “I find these two images quite simi-
lar but these two others are rather far 
apart, etc.” that are handled as like/
dislike constraints. These semi-super-
vised learning problems become a hot 
topic in machine learning as attested 
by the increasing number of publica-

in modern information retrieval (ir) systems, users are able to dynamically steer the 
distance learning process of search algorithms to reflect accurately and efficiently their 
subjective tastes: first, a user query the ir engine (1), and a list of top ranked items are 
returned (2), from which the user selects his/her best matches (3), thus allowing the system 
to personalize accordingly the distance function for future queries.
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tions related to this area. 
For example, Bar-Hillel and Wein-

shall3 described such a semi-super-
vised learning algorithm where users 
give positive/negative equivalence con-
straints denoting intra-cluster/inter-
cluster pairs of points. The problem 
one faces then is to extract as precisely 
(for example, numerically) and reliably 
as possible the information provided 
by users. The thesis of Hertz7 provides 
an excellent review of distance learn-
ing techniques starting from the most 
common Mahalanobis metric learning 
algorithms that generalize the usual 
Euclidean metric to more flexible non-
parametric distance learning meth-
ods. For example, the non-parametric 
“DistBoost” distance4 is derived from 
signed margin values of binary classi-
fiers combined altogether in the spirit 
of a machine learning technique called 
boosting. The recent edited book of 
Basu et al4 on constrained clustering 
further describes many other semi-
supervised clustering techniques that 
support user feedback.

Learning distances play also a cru-
cial role in the field of collaborative fil-
tering. The seminal idea of collabora-
tive filtering was originally presented 
by Goldberg et al.7 in 1992 at Xerox Palo 
Alto Research Center in their experi-
mental mail system called Tapestry. 
Nowadays, collaborative filtering is 
used in many commercial systems in-
cluding Amazon book store and eBay 
auction site. The underlying idea of col-
laborative filtering is that information 
filtering is much more effective when 
humans are part of the filtering task 
too. That is, both user-steered content-
based filtering and group-steered col-
laborative filtering are used to quickly 
retrieve insightful documents given a 
huge set of annotations gleaned from 
many users. 

In the near future, we envision a 
whole new generation of scaleable 
personalized information retrieval sys-
tems driven by novel algorithms incor-
porating self-learning built-in distance 
modules, and providing light user in-
terfaces. These brand new search en-
gines would be able to better listen to 
the voice of their users, and more im-
portantly give adequate feedbacks to 
the full information retrieval engine 
about users/groups subjective tastes, 
all at the clicks of a mouse.  
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