MPRI - Cours 2-12-2

F. Morain

Lecture III: introduction to elliptic curves

2012/10/15

- 0. Conics.
- I. Definition and group law.
- II. Curves over finite fields.
- III. ECDLP.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010

1/8

I. Definition and group law

K field of characteristic $\neq 2,3.$ Elements of $\mathbf{K}^3 - \{(0,0,0)\}$ are equivalent iff

$$(x_1, y_1, z_1) \sim (x_1', y_1', z_1') \iff \exists \lambda \neq 0, x_1 = \lambda x_1', y_1 = \lambda y_1', z_1 = \lambda z_1'.$$

Projective space: $P^2(K) =$ equivalence classes of \sim .

Elliptic curve defined for points in $P^2(K)$:

$$Y^2Z = X^3 + aXZ^2 + bZ^3 (1)$$

with $4a^3 + 27b^2 \neq 0$ (discriminant of *E*).

Def. $E(K) = \{(x : y : z) \text{ satisfying (1)} \}.$

Prop. $E(\mathbf{K}) = \{(0:1:0)\} \cup \{(x:y:1) \text{ satisfying (1)}\} = \text{point at infinity } \cup \text{ affine part.}$

0. Conics

q odd prime power

$$C = \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q, x^2 + y^2 = 1\}.$$

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1x_2 + y_1y_2, x_1y_2 + x_2y_1).$$

$$(C, \oplus)$$
 is abelian, $O_C = (1, 0), \ominus(x, y) = (x, -y).$

Thm. C is cyclic of order $q - \chi(-1)$, $\chi(a) = a^{(q-1)/2}$. *Proof:*

Rem. Idem with $x^2 - Dy^2 = 1$.

F. Morain - École polytechnique - MPRI - cours 2-12-2 - 2009-2010

2/8

The group law

$$M_3 = M_1 \oplus M_2$$

$$\lambda = \begin{cases} (y_1 - y_2)/(x_1 - x_2) \\ (3x_1^2 + a)/(2y_1) \end{cases}$$
$$x_3 = \lambda^2 - x_1 - x_2$$
$$y_3 = \lambda(x_1 - x_3) - y_1$$

$$[k]M = \underbrace{M \oplus \cdots \oplus M}_{k \text{ times}}$$

Rem. Standard equation and group law formulas for any field. Can be improved in many ways, see BS's part.

II. Curves over finite fields

Thm. (Hasse) $\#E(\mathbb{F}_p) = p + 1 - t$, $|t| \leq 2\sqrt{p}$.

Thm. (Deuring) given |t|, there exists E s.t. #E = p + 1 - t.

Key advantage: enough groups of cardinality close to p (e.g., primality proving).

Caveat:

- no general formula for #E except in some special cases, e.g. $E: Y^2 = X^3 + X$ has p + 1 2u points when $p = u^2 + v^2$.
- no efficient way for finding *E* given *t* except in some special cases (complex multiplication).

Rem. Generalizable to $q = p^n$.

F. Morain - École polytechnique - MPRI - cours 2-12-2 - 2009-2010

5/8

Computing the cardinality

Invent a method in time:

- *O*(*p*):
- $O(p^{1/2})$:
- $O(p^{1/4})$:

Algorithms:

- g=1, p large: Schoof (1985). $\tilde{O}((\log p)^5)$, completely practical after improvements by Elkies, Atkin, and implementations by M., Lercier, etc. New recent record (2010/07) A. Sutherland, for $p=16219299585 \cdot 2^{16612}-1$ (5000dd), 1378 CPU days AMD Phenom II 3.0 GHz.
- p = 2: p-adic methods (Satoh, Fouquet/Gaudry/Harley; Mestre).
 Completely solved.

Group structure

Thm. $E(\mathbb{F}_p) \simeq E_1 \times E_2$ of respective ordres m_1 and m_2 s.t. $m_2 \mid p-1$ and $m_2 \mid m_1$.

Prop. (Murty; Vlǎdut) Almost always, $E(\mathbb{F}_p)$ is cyclic.

Consequence:

$$\sqrt{p} - 1 < \exp(E(\mathbb{F}_p)) < (\sqrt{p} + 1)^2$$
.

Thm. (Schoof) For almost all curves E/\mathbb{Q} , there exists $C_E > 0$ s.t.

$$\frac{\exp(E(\mathbb{F}_p))}{\sqrt{p}} > C_E \frac{\log p}{(\log \log p)^2}.$$

F. Morain - École polytechnique - MPRI - cours 2-12-2 - 2009-2010

6/8

III. ECDLP

DLP in general resistant on an elliptic curve except

- supersingular curves (t = 0), due to the MOV reduction;
- anomalous curves (t = 1).

ECC112b: taken from

http://lacal.epfl.ch/page81774.html, Bos/Kaihara/Kleinjung/Lenstra/Montgomery (EPFL/Alcatel-Lucent

Bell Laboratories/MSR) $p = (2^{128} - 3)/(11 \times 6949)$, curve secp112r1

- 3.5 months on 200 PS3; 8.5×10^{16} ec additions (\approx 14 full 56-bit DES key searches); started on January 13, 2009, and finished on July 8, 2009.
- half a billion distinguished points using 0.6 Terabyte of disk space.