

## A) Diffie-Hellman

Public parameters: p prime number, g generator of  $\mathbb{F}_{p}^{*}$ . Protocol:

 $A \stackrel{g^a \mod p}{\longrightarrow} B$  $A \stackrel{g^b \mod p}{\longleftarrow} B$  $A: K_{AB} = (g^b)^a \equiv g^{ab} \mod p$  $B: K_{BA} = (g^a)^b \equiv g^{ab} \mod p$ 

DH problem: given  $(p, g, g^a, g^b)$ , compute  $g^{ab}$ .

**DL** problem: given  $(p, g, g^a)$ , find *a*.

**Thm.** DL  $\Rightarrow$  DH; converse true for a large class of groups (Maurer & Wolf).

 $\Rightarrow$  **Goal for us:** find a good resistant group.

F. Morain - École polytechnique - MPRI - cours 2-12-2 - 2009-2010

## Schedule

| When  | Who             | What                        |
|-------|-----------------|-----------------------------|
| 23/11 | François Morain | Introduction; Primality     |
| 30/11 | François Morain | Generic groups;             |
|       |                 | Elementary factorization    |
| 07/12 | Emmanuel Thomé  | Integer Factorization (I)   |
| 14/12 | Emmanuel Thomé  | Integer Factorization (II); |
|       |                 | sparse linear algebra       |
| 04/01 | Emmanuel Thomé  | Number Field Sieve          |
| 11/01 | Ben Smith       | Elliptic curves             |
| 18/01 | Ben Smith       | Hyperelliptic curves        |
| 25/01 | Ben Smith       | Pairings                    |
| 01/02 |                 | Written exam                |

Format for my part: 2 hour lecture + 1 hour exercises.

2/5

## B) RSA

Key generation: Alice chooses two primes p and q,  $p \neq q$ , N = pq, e s.t.  $gcd(e, \lambda(N)) = 1$ ,  $d \equiv 1/e \mod \lambda(N)$ .

Public key: (N, e).

Private key: d (or (p,q)).

Encryption: Bob recovers the authenticated public key of Alice; sends  $y = x^e \mod N$ .

```
Decryption: Alice computes y^d \mod N \equiv x \mod N.
```

**Rem.** of course, in real life, more has to be done, but this has already been told somewhere else.

```
\Rightarrow Goal for us: what size should N have, in order not to be factored?
```

5/5

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010