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Abstract

We present some new classes of numbers that
are easier to test for primality with the Elliptic
Curve Primality Proving algorithm than aver-
age numbers. It is shown that this is the case
for about half the numbers of the Cunningham
project. Computational examples are given.

1 Introduction

The so-called Elliptic Curve Primality Proving
algorithm (ECPP) is one of the most power-
ful algorithms for proving the primality of large
numbers with up to 1500 decimal digits (see
[2, 13, 16]). This algorithm generalizes the old
Fermat-like primality proving tests based on the
factorization of N —1 when N is the number to
be proven prime.
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There exist easy numbers for the N —1 test,
namely those N for which the factorization of
N — 1 is trivial, such as Fermat numbers (N =
92" + 1) or special numbers: N =14+ kl, N =
L+ k xa”, etc. (see [18] for all this).

The purpose of this paper is to exhibit some
numbers that are easy to test with ECPP. It ap-
pears that many numbers of the form 6" +1 are
of this kind. Section 2 recalls a part of the the-
ory of ECPP. In Section 3, we describe very easy
numbers — numbers analogous to Fermat num-
bers — and easy numbers — numbers that can be
dealt with more quickly than average numbers
of the same size. Numerical computations are
described that exemplify our results.

2 A brief presentation of

ECPP

2.1 Fermat’s test

Let us begin with the converse of Fermat’s little
Theorem.

Theorem 2.1 If there exists an a prime to N
such that
¥ '=1mod N

but

a™N V1 £ 1 mod N
for every prime divisor ¢ of N — 1, then N is
prime.



If we cannot factor N — 1 completely, it can
happen that the cofactor of N —1, call it Ny, is a
probable prime. Then, we can try to factor Ny —
1 and so on. This idea forms the DOWNRUN
process of [19]: Build a decreasing sequence of
probable primes Ng = N > Ny > -+ > N,
such that the primality of N;;; implies that of
N; (see [11, pp. 376-377]). As an example,
consider a proof that NV = 10° + 3 is prime. We
find

No = 100003, No—1=2x3x7xN,
Ny o= 2381, Ny—1=22x5xT7x17

if we assume that we can decide the primality
of numbers less than 20 very quickly. Then, we

can take ¢ = 3 for proving that N; is prime
and a = 2 for Ny, now that we know that Ny is
prime.

More sensitive tests are described in [5]. A
different type of primality proving algorithm is
described in [1, 9, 8].

2.2 Elliptic curves

The material of this section is taken from [3]. In
order to overcome the difficulty of having just
one number to factor, we use elliptic curves.
Informally, an elliptic curve over a finite field
Z/pZ is the set (of classes) of points in the pro-
jective plane of Z/pZ

E(Z/pZ) = {(x:y:z) € PX(Z/pZ),

y 2z = 2° + axz? + bz® mod ph.

We can define a group law on this set, known as
the tangent—and—chord method, ordinarily de-
noted by +. If m is the cardinality of E(Z/pZ),
then Hasse’s theorem tells us that |m—(p+1)| <
2,/p. More precisely, there exists an algebraic
integer 7 in a quadratic field K = Q(v/~D),
D a positive integer, such that p = Ng(7) and
m = Ng(x — 1), where Ng(6) is the norm of
the algebraic number § in K.

From [10], we have a primality theorem
analogous to Theorem 2.1:

Theorem 2.2 Let N be an integer prime to 6,
E an elliptic curve over Z/NZ, together with a
point P on FE and m and s two integers with
s | m. For each prime divisor q of s, we put
(m/q)P = (2, :y,: 2z,). We assume that mP =
Og and ged(z,, N) =1 for all q. Then, if p is
a prime divisor of N, one has #F(Z/pZ) =

0 mod s.
We have also:

Corollary 2.1 With the same conditions, if
5> (VN 4 1)2, then N is prime.

It should be noted that in order for the preced-
ing condition on s to be fulfilled, m must not
be a perfect square. It was shown in [3] that
this can only happen if D = 3 (resp. D = 4)
for N=a?+x+1 (resp. N =z +1).

We can now give a brief description of the
algorithm.

function ECPP(N)

1. find a quadratic field K = Q(v/~D) in
which N is the norm of an algebraic in-
teger 7 and for which m = Ng(x — 1)
is completely factored or has a probable
prime cofactor M;

2. put s = m and use Theorem 2.2 to prove
the primality of N;

3. recursively prove the primality of M.

This algorithm combines a Fermat-like theorem
and the DOWNRUN approach. For the actual
implementation of this test, we refer to the ar-
ticle [3] as well as [13]. We insist on the follow-
ing points. That N is a norm in an imaginary
quadratic field is equivalent to the fact that

AN = A*+ DB? = (A+ BV-D)(A - BV-D)

with A and B two rational integers. In turn,
this implies that

4m = (A —2)* + DB*.



A number N will be easy to test if the largest
prime factor of m is easy to find, for instance if
it is small. For average numbers, the cofactor
we get is smaller than N, say the ratio m/M is
about 10'° at best. The following section will
deal with extraordinary numbers with respect
to this problem.

Throughout the paper, we keep the preced-
ing notations.

3 Easy numbers

3.1 Building easy numbers

It follows from the preceding section that there
exist numbers for which ECPP is very easy.
This is indeed the case when N = Ng(7) and
where N (7 — 1) is easy to factor. An example
of such numbers is © = ozoo/f 4+ 1 where «; is
an algebraic integer of small norm of K and &
a positive integer. These numbers, called Ellip-
tic Mersenne primes were introduced in [7] and
some large ones were given in [15] (see also [4]).

Let us assume for simplicity that D =
0 mod 4. Then, starting from

1+ D/4=U
we can multiply both sides by k? and have
E* +k*D/4 = Uk* = m.

To m, we can now associate N(k) = (k+1)* +
k*D/4 and sometimes we get a prime. If k is
easy to factor, we have built a prime N for
which the ratio N/N; is quite large. For ex-
ample, taking D = 8 and k = 10'%° + 15034 =
2 X 6397 x 2967583 x ky yields a corresponding
number N (k) which is a 201-digit prime and
we can prove that N is prime by proving that
Ny = ky is prime. The ratio N/N; is about
10112‘

3.2 Finding easy numbers

Another kind of relatively easy number was dis-
covered during the actual implementation of

ECPP. Suppose we are given a probable prime
N that can be written as

N = (¢ + Da*)/(c* + Db?)
= NKE(C)—I— a/—D)/(c+ bv/—D))
= Ng(7

where D is a suitable squarefree positive integer
and 2a, 2b and 2¢ are integer. Then a potential
number of points on an elliptic curve modulo N
is

D(a — b)?

A+ Db?

We must select the signs of a and b such that
this is an integer in Z. If we have luck, then

m= Ng(r—1) =

a — b is easy to factor and we can get a probable
prime cofactor Ny of m with size about half that

of N.

3.2.1 Examples

Many numbers taken from the Cunningham
project [6] are indeed easy numbers. The first
and third examples are taken from a list of prob-
able primes that S. S. Wagstaff sent to the au-
thor recently.

First, let us consider the 208-digit probable
prime

N = (12" +1)/13
and write it as
N = (1*+3(2X)*)/(1* +3 x 2?)
= Ng(a)/Nk(B) = Nk(a/B) = Nk(r)
with X =12% o =14+2Xy/-3and 3 =1+
2v/—3. A potential number of points is

m = N(r — 1) = %(QX _ 9.

With this, X — 1 = 13X, and
m =3 x 13 x (2X,)*.

Therefore, we are done if X —1 = 129 — 1 is

easy to factor, which it is:

20— 1 =] ®u(2),

d|96



d Dy(2) factors of ®,4(12)
1 z—1 11
2 z+1 13
3| 224241 | 157
4 2241 H x 29
6| 22—z+1 |7x19
8 A1 89 x 233
12 2% —224+1 |20593
16 A4 17 x 97 x 260753
24 | 28 — 2t 41 | 193 x 2227777
32 | 1200913648289 x 153953
48 | 218 — 28 4+ 1 | 592734049 x 40609 x 7681
96 | 232 — 216 4 1| 7489 x 3122881 x 1461573322938242802306049
where ®4(z) stands for the d-th cyclo- yielding
tomic polynomial (®4(2) = Tluay=i(z — 51769 | 1 _ | o
exp(2ira/d))). We list in the following table +1=359 X 3033169 X prs < Csos

the algebraic factors of 12%¢ — 1. (It should be
noted that one can find the factors of such a
number quite rapidly without resorting to cy-
clotomic factorization by using Pollard’s p — 1
method [17].) In the DOWNRUN process, we
may take Ny = 1461573322938242802306049,
the largest probable prime factor of 12% — 1.
The ratio m/N; is approximatively 10'%3.

Another very interesting example is the fol-
lowing. Take

23539 1
o Tt
3
which was first proved prime by Morain [14].
We have
1P 42X
124 2(1)2

with X = 21759, Write this as
N = Ni(a/f) = N((1+ Xv=2)/(1--2)).
With 7 = a/f3, one gets
m = Ng(r—1) = %(X + 1),
And hopefully, we have that
X4 = —((=X)" = 1) = = [] (=)

d|1769

(with Cs06 = P1769(—2) a strong pseudoprime
to base 2) so that the primality of N can be
deduced from the factorization of a 506-digit
number instead of a 1065 number as in [14].

A less trivial example is given by the cofac-
tor of 10327 4+ 1. We first write

X241 = =@y (= X)P3(—X)P109(—X ) Psp7(—X).

The number we are interested in is N =
$37(—10). We rewrite this as

1 _I_ 10327
1+ 10109

where Y = 10'%, Now comes the trick: Multi-
ply this relation by 4 in order to get

O3(—10)N = 91N = =1-Y +Y?

4 %91 x N =4 —4Y +4Y? =3+ (2Y — 1)
We multiply each side by 3 and finally get
324302y — 1) 324302 —1)°

12x91 3243 x192 °

Choosing 7 = (3+ (2Y —1)v/=3)/(3+19v/—=3),
this implies that a potential number of points
is

N =

NK(TF — 1)
= (2 —20)%/364 = (Y — 10)?/91.



3.2.2 Comments

We can hope that this situation occurs when-
ever we try to prove the primality of (a fac-
tor of) a number of the form 0" + 1 with b €
{2,3,5,6,7,10,11,12} and particularly num-
bers of the form (bzk"'l + )/(b+1). Ifb e
{2,3,7,11,12}, the field Q(v/—b) has unique
factorization and the preceding tricks might
work. For other values, we can have some luck
as demonstrated by our last numerical example.

Note also that if N = (bzk"'l + 1)/(b+ 1),
one has

B(bF — 1)(bF + 1)

N—-1= A

and a potential m is:
B (bF £ 1)%
b1

ECPP does not give a faster primality proof
than the use of one of the refined version of
the N —1 test, which needs the factorisation of
N —1 up to v/N (see [5]). Similar remarks can
be made concerning the N + 1 test.

These numbers illustrate the need for a ro-
bust factorization routine for ECPP. As a mat-
ter of fact, the program must take into account
the miraculous phenomena described above.

4 Conclusion

We have seen that there are potentially many
easy numbers for ECPP. In particular, many
Cunningham numbers are easy. This strength-
ens the idea that these numbers are not ran-
dom numbers with respect to primality proving.
Primality proving algorithms should be run on
more random numbers, such as partition num-
bers [12] or numbers built up from the decimal
representation of 7 (see [2]).
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