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Abstract. The elliptic curve primality proving algorithm is one of the fastest practical algorithms
for proving the primality of large numbers. Its running time cannot be proven rigorously, but
heuristic arguments show that it should run in time Õ((log N)5) to prove the primality of N . An

asymptotically fast version of it, attributed to J. O. Shallit, runs in time Õ((log N)4). The aim
of this article is to describe this version in more details, leading to actual implementations able to
handle numbers with several thousands of decimal digits.

1. Introduction

From the work of Agrawal, Kayal and Saxena [2], we know that determining the primality of
an integer N can be done in proven deterministic polynomial time Õ((log N)10.5). More recently,
H.-W. Lenstra and C. Pomerance have announced a version in Õ((log N)6). These algorithms are
for the time being too slow to prove the primality of large numbers. Building on the work of
P. Berrizbeitia [6], D. Bernstein [5] and P. Mihăilescu & R. Mocenigo [27], independently, have
given improved probabilistic versions with a claim of proven complexity of Õ((log N)4), reusing
classical cyclotomic ideas that originated in the Jacobi sums test [1, 10]. For more on primality
before AKS, we refer the reader to [12]. For the recent developments, see [4].

On the other hand, the elliptic curve primality proving algorithm [3] has been used for years
to prove the primality of always larger numbers∗. The algorithm has a heuristic running time of
Õ((log N)5). In the course of writing [30], the author rediscovered the article [24], in which an
asymptotically fast version of ECPP is described. This version, attributed to J. O. Shallit, has a
heuristic running time of Õ((log N)4).

To the best of the author’s knowledge, this fast version has never been implemented. Due to
the large numbers now being dealt with and the stimulating effect of both the AKS thread and
the fair-play concurrence of PRIMO, the author realized that implementing this fast version was
now at hand, helped by recent work on the computation of defining polynomials of Hilbert class
fields. The aim of this paper is to describe fastECPP, give a heuristic analysis of it and describe
its implementation.

Section 2 collects some well-known facts on imaginary quadratic fields. Section 3 presents the
basic ECPP algorithm and analyzes it. In Section 4, the fast version is described and its complexity
estimated. Section 5 explains the implementation and Section 6 gives some actual timings on large
numbers. Section 7 describes a compact fingerprint that can be used to rebuild a certificate from
it.

Date:
The author is on leave from the French Department of Defense, Délégation Générale pour l’Armement.
∗See the web page of M. Martin, http://www.ellipsa.net/, or that of the author
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2. Quadratic fields

A discriminant −D < 0 is said to be fundamental if and only if D is free of odd square prime
factors, and moreover D ≡ 3 mod 4 or when 4 | D, (D/4) mod 4 ∈ {1, 2}. The quantity

D(X) = #{D ≤ X,−D is fundamental}
is easily seen to be O(X).

A fundamental discriminant may be written as:

−D =
t∏

i=1

q∗i

where all q∗i ’s are distinct and q∗i is either −4 or ±8, or q∗i = (−1/qi)qi for any prime qi. The
number of genera is g(−D) = 2t−1 and Gauss proved that this number divides the class number
h(−D) of K = Q(

√
−D). Moreover, Siegel proved that h = O(D1/2+ε) asymtotically.

The rational prime p is the norm of an integer in K, or equivalently, 4p = U2 + DV 2 in rational
integers U and V if and only if the ideal (p) splits completely in the Hilbert class field of K, denoted
KH , an extension of degree h(−D) of K. The probability that a prime p splits in K is 1/(2h(−D)).

Using Gauss’s theory of genera of forms, it is known that if
(q∗i

p

)
= 1 for all i (equivalently, (p)

splits in the genus field of K), then the probability of (p) splitting in KH is g(−D)/h(−D).

3. The basic ECPP algorithm

3.1. Presentation of the algorithm. We present a rough sketch of the ECPP algorithm, enough
for us to estimate its complexity. We do not insist on what happens if one of the steps fails, revealing
the compositeness of N . More details acan be found in [3].

We want to prove that N is prime. The algorithm runs as follows:

[Step 1.] Repeat the following: Find an imaginary quadratic field K = Q(
√
−D) of discriminant

−D, D > 0, such that

(1) 4N = U2 + DV 2

in rational integers U and V . For all solutions U of (1), compute m = N + 1 − U ; if one of these
numbers is twice a probable prime N ′, go to Step 2.

[Step 2.] Build an elliptic curve E over Q having complex multiplication by the ring of integers OK

of K.

[Step 3.] Reduce E modulo N to get a curve E.
[Step 4.] Find P 6= OE on E such that [N ′]P 6= OE . If this cannot be done, then N is composite,
otherwise, it is prime.

[Step 5.] Set N = N ′ and go back to Step 1.

Clearly, we need log N steps for proving the primality of N .

3.2. Analyzing ECPP. We will now analyze all steps of the above algorithm and give complexity
estimates using the parameter L = log N . One basic unit of time will be the time needed to multiply
two integers of size L, namely O(L1+µ), where 0 ≤ µ ≤ 1 (µ = 1 for ordinary multiplication, or
ε > 0 for any fast multiplication method). We consider all steps, one at a time, easier steps first.

3.3. Analysis of Step 4. This one is easy to analyze, since an exponentiation on a curve costs
O((log N)2+µ), and we need O(1) points on average. Note that this step is a randomized one.
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3.4. Analyzing Step 2. The original version is to realize KH/K via the computation of the
minimal polynomial HD(X) of the special values of the classical j-invariant at quadratic integers.
More precisely, we can view the class group Cl(−D) of K as a set of primitive reduced quadratic
forms of discriminant −D. If (A,B, C) is such a form, with B2 − 4AC = −D, then

HD(X) =
∏

(A,B,C)∈Cl(−D)

(
X − j((−B +

√
−D)/(2A))

)
.

In [14], it is argued that the height of this polynomial is well approximated by the quantity:

π
√

D
∑

[A,B,C]∈Cl(−D)

1
A

,

which is Õ(D1/2) = Õ(h) by Siegel’s theorem.
Evaluating the roots of HD(X) and building this polynomial can be done in Õ(h2) operations

(see [13]). This could be seen as a precomputation, since it does not depend on N .
Alternatively, we could use the method of [11, 7] for computing the class polynomial and get a

proven running time of Õ(h2), but assuming GRH.

3.5. Analyzing Step 3. Reducing E modulo N is done by finding a root of HD(X) modulo N .
This can be done with the Cantor-Zassenhaus algorithm (see [19] for instance). Briefly, we split
recursively HD(X) by computing gcd((X + a)(N−1)/2 − 1,HD(X)) mod N .

Computing (X + a)(N−1)/2 mod (N,HD(X)) costs O((log N)M(N,h)) = O(LM(N,h)) where
M(N, d) is the time needed to multiply two degree d polynomials modulo N . A gcd of two degree
d polynomials costs M(N, d) log d (see [19, Ch. 11]). The total splitting requires log h steps, but
the overall cost is dominated by the first one, hence yields a time:

O(M(N,h) max(L, log h)).

We can assume that M(N, d) = O(d1+νL1+µ) where again 0 ≤ ν ≤ 1.

3.6. Analysis of Step 1. Given D, testing whether (1) is done using Cornacchia’s algorithm
(see [31]). This requires the computation of

√
−D mod N , using for instance the Tonelli-Shanks

algorithm, for the cost of one modular exponentiation, i.e., a O(L2+µ) time. Then it proceeds with
a half gcd like computation, for a cost of O(L1+µ) (see also section 5.3 below).

In the event that equation (1) is solvable, then we need check that m = 2N ′ and test N ′ for
primality, which costs again some O(L2+µ).

The heuristic probability of m being of the given form is O(1/ log N). Though quite realistic,
it is impossible to prove, given the current state of the art in analytical number theory. Using
this heuristic, we expect to need O(L) splitting D’s. Using all D of size O(La), we can dispose
of D(La) = O(La) discriminants. The probability that D is such that N splits in K is O(1/h) =
Õ(D−1/2) by Siegel’s theorem. Therefore, we need O(La/2+1) discriminants to meet our number of
m. Thie readily implies that a ≥ a/2 + 1 or a ≥ 2.

Turning to complexity, the cost of Step 1 is then:

O(La/2+1( L2+µ︸ ︷︷ ︸
squareroot

+ L1+µ︸ ︷︷ ︸
half gcd

)) + O(L · L2+µ︸ ︷︷ ︸
probable primality

).

Setting the minimal possible value of a to the value 2, we get that this phase takes:

O(L2 (L2+µ + L1+µ)︸ ︷︷ ︸
Cornacchia

) + O(L · L2+µ︸ ︷︷ ︸
probable primality

)
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which is dominated by the first cost, namely O(L4+µ).

3.7. Adding everything together. Taking D = O(L2) readily implies h = O(L), so that the
cost of Step 2 is Õ(L2), and that of Step 3 is O((log L)L3+µ+ν), which dominates Step 4. All in
all, we get that ECPP has heuristic complexity O(L4+µ) for one step, and therefore O(L5+µ) in
totality.

4. The fast version of ECPP

4.1. Presentation. When dealing with large numbers, all the time is spent in the finding of D,
which means that a lot of squareroots modulo N must be computed. A first way to reduce the
computations, alluded to in [3, §8.4.3], is to accumulate squareroots, and reuse them, at the cost
of some multiplications. For instance, if one has

√
−3 and

√
5 =

√
−20/

√
−4, then we can build√

−15, etc.
A better way that leads to the fast version consists in computing a basis of small squareroots and

build discriminants from this basis. Looking at the analysis carried out above, we see that we need
O(L2) discriminants to find a good one. The basic version finds them by using all discriminants
that are of size O(L2). As opposed to this, one can build those discriminants as −D = (−p)(q),
where p and q are taken from a pool of size O(L) primes.

More formally, we replace Step 1. by Step 1’. as follows:

[Step 1’.]
1.1. Find the r = O(L) smallest primes q∗ such that

(q∗

N

)
= 1, yielding Q = {q∗1, q∗2, . . . , q∗r}.

1.2. Compute all
√

q∗ mod N for q∗ ∈ Q.
1.3. For all pairs (q∗i1 , q

∗
i2

) of Q for which q∗i1q
∗
i2

= −D < 0, try to solve equation (1).

The cost of this new Step 1 is that of computing r = O(L) squareroots modulo N , for a cost of
O(L ·L2+µ). Then, we still have O(L2) applications of the half gcd in Cornacchia. The new overall
cost of this phase decreases now to:

O(L · L2+µ︸ ︷︷ ︸
squareroots

) + O(L2 · L1+µ︸ ︷︷ ︸
half gcd

) + O(L · L2+µ︸ ︷︷ ︸
probable primality

)

which yields namely O(L3+µ). Note here how the complexity decomposes as 3 = 1 + 2 or 2 + 1
depending on the sub-algorithms.

Putting everything together, we end up with a total cost of Õ(L4) for this variant of ECPP.

4.2. Remarks.

4.2.1. Complexity issues. We can slightly optimize the preceding argument, by using all subsets of
Q and not only pairs of elements. This would call for r = O(log log N), since then 2r = L2 could
be reached. Though useful in practice, this phase no longer dominates the cost of the algorithm.

Moreover, we can see that several phases of fastECPP have cost Õ(L3), which means that we
would have to fight hard to decrease the overall complexity below Õ(L4).

4.2.2. A note on discriminants. Note that we use fundamental discriminants only, as non funda-
mental discriminants lead to curves that do not bring anything new compared to fundamental ones.
Indeed, if D = f2D, with D fundamental, then there is a curve having CM by the order of discrim-
inant D. Writing 4N = U2 + Df2V 2, its cardinality is N + 1− U , the same as the corresponding
curve associated to D.
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5. Implementation

5.1. Some general comments on the implementation of ECPP. It should be noted that
ECPP is not a well defined algorithm, as long as one does not give the list of discriminants that
are used, or the principles that generate them.

5.2. Computing class numbers. In order to make the search for D ∈ D efficient, it is better to
control the class number beforehand. Tables can be made, but for larger computations, we need
a fast way to compute h(−D). Subexponential methods exist, assuming the Generalized Riemann
Hypothesis. From a practical point of view, our D’s are of medium size. Enumerating all forms
costs O(h2) with a small constant, and Shanks’s baby-steps/giant-steps algorithm costs O(

√
h) but

with a large constant. It is better here to use the explicit formula of Louboutin [25] that yields a
practical method in O(h) with a very small constant.

5.3. Improving Cornacchia’s algorithm. Step 1 needs squareroots to be computed, and some
half gcd to be performed. Briefly, the algorithm runs as follows (see [31]):

procedure Cornacchia(d, p, t)
{t is such that t2 ≡ −d mod p, p/2 < t < p }
2. [Partial Euclid:]

a) r−2 = p, r−1 = t ; w−2 = 0, w−1 = 1;
b) for i ≥ 0 while ri−1 >

√
p do

ri−2 = airi−1 + ri, 0 ≤ ri < ri−1 ;
wi = wi−2 + aiwi−1 (∗) ;

c) if r2
i−1 + dw2

i−1 = p then return (ri−1, wi−1) else return ∅.
We end the for loop once we get ri−1 ≤

√
p < ri−2. As is well known, the numbers ai’s are quite

small and we can guess their size by monitoring the number of bits of the ri’s, thus limiting the
number of long divisions. One can use a fast variant for this half gcd if needed, in a way reminiscent
of Knuth.

Moreover, from the theory, we know that this algorithms almost always returns that the empty
set in step 2c), since the probability of success if 1/(2h(−d)). Therefore, when h is large, we can
dispense of the multiprecision computations in equation (∗). We replace it by single precision
computations:

wi = wi−2 + aiwi−1 mod 232

and at the end, we test whether r2
i−1 + dw2

i−1 = p mod 232. If this is the case, then we redo the
computation of the wi’s and check again.

5.4. Factoring m. Critical parameters are that related to the factorization of m, since in practice
we try to factor m to get it of the form cN ′ for some B-smooth number c.

As shown in [18], the number of probable prime tests we will have to perform is t = O((log N)/(log B))
and we will end up with N ′ such that N/N ′ ≈ log B.

For small numbers, we can factor lots of m doing the following. In a first step, we compute

ri = (N + 1) mod pi

for all pi ≤ B’s, which costs π(B)(log N)1+ε, where π(B) = O(B/ log B) is the number of primes
below B and the other term being the time needed to divide a multi-digit number by a single digit
number.

Then, sieving both m = N + 1 − U and m′ = N + 1 + U is done by computing ui = U mod pi

and comparing it to ±ri for primes pi such that (−D/pi) 6= −1. See [3, 29] for more details and
tricks.
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The cost of this algorithm for t values of m is

O(π(B)(log N)1+ε) + O(t · π(B)(log N)1+ε)

where the second term is that for computing U mod pi, which is slightly half that of (N +1) mod pi,
since U is O(

√
N). Since we need to perform also t probable prime tests (say, a plain Fermat one),

then the cost is

O(tBL) + O(tL2+µ) = O(BL2) + O(L3+µ)

and therefore the optimal value for B is B = O(L).
For larger numbers, it is better to use the stripping factor algorithm in [18], for a cost of

O(B(log B)2), the optimal value of B being B = O((log N)3).

5.4.1. Remark. Suppose now that we have found N ′ and that m = N +1−U = cN ′. Then we will
have to compute

r′i = (N ′ + 1) mod pi

which may be computed as:

r′i = (ri − ui)/c + 1 mod pi.

Computing the right hand side is faster, since c is ordinarily small compared to N ′.

5.4.2. Using an early abort strategy. This idea is presented in [18]. We would like to go down as
fast as possible. So why not impose N/N ′ greater than some given bound? Candidates N ′ need be
tested for probable primality only if this bound is met. From what has been written above, we can
insist on N/N ′ ≈ log B.

It should be remarked that throwing away m’s and thus on D’s tends to make D and h larger.
This can have an impact on the time for computing HD, and also on the proving part. EAS indeed
decreases the number of steps, which tends to decrease the total time for the 1st phase, the 2nd
being constant or increasing a little.

5.4.3. Using new invariants. Proving larger and larger numbers forces us to use larger and larger
D’s, leading to larger and larger polynomials HD. For this to be doable, new invariants had to be
used, so as to minimize the size of the minimal polynomials. This task was done using Schertz’s
formulation of Shimura’s reciprocity law [32], with the invariants of [16] as demonstrated in [14]
(alternatively see [21, 20]). Note that replacing j by other functions does not the change the
complexity of the algorithm, though it is crucial in practice.

5.4.4. Step 3 in practice. We already noted that this step is the theoretically dominating one in
fastECPP, with a cost of O((log L)L3+µ+ν). In practice, for even for small values of h, we can
assume ν ≈ 0 (using for instance the algorithm of [26] for polynomial multiplication).

Galois theory comes in handy for reducing the log L term to a log log L one, if we insist on h being
smooth. Then, we replace the time needed to factor a degree h polynomial by a list of smaller ones,
the largest prime factor of h being log h. We already used that in ECPP, using [23, 15]. Typical
values of h are now routinely in the 10000 zone.

It could be argued that keeping only smooth class numbers is too restrictive. Note however, that
class numbers tend to be smoother than ordinary numbers [9].
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5.4.5. Improving the program. The new implementation uses GMP† for the basic arithmetic, which
enables one to use mpfr [22] and mpc [17], thus leading to a complete program that can compute
polynomial HD’s on the fly, contrary to the author’s implementation of ECPP, prior to version
11.0.5. This turned out to be the key for the new-born program to compete with the old one.

Here are some timings on a 629 word number on a Xeon:√
−D: 34 sec;

Cornacchia: 0.04 sec;
SieveDWithTabCompactMax: 18 sec;
EcppProbablePrimeTest: 34 sec.

5.5. fastECPP. We give here the expanded algorithm corresponding to step 1’. Using a smooth-
ness bound B, we need approximately t = exp(−γ) log N/ log B values of m and therefore roughly
t/2 discriminants. The probability that D is a splitting discriminant is g(−D)/h(−D). Therefore
we build discriminants until ∑

D

g(−D)/h(−D) ≈ t/2.

One way of building these discriminants is the following: we let r increase and build all or some
of the subsets of {q∗1, . . . , q∗r} until the expected number of D’s is reached. After this, we sort the
discriminants with respect to (h(−D)/g(−D), h(−D), D) and treat them in this order.

5.6. Distributing the computations. Many tasks in (fast)ECPP can be distributed (see [28]
for the first description): Step 1, 3 and 5 are best choices, and the idea is to use a master/slave
approach. The present version uses MPICH for this task. Distribution gains a factor proportional
to the number of processors, in good cases.

The process used is of type master/slave again. The first idea is to let all slaves compute the√
q∗i , and then take a batch of D’s.
To balance load on the slaves, we used the following trick. Each D has splitting probability g/h.

We send to each slave discriminants Di1 , Di2 , . . . , Dik in such a way that∑
j

g(−Dij )/h(−Dij ) ≥ 5

(the value of 5 is somewhat arbitrary) which corresponds to the fact that on average, 5 values of
D will be splitting values.

See [18] for more strategies‡.

6. Benchmarks

Since the first phase of ECPP requires a tree search, testing on a single number does not reveal
too much. Averaging on more than 20 numbers is a good idea.

Not really surprisingly, strategies that one could dream of are not necessarily worth the trouble
for small numbers (say 1000dd or 2000dd) and get interesting for larger ones.

7. Some numbers proven

All computations were done on a cluster of 6 biprocessors Xeon at 2.66 MHz. We took the
following numbers from the tables of P. Leyland§; WCT stands for wall clock time.

†http://www.swox.com/gmp/
‡More to be written
§http://www.leyland.vispa.com/numth/primes/xyyx.htm
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x 2177 2589 2551 2438
y 580 218 622 1995

#dd 6016 6055 7127 8046
when 030513-030604 030606-030617 030618-030714

# steps 801 736 965 1128
1st phase (CPU) 164 days 103 days 235 days 355 days
1st phase (WCT) 164× 1.2 103× 1.1 235× 1.3 355× 1.13√

−D 81 days 30 days 74 days 138 days
2nd phase 28 days 21 days 55 days 77 days

HD 2951 sec 1686 sec 18451 sec 22552 sec
CZ 26 days 20 days 50 days 69 days

GHz days 625 1000
Checking 25 hours 22 hours 45 hours 70 hours

max h 1980 2080 3312 3640
max D 7,749,263 19,076,479 52,396,648 87,949,348

Table 1. Some large numbers proven with fastECPP.

Putting θ = 7127/6055 ≈ 1.177, we find that θ4 ≈ 1.91 is close to 2, which is coherent with the
claimed complexity.

The 7127dd number required 625 GHz-days, and should be compared to the 738 GHz-days for
the 6959 decimal digit number of Hans Rosenthal.

8. A compact fingerprint

One advantage of ECPP is the certificate, which consists in log N curves and points, for a total
size of O((log N)2), and that can be checked in time Õ((log N)3).

We describe here a short compact version of it that could be used to reproduce the sequence
of intermediate primes. The idea is just to give the list of D’s used, together with the sign of U .
Knowing this and the fact that we sieve up to certain bound, then we can imagine reconstructing
the whole proof, though with some effort. It can serve as a convincing element that the author of
the proof really went through.

Let D > 4. Then D− means that m = N +1+U was used, as D+ means m = N +1−U . There
are three special cases: When the N − 1 test (resp. N + 1 test) was used, we write 1− (resp. 1+).

When D = 3, there are 6 possible cardinalities. In that case, we can write 4N = L2 + 27M2,
L 6≡ 0 mod 3, L > 0, M > 0. We decide to code the cardinalities as in:

cardinality code
N + 1− L a
N + 1 + L b

N + 1− (L + 9M)/2 c
N + 1 + (L + 9M)/2 d
N + 1− (L− 9M)/2 e
N + 1 + (L− 9M)/2 f
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When D = 4, we know that there are 4 possible cardinalities. Write N = x2 + 4y2, with x odd,
x > 0, y > 0. We decide to code the cardinalities as in:

cardinality code
N + 1− 2x a
N + 1 + 2x b
N + 1− 4y c
N + 1 + 4y d

9. Conclusions

We have described in greater details the fast version of ECPP. We have demonstrated its effi-
ciency. We have thus settled some benchmarks for the fast AKS versions to compete and stimulate
further work on the topic.

On 030819 (private communication of J. Franke), the mythical 10000 decimal digits frontier was
reached with another implementation of fastECPP (I presume) by J. Franke, T. Kleinjung and
T. Wirth¶. It is now set to 15041 decimal digits (see transaction in NMBRTHRY). See the article
[18] for more details.

Cheng [8] has suggested to use ECPP to help his improvement of the AKS algorithm, forcing
m = cN ′ to have N ′ − 1 divisible by a given prime large prime of size O((log N)2). The same idea
can be used to speed up the Jacobi sums algorithm, and this will be detailed elsewhere.
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in the field of primality proving and D. Bernstein for stimulating emails on the existence and
analysis of fastECPP. My co-authors of [18] were a source of stimulation through their records.
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Appendix A. Pseudocertificates of some numbers

Here we give the pseudocertificates of the numbers listed in Table 1.
x = 2177, y = 580:
5254099+1514287-395179+37016-898747+6131+1460299-14251+4295+9892+2209348+
2819483-147367+54759-15443+248+874067+17491+5695567+700351-78856-51479+
145747-939-691963-103947+21847-437963-378647-381971+643967+130888-7048187-
22867-31715+6491-402019+8971+14179-6702491+841784-6227251-6920932+276631-
3408995+5958712-902203-96856+8839+35572+3128827-19115+424+4121368+34184+
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10943+14251+7963-2346499-28459+4339+4864312+116251+353791-577891+22927-
174179-1898851+84763-25768+7327807+1365263-15907+981347-45316-772-182419+
529339-17124-76408+395187+6668491-9467+469027+1831+15307+1227+2008-64324+
554408-294607-4045519+11-91+10515+40307+4214467-185451+9208-15432-7239811-
3647311-3368-22867-364807+70931-2733139+34663+777067-500419+154776+3079019-
4488223-78103-6603643-910999+273491+49483-37495+7308107+518923+30959-3558616-
355+84031-19156-13432+3917443-410107+11819-292312-3093067+24643+2811243-
6387-107731+11812-472267+6827-1147+3647443-2984264-239647+9739-173951-
6188543+3163-3084824+46303+2979112+115+192868+3a11971+2198611-1917067-
5627-491467-3898399-728227-378031-183892-180643-1576-166699+529351+5996947-
2696-233951+44628-77251+259139+1816+3755+4174447+4b125359+244-17131+69339+
297668+1003+4447-3028+2415316-4954856+233731-912776-2207+202651+25699-
114488-7907+7403-11383+1103-1636-563-2627+3226667+3886703+50212-404+65411-
3067-1912-1859839+14267-426776-107188+4483-2152-46039-273839-109003-1076+
1336+10763+48676-1432+371-307156+7+25663+505415-92819-6067+43+458923-690499-
3243571-163451+842459-58648+523067-12751+5328299+4099-62831+493019+19336-
2328-646068-731-40+77827+1630099+11+32971+46259+10307-448036-3635-14567-
7+127891+318459+104+11-79787-5135656+452+3652328-3508+642883+926291-200747+
11091+3236-3448-2093723+13971-719+59323-1907+5107-3404248+691-339-3078811-
959107+291-1592+1588+1519043+23699-68323-187-1422451+56104+25199+356+85195+
8552+413059+9556+38131-5683-5647+1003+16251+451+35704+4747+164167-515-
1485863-1421192+4324763+4555-388-151819+4b983207+43-742523+32632-407+1166824-
3656963+53027-837547+187723+447091-44743-42488-7353847-427171+1636+703723-
40571-2815907+1255+84379+4852+6499+19+52243-355-499-709867-184-1+28207+
521099+2879-318947+26359-306343+291-66719+432739-3c284043+16552+15415+
2707-289128+392603+211+2047-300907-3028-9771+1600523+20371-1274467-283-
212116+2267-355+52-53571+2667-295739+91012-1068359-13268+111379-4279+103+
999847-388+498455-127427+424-7-667+1208-7483+427003-7003-9304+5924+46324-
608183-55-700852+35467+331-107512+233368+31483+45172-46087+19-1-46363-
1367+19171+1+97483-776-120-2335+691-14068-25624-99899-463-20783-561779+
87371-36227+2318227-19147+4843-2395-632+632+2923+835+7409683+647+1763+
5907-68-3547-19-13603+7528-631-1513063+31043+491287+3079-1050527+2271+
78943-8159-84839-8891-8-6187+25828+3f5331+328+668152-6847-36292-1651+268276-
139-1411-93659+103+8507-24331+1010455+107+413972+4712-113599-3b2779+12439+
9496+13956-19+2215-91+307387-163+33239+429272+2792983-4a65956-88051-482932-
131107+643+366987+156931-57403-3563048+347+248107-220331+7749263-9304+
167+20819+1192-34063+4072-445127-13435+3867-7608-6359272+24+69227+30792+
797959+5163-25507-643-117823-764851+238219+13684-4843-1843-4659-2872+1027+
2324323+544283+15256-1011+88267-21967+153415+1864+427+2787-5332+235-6103+
607-2404-1797923+40760+17587+707347-322467+1+4372+19524-1348+1333492+2683+
116887+12632+96632+5188-1409179+4195-2916923-1526331+144251+88-67-635704-
262099-8-811+11-356-1-907-12388+10603+899+87259-53755+408904+18232+155803-
6340+7-3147-14383+485908+66331+1283-30760-1959+13987+7783-8584-143-5315-
135992+8-307-11-20+244-16808-18868+4072+20584-4c1038403-452+21995-2419+
1592728+4d3811+2373155+3535+51643-75587-24559+2827+295+3412+223-3d188059+
61924+4d427-47683+443+52+1255+8952+7588-1+4744-328-14491-70283+344-7051+
52-62452-855827+9563+115+1207768-9299+787-43-3f1019+643-388-1051-25027+
1115-110783+50072+319304+2152-69583+116+167+51+12179+1051+3d163-6712+1355-
17368+211+24523+291931-183+904+463-1-788-232-190499+163+787+5608+3336-
3992-1203-5707-8+40-19-779527-259+347+163-43+7231+4771-1232047-8072-1528+
504067-23-1123+219-422843-3c4c163-1099+93507+26179-8+3736+7363-8-1192-
7+11203+31783-126187+2047+7240+179+331+8+5371+10264+707+4b67+183-1087-
328583+67+451+163+571-261871-879787+155+31+439-19+1-323+19-19-3b1047-163+
67-4372+3b4b1+955-4b15780-4c372+20+1547+259-4888+4a532+235+3a3d52+523-
4b11+4a8+4b3b123+3a3d1+1+1-1-91+19+1+3b3a3d3c1-1-1-1-1-1-1-1-1-

x = 2589, y = 218:
x = 2551, y = 622:
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