Enumeration: logical and algebraic approach

Yann Strozecki

Université Paris Sud - Paris 11

Novembre 2011, séminaire ALGO/LIX

Introduction to Enumeration

Enumeration and logic

Enumeration and polynomials

Enumeration problems

Polynomially balanced predicate A(x, y), decidable in polynomial time.

- ▶ $\exists ?yA(x,y)$: decision problem (class NP)
- ▶ $\sharp\{y\mid A(x,y)\}$: counting problem (class $\sharp P$)
- ▶ $\{y \mid A(x,y)\}$: enumeration problem (class EnumP)

Example

Perfect matching:

- ► The decision problem is to decide if there is a perfect matching.
- ► The counting problem is to count the number of perfect matchings.
- ▶ The enumeration problem is to list every perfect matching.

Enumeration problems

Polynomially balanced predicate A(x, y), decidable in polynomial time.

- ▶ $\exists ?yA(x,y)$: decision problem (class NP)
- ▶ $\sharp\{y \mid A(x,y)\}$: counting problem (class $\sharp P$)
- ▶ $\{y \mid A(x,y)\}$: enumeration problem (class EnumP)

Example

Perfect matching:

- ► The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.
- ► The enumeration problem is to list every perfect matching.

Time complexity measures for enumeration

- 1. the total time related to the number of solutions
 - ▶ polynomial total time: TotalP
- 2. the delay
 - incremental polynomial time: IncP (Circuits of a matroid)
 - polynomial delay: DelayP (Perfect Matching [Uno])
 - Constant or linear delay
 - A two steps algorithm: preprocessing + generatior
 - An ad-hoc RAM model.

Time complexity measures for enumeration

- 1. the total time related to the number of solutions
 - polynomial total time: TotalP
- 2. the delay
 - ▶ incremental polynomial time: IncP (Circuits of a matroid)
 - polynomial delay: DelayP (Perfect Matching [Uno])
 - Constant or linear delay
 - ▶ A two steps algorithm: preprocessing + generation
 - ► An ad-hoc RAM model.

Enumeration problems

R: polynomially balanced binary predicate

 $\text{Enum} \cdot R$

Input: $x \in \mathcal{I}$

Output: an enumeration of elements in $R(x) = \{y \mid R(x, y)\}$

Definition

The problem $\text{Enum} \cdot R$ belongs to the class Delay(g,f) if there exists an enumeration algorithm that computes $\text{Enum} \cdot R$ such that, for all input x:

- ▶ Preprocessing in time O(g(|x|)),
- Solutions $y \in R(x)$ are computed successively without repetition with a delay O(f(|x|))

Constant-Delay = $\bigcup_k \text{Delay}(n^k, 1)$.

Separation:

 $QueryP \subseteq SDelayP \subseteq DelayP \subseteq IncP \subseteq TotalP \subseteq EnumP$.

Separation:

 $\mathbf{QueryP} \subsetneq \mathbf{SDelayP} \subseteq \mathbf{DelayP} \subseteq \mathbf{IncP} \subsetneq \mathbf{TotalP} \subsetneq \mathbf{EnumP}.$

Complete problems

Separation:

 $\mathbf{QueryP} \subsetneq \mathbf{SDelayP} \subseteq \mathbf{DelayP} \subseteq \mathbf{IncP} \subsetneq \mathbf{TotalP} \subsetneq \mathbf{EnumP}.$

Complete problem:

No good notion of reduction out of parsimonious reduction.

Separation:

 $\mathbf{QueryP} \subsetneq \mathbf{SDelayP} \subseteq \mathbf{DelayP} \subseteq \mathbf{IncP} \subsetneq \mathbf{TotalP} \subsetneq \mathbf{EnumP}.$

Complete problem:

No good notion of reduction out of parsimonious reduction.

Proposition

If $P \neq NP$ then the classes \mathbf{DelayP} , \mathbf{IncP} and \mathbf{TotalP} are not stable by subtraction.

Proposition

If P
eq NP then the classes \mathbf{DelayP} , \mathbf{IncP} and \mathbf{TotalP} are not stable by intersection.

Proposition

If $P \neq NP$ then the classes \mathbf{DelayP} , \mathbf{IncP} and \mathbf{TotalP} are not stable by subtraction.

Proposition

If $P \neq NP$ then the classes \mathbf{DelayP} , \mathbf{IncP} and \mathbf{TotalP} are not stable by intersection.

The classes DelayP, IncP and TotalP are stable for

disjoint unior

Proposition

If $P \neq NP$ then the classes \mathbf{DelayP} , \mathbf{IncP} and \mathbf{TotalP} are not stable by subtraction.

Proposition

If $P \neq NP$ then the classes **DelayP**, **IncP** and **TotalP** are not stable by intersection.

The classes DelayP, IncP and TotalP are stable for:

- disjoint union
- union with an order

Proposition

If $P \neq NP$ then the classes \mathbf{DelayP} , \mathbf{IncP} and \mathbf{TotalP} are not stable by subtraction.

Proposition

If $P \neq NP$ then the classes **DelayP**, **IncP** and **TotalP** are not stable by intersection.

The classes DelayP, IncP and TotalP are stable for:

- disjoint union
- union with an order
- union without order

Proposition

If $P \neq NP$ then the classes \mathbf{DelayP} , \mathbf{IncP} and \mathbf{TotalP} are not stable by subtraction.

Proposition

If $P \neq NP$ then the classes **DelayP**, **IncP** and **TotalP** are not stable by intersection.

The classes DelayP, IncP and TotalP are stable for:

- disjoint union
- union with an order
- union without order

Meta-algorithms for enumeration and CSP

Proposition (Creignou, Hebrard'97)

The problem $\mathrm{Enum} \cdot \mathrm{SAT}(\mathcal{C})$ is in DelayP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas.

Other meta-algorithms:

- Schnoor: enumeration complexity dichotomy for conservative CSP over three element domain
- 2. Bulatov, Dalmau, Grohe, Marx: algebraic characterization of easy to enumerate CSP, bounded tree-width domain.

Meta-algorithms for enumeration and CSP

Proposition (Creignou, Hebrard'97)

The problem $\mathrm{Enum}\text{-}\mathrm{SAT}(\mathcal{C})$ is in DelayP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas.

Other meta-algorithms:

- 1. Schnoor: enumeration complexity dichotomy for conservative CSP over three element domain
- 2. Bulatov, Dalmau, Grohe, Marx: algebraic characterization of easy to enumerate CSP, bounded tree-width domain.

Introduction to Enumeration

Enumeration and logic

Enumeration and polynomials

Logic in half a slide

First order logic(FO):

- ightharpoonup Variables: $x, y, z \dots$
- ▶ The language σ , relations and functions: R(x, y), f(z)
- ▶ Unary and binary connectors: ∧, ∨, ¬
- ▶ Quantifiers: ∀, ∃

Logic in half a slide

First order logic(FO):

- ightharpoonup Variables: $x, y, z \dots$
- ▶ The language σ , relations and functions: R(x, y), f(z)
- ▶ Unary and binary connectors: ∧, ∨, ¬
- ▶ Quantifiers: ∀, ∃

Theorem (Goldberg)

For almost all first order graph property φ , the graphs of size n which satisfies φ can be enumerated with polynomial delay in n

Logic in half a slide

First order logic(FO):

- ightharpoonup Variables: $x, y, z \dots$
- ▶ The language σ , relations and functions: R(x, y), f(z)
- ▶ Unary and binary connectors: ∧, ∨, ¬
- ▶ Quantifiers: ∀, ∃

Theorem (Goldberg)

For almost all first order graph property φ , the graphs of size n which satisfies φ can be enumerated with polynomial delay in n.

Enumeration problem defined by a formula

Second order logic(SO):

Second order variable: **T**, denotes unknown relation over the domain.

Let $\Phi(\mathbf{z}, \mathbf{T})$ be a first order formula with free first and second order variables.

Enumeration problem defined by a formula

Second order logic(SO):

Second order variable: **T**, denotes unknown relation over the domain.

Let $\Phi(\mathbf{z}, \mathbf{T})$ be a first order formula with free first and second order variables.

Enum·Φ

Input: A σ -structure S

Output: $\Phi(\mathcal{S}) = \{(\mathbf{z}^*, \mathbf{T}^*) : (\mathcal{S}, \mathbf{z}^*, \mathbf{T}^*) \models \Phi(\mathbf{z}, \mathbf{T})\}$

Let \mathscr{F} be a subclass of first order formulas. We denote by $\text{Enum} \cdot \mathscr{F}$ the collection of problems $\text{Enum} \cdot \Phi$ for $\Phi \in \mathscr{F}$.

Enumeration problem defined by a formula

Second order logic(SO):

Second order variable: **T**, denotes unknown relation over the domain.

Let $\Phi(\mathbf{z}, \mathbf{T})$ be a first order formula with free first and second order variables.

$\text{Enum} \cdot \Phi$

Input: A σ -structure S

 $\textit{Output:} \quad \Phi(\mathcal{S}) = \{(\mathbf{z}^*, \mathbf{T}^*) : (\mathcal{S}, \mathbf{z}^*, \mathbf{T}^*) \models \Phi(\mathbf{z}, \mathbf{T})\}$

Let \mathscr{F} be a subclass of first order formulas. We denote by $\mathrm{Enum} \cdot \mathscr{F}$ the collection of problems $\mathrm{Enum} \cdot \Phi$ for $\Phi \in \mathscr{F}$.

Example

Example

Independent sets:

$$IS(T) \equiv \forall x \forall y \ T(x) \land T(y) \Rightarrow \neg E(x, y).$$

Example

Hitting sets (vertex covers) of a hypergraph represented by the incidence structure $\langle D, \{\, V, E, R\} \rangle.$

$$HS(T) \equiv \forall x (T(x) \Rightarrow V(x)) \land \forall y \exists x E(y) \Rightarrow (T(x) \land R(x,y))$$

First-order queries with free second order variables

This presentation

- ► **FO** queries with free second-order variables
- Data complexity: the query is fixed
- ► The complexity in term of the size of the input structure's domain
- Quantifier depth as a parameter: $\text{Enum} \cdot \Sigma_1$
- ▶ ENUM·IS \in ENUM· Π_1 and ENUM·HS \in ENUM· Π_2

First-order queries with free second order variables

This presentation

- ▶ **FO** gueries with free second-order variables
- ▶ Data complexity: the query is fixed
- ► The complexity in term of the size of the input structure's domain
- Quantifier depth as a parameter: $\text{Enum} \cdot \Sigma_1$
- ▶ ENUM·IS ∈ ENUM· Π_1 and ENUM·HS ∈ ENUM· Π_2

Previous results

- Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
- Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear delay

Example

Enumeration of the k-cliques of a graph of bounded degree.

Previous results

- Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
- Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear delay
- Monadic second order formula and bounded tree-width structure Bagan, Courcelle 2009: almost linear preprocessing + linear delay

Example

Typical database query. Simple paths of length k.

Previous results

- Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
- Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear delay
- Monadic second order formula and bounded tree-width structure Bagan, Courcelle 2009: almost linear preprocessing + linear delay

Example

Enumeration of the cliques of a bounded tree-width graph.

A hierarchy result for counting functions

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function:

$$\#\Phi: \mathcal{S} \mapsto |\Phi(\mathcal{S})|.$$

Theorem (Saluja, Subrahmanyam, Thakur 1995)

On linearly ordered structures:

$$\#\Sigma_0 \subsetneq \#\Sigma_1 \subsetneq \#\Pi_1 \subsetneq \#\Sigma_2 \subsetneq \#\Pi_2 = \sharp P.$$

Some $\sharp P$ -hard problems in $\#\Sigma_1$ (but existence of FPRAS at this level).

Corollary

On linearly ordered structures.

 $\operatorname{Enum} \cdot \Sigma_0 \subsetneq \operatorname{Enum} \cdot \Sigma_1 \subsetneq \operatorname{Enum} \cdot \Pi_1 \subsetneq \operatorname{Enum} \cdot \Sigma_2 \subsetneq \operatorname{Enum} \cdot \Pi_2.$

A hierarchy result for counting functions

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function:

$$\#\Phi: \mathcal{S} \mapsto |\Phi(\mathcal{S})|.$$

Theorem (Saluja, Subrahmanyam, Thakur 1995)

On linearly ordered structures:

$$\#\Sigma_0 \subsetneq \#\Sigma_1 \subsetneq \#\Pi_1 \subsetneq \#\Sigma_2 \subsetneq \#\Pi_2 = \sharp P.$$

Some $\sharp P$ -hard problems in $\#\Sigma_1$ (but existence of FPRAS at this level).

Corollary

On linearly ordered structures:

 $\text{Enum}\cdot\Sigma_0\subsetneq \text{Enum}\cdot\Sigma_1\subsetneq \text{Enum}\cdot\Pi_1\subsetneq \text{Enum}\cdot\Sigma_2\subsetneq \text{Enum}\cdot\Pi_2.$

The first level: Enum $\cdot \Sigma_0$

Theorem

For $\varphi \in \Sigma_0$, $\operatorname{Enum} \cdot \varphi$ can be enumerated with preprocessing $O(|D|^k)$ and delay O(1) where k is the number of free first order variables of φ and D is the domain of the input structure.

Simple ingredients:

- 1. Transformation of a f.o. formula $\Phi(\mathbf{z}, T)$ into a propositional formula:
 - ► Try all values for first order variables: $\Phi(\mathbf{z}^*, T)$.
 - ▶ Replace the atomic formulas by their truth value.
 - ▶ Obtain a propositional formula with variables $T(\mathbf{w})$.
- 2. Gray Code Enumeration.

Bounded degree structure

Remark: The k-clique query is definable. No hope to improve the $O(|D|^k)$ preprocessing.

$\mathsf{T}\mathsf{heorem}$

Let $d \in \mathbb{N}$, on d-degree bounded input structures, $\mathrm{Enum} \cdot \Sigma_0 \in \mathrm{DELAY}(|D|,1)$ where D is the domain of the input structure.

Bounded degree structure

Remark: The k-clique query is definable. No hope to improve the $O(|D|^k)$ preprocessing.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures, $\mathrm{Enum} \cdot \Sigma_0 \in \mathrm{DELAY}(|D|,1)$ where D is the domain of the input structure.

Idea of proof:

- Another transformation: $\Phi(\mathbf{z}, T)$ seen as a propositional formula whose variables are the atoms of Φ .
- ► From each solution, create a quantifier free formula without free second order variables.
- ▶ Enumerate the solutions of this formula thanks to [DG 2007].

Bounded degree structure

Remark: The k-clique query is definable. No hope to improve the $O(|D|^k)$ preprocessing.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures, $\mathrm{Enum} \cdot \Sigma_0 \in \mathrm{DELAY}(|D|,1)$ where D is the domain of the input structure.

Idea of proof:

- ▶ Another transformation: $\Phi(\mathbf{z}, T)$ seen as a propositional formula whose variables are the atoms of Φ .
- ► From each solution, create a quantifier free formula without free second order variables.
- ▶ Enumerate the solutions of this formula thanks to [DG 2007].

Second level: Enum· Σ_1

Theorem

 $\mathrm{Enum} \cdot \Sigma_1 \subseteq \mathrm{DELAYP}$. More precisely, $\mathrm{Enum} \cdot \Sigma_1$ can be computed with precomputation $O(|D|^{h+k})$ and delay $O(|D|^k)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

Idea of Proof: $\Phi(\mathbf{y}, T) = \exists \mathbf{x} \varphi(\mathbf{x}, \mathbf{y}, T)$

▶ Substitute values for x. Collection of formulas of the form:

$$\varphi(\mathbf{x}^*, \mathbf{y}, T)$$

▶ Need to enumerate the (non necessarily disjoint) union.

The case Enum $\cdot\Pi_1$

Proposition

Unless P = NP, there is no polynomial delay algorithm for $E_{NUM} \cdot \Pi_1$.

Proof Direct encoding of SAT.

Hardness even:

- on the class of bounded degree structure
- if all clauses but one have at most two occurences of a second-order free variable

Tractable cases

Problem $\text{Enum} \cdot \Phi$ with $\Phi \in \Sigma_i$: transformation of Φ into a propositional formula $\tilde{\Phi}$.

Corollary

Let $\Phi(\mathbf{z},T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}$ are either Horn, anti-Horn, affine of bijunctive. Then $\mathrm{Enum} \cdot \Phi \subseteq \mathrm{DelayP}$.

Tractable cases

Problem $\text{Enum} \cdot \Phi$ with $\Phi \in \Sigma_i$: transformation of Φ into a propositional formula $\tilde{\Phi}$.

Corollary

Let $\Phi(\mathbf{z},T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}$ are either Horn, anti-Horn, affine or bijunctive. Then $\mathrm{Enum} \cdot \Phi \subseteq \mathrm{DELAyP}$.

Example: independent sets and hitting sets.

Tractable cases

Problem $\text{Enum} \cdot \Phi$ with $\Phi \in \Sigma_i$: transformation of Φ into a propositional formula $\tilde{\Phi}$.

Corollary

Let $\Phi(\mathbf{z},T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}$ are either Horn, anti-Horn, affine or bijunctive. Then $\mathrm{Enum} \cdot \Phi \subseteq \mathrm{DELAyP}$.

Example: independent sets and hitting sets.

Conlusion and open problems

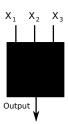
 $\operatorname{Enum} \cdot \Sigma_0 \subsetneq \operatorname{Enum} \cdot \Sigma_1 \subsetneq \operatorname{Enum} \cdot \Pi_1 \subsetneq \operatorname{Enum} \cdot \Sigma_2 \subsetneq \operatorname{Enum} \cdot \Pi_2 = \operatorname{Enum} P.$

- Nice but small hierarchy.
- ▶ Other tractable classes above Σ_1 (optimization operator)?
- Efficient probabilistic enumeration procedure?

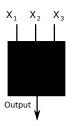
Introduction to Enumeration

Enumeration and logic

Enumeration and polynomials



$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$



$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

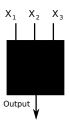
$$X_1 = 1, X_2 = 2, X_3 = 1$$

 $1 * 2 + 1 * 1 + 2 + 1$
 $Output = 6$

$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

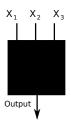
$$X_1 = -1, X_2 = 1, X_3 = 2$$

 $-1 * 1 + -1 * 2 + 1 + 2$
 $Output = 0$



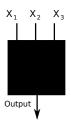
$$P(X_1, X_2, X_3) = X_1X_2 + X_1X_3 + X_2 + X_3$$

- ▶ Problem: interpolation, compute *P* from its values.
- Complexity: time and number of calls to the oracle.



$$P(X_1, X_2, X_3) = X_1X_2 + X_1X_3 + X_2 + X_3$$

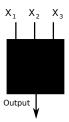
- ▶ Problem: interpolation, compute *P* from its values.
- ► Complexity: time and number of calls to the oracle.
- ▶ Parameters: number of variables and total degree.



$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

- ▶ Problem: interpolation, compute *P* from its values.
- Complexity: time and number of calls to the oracle.
- ▶ Parameters: number of variables and total degree.

Enumeration problem: output the monomials one after the other.



$$P(X_1, X_2, X_3) = X_1X_2 + X_1X_3 + X_2 + X_3$$

- ▶ Problem: interpolation, compute *P* from its values.
- Complexity: time and number of calls to the oracle.
- ▶ Parameters: number of variables and total degree.

Enumeration problem: output the monomials one after the other.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

▶ Determinant of the adjacency matrix : cycle covers of a graph.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- ▶ Determinant of the adjacency matrix : cycle covers of a graph.
- ▶ Determinant of the Kirchoff matrix: spanning trees.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- ▶ Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- ▶ Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- ▶ Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- ▶ Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- ▶ Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- ▶ Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.

Only multilinear polynomials

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- ▶ Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.

Only multilinear polynomials.

POLYNOMIAL IDENTITY TESTING

Input: a polynomial given as a black box. *Output:* decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_1, \ldots, x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P(x_1, \ldots, x_n) = 0$ is bounded by ϵ .

POLYNOMIAL IDENTITY TESTING

Input: a polynomial given as a black box. *Output:* decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_1, \ldots, x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P(x_1, \ldots, x_n) = 0$ is bounded by ϵ .

No way to make PIT deterministic for black box

Polynomial Identity Testing

Input: a polynomial given as a black box. *Output:* decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_1,\ldots,x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P(x_1,\ldots,x_n)=0$ is bounded by ϵ .

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

POLYNOMIAL IDENTITY TESTING

Input: a polynomial given as a black box. *Output:* decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_1, \ldots, x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P(x_1, \ldots, x_n) = 0$ is bounded by ϵ .

No way to make PIT deterministic for black box.

Error **exponentially small** in the size of the integers!

- ➤ Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- ▶ Ben Or and Tiwari (1988): evaluation on big power of prime numbers

- ➤ Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- ▶ Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Klivans and Spielman (2001): transformation of a multivariate into an univariate one.

- ➤ Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- ▶ Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- ► Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

- ➤ Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- ▶ Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- ► Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time with a good **delay**.

- ➤ Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- ▶ Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- ► Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time with a good **delay**.

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial $\mathcal{Q}=$ the sum of the generated monomials.

When there is a call, compute P-Q

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial ${\it Q}=$ the sum of the generated monomials.

When there is a call, compute P-Q.

Incremental delay.

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial ${\it Q}=$ the sum of the generated monomials.

When there is a call, compute P-Q.

Incremental delay.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

▶ KS algorithm: $O(n^7D^4)$ calls, n number of variables and D the total degree

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- ► KS algorithm: $O(n^7D^4)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.

Aim: reducing the number of calls to the black-box at each step.

- ▶ KS algorithm: $O(n^7D^4)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O(n^2D^{d-1})$ calls.

Aim: reducing the number of calls to the black-box at each step.

- ► KS algorithm: $O(n^7D^4)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O(n^2D^{d-1})$ calls.
- Yes for polynomial whose each two monomials have distinct supports: $O(n^2)$ calls.

Aim: reducing the number of calls to the black-box at each step.

- ► KS algorithm: $O(n^7D^4)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O(n^2D^{d-1})$ calls.
- Yes for polynomial whose each two monomials have distinct supports: $O(n^2)$ calls.

Open question: how to efficiently represent and compute the partial polynomial at each step? Easier with circuits, formulas, polynomials of low degree, over fixed finite fields?

Aim: reducing the number of calls to the black-box at each step.

- ► KS algorithm: $O(n^7D^4)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O(n^2D^{d-1})$ calls.
- Yes for polynomial whose each two monomials have distinct supports: $O(n^2)$ calls.

Open question: how to efficiently represent and compute the partial polynomial at each step? Easier with circuits, formulas, polynomials of low degree, over fixed finite fields?

How to achieve a polynomial delay ?

We want to determine the degree of a subset S of variables of the polynomial.

How to achieve a polynomial delay ?

We want to determine the degree of a subset ${\cal S}$ of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree

How to achieve a polynomial delay ?

We want to determine the degree of a subset ${\cal S}$ of variables of the polynomial.

- 1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
- 2. evaluate the polynomial on a large value for the variables of S and small random values for the others

How to achieve a polynomial delay ?

We want to determine the degree of a subset ${\cal S}$ of variables of the polynomial.

- 1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
- 2. evaluate the polynomial on a large value for the variables of S and small random values for the others
- 3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to ${\cal S}$

How to achieve a polynomial delay ?

We want to determine the degree of a subset ${\cal S}$ of variables of the polynomial.

- 1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
- 2. evaluate the polynomial on a large value for the variables of S and small random values for the others
- 3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to ${\cal S}$

These algorithms are randomized (again the error is exponentially small) and in polynomial time in the number of variables.

How to achieve a polynomial delay ?

We want to determine the degree of a subset ${\cal S}$ of variables of the polynomial.

- 1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
- 2. evaluate the polynomial on a large value for the variables of S and small random values for the others
- 3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to ${\cal S}$

These algorithms are randomized (again the error is exponentially small) and in polynomial time in the number of variables.

Multilinear polynomials

Partial-Monomial

Input: a polynomial given as a black box and two sets of variables

 L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

When the polynomial is **multilinear**, this problem can be solved by finding the degree of $P_{\bar{L_1}}$ with regard to L_2 : test if the degree is equal to $|L_2|$.

Multilinear polynomials

Partial-Monomial

 $\emph{Input:}$ a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

When the polynomial is **multilinear**, this problem can be solved by finding the degree of $P_{\bar{L_1}}$ with regard to L_2 : test if the degree is equal to $|L_2|$.

Use this procedure for a depth first traversal of a tree whose leaves are the monomials.

Multilinear polynomials

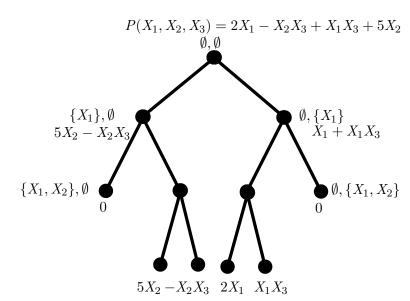
Partial-Monomial

 $\emph{Input:}$ a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

When the polynomial is **multilinear**, this problem can be solved by finding the degree of $P_{\bar{L_1}}$ with regard to L_2 : test if the degree is equal to $|L_2|$.

Use this procedure for a depth first traversal of a tree whose leaves are the monomials.



Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay **polynomial** in n, D and $\log(\epsilon)^{-1}$.

▶ The algorithm can be parallelized.

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay **polynomial** in n, D and $\log(\epsilon)^{-1}$.

- ▶ The algorithm can be parallelized.
- ▶ It works on finite fields of small characteristic (can be used to speed up computation).

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay **polynomial** in n, D and $\log(\epsilon)^{-1}$.

- ▶ The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized. STOC 2011, Saraf, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay **polynomial** in n, D and $\log(\epsilon)^{-1}$.

- ▶ The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized. STOC 2011, Saraf, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in

Comparison to other algorithms

	Ben-Or Tiwari	Zippel	KS	My Algorithm
Algorithm type	Deterministic	Probabilistic	Probabilistic	Probabilistic
Number of calls	2 T	tnD	tn^7D^4	$tnD(n + \log(\epsilon^{-1}))$
Total time	Quadratic in T	Quadratic in t	Quadratic in t	Linear in t
Enumeration	Exponential	TotalPP	IncPP	DelayPP
Size of points	$T \log(n)$	$\log(nT^2\epsilon^{-1})$	$\log(nD\epsilon^{-1})$	log(D)

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear polynomials.

Comparison to other algorithms

	Ben-Or Tiwari	Zippel	KS	My Algorithm
Algorithm type	Deterministic	Probabilistic	Probabilistic	Probabilistic
Number of calls	2 T	tnD	tn^7D^4	$tnD(n + \log(\epsilon^{-1}))$
Total time	Quadratic in T	Quadratic in t	Quadratic in t	Linear in t
Enumeration	Exponential	TotalPP	IncPP	DelayPP
Size of points	$T \log(n)$	$\log(nT^2\epsilon^{-1})$	$\log(nD\epsilon^{-1})$	log(D)

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear polynomials.

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial

Input: a polynomial given as a black box and two sets of variables

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial

 $\emph{Input:}$ a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

The polynomial delay algorithm works by repeatedly solving this problem.

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial

 $\emph{Input:}$ a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

The polynomial delay algorithm works by repeatedly solving this problem.

Proposition

The problem Partial-Monomial restricted to degree 2 polynomials is NP-hard.

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial

 $\emph{Input:}$ a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

The polynomial delay algorithm works by repeatedly solving this problem.

Proposition

The problem Partial-Monomial restricted to degree 2 polynomials is NP-hard.

Thanks!

Thanks!

Thanks,

Thanks!

Thanks, thanks,

thanks,

thanks, thanks,

thanks, thanks, thanks,

Thanksl

Thanks, thanks, thanks,

thanks, thanks, thanks,

Thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks,

Thanksl

Thanksl

Thanks, thanks, thanks,

thanks, thanks, thanks,

thanks, thanks

thanks, thanks, thanks,

thanks, thanks

Let's all do enumeration