Enumeration: logical and algebraic approach

Yann Strozecki

Université Paris Sud - Paris 11
Novembre 2011, séminaire ALGO/LIX

Introduction to Enumeration

Enumeration and logic

Enumeration and polynomials

Enumeration problems

Polynomially balanced predicate $A(x, y)$, decidable in polynomial time.

- \exists ? $y A(x, y)$: decision problem (class NP)
- $\sharp\{y \mid A(x, y)\}$: counting problem (class $\sharp \mathrm{P}$)
- $\{y \mid A(x, y)\}$: enumeration problem (class EnumP)

Perfect matching:
 - The decision problem is to decide if there is a perfect matching.
 - The counting problem is to count the number of perfect matchings.

-The enumeration problem is to list every perfect matching

Enumeration problems

Polynomially balanced predicate $A(x, y)$, decidable in polynomial time.

- \exists ? $y A(x, y)$: decision problem (class NP)
- $\sharp\{y \mid A(x, y)\}$: counting problem (class $\sharp \mathrm{P}$)
- $\{y \mid A(x, y)\}$: enumeration problem (class EnumP)

Example

Perfect matching:

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.
- The enumeration problem is to list every perfect matching.

Time complexity measures for enumeration

1. the total time related to the number of solutions

- polynomial total time: TotalP

2. the delay

- incremental polynomial time: IncP (Circuits of a matroid)
- polynomial delay: DelayP (Perfect Matching [Uno])
- Constant or linear delay
- A two stens algorithm: preprocessing + generation
- An ad-hoc RAM model

Time complexity measures for enumeration

1. the total time related to the number of solutions

- polynomial total time: TotalP

2. the delay

- incremental polynomial time: IncP (Circuits of a matroid)
- polynomial delay: DelayP (Perfect Matching [Uno])
- Constant or linear delay
- A two steps algorithm: preprocessing + generation
- An ad-hoc RAM model.

Enumeration problems

R : polynomially balanced binary predicate
EnUM $\cdot R$
$\begin{array}{ll}\text { Input: } & x \in \mathcal{I} \\ \text { Output: } & \text { an enumeration of elements in } R(x)=\{y \mid R(x, y)\}\end{array}$

Definition

The problem Enum• R belongs to the class Delay (g, f) if there exists an enumeration algorithm that computes EnUm. R such that, for all input x :

- Preprocessing in time $O(g(|x|))$,
- Solutions $y \in R(x)$ are computed successively without repetition with a delay $O(f(|x|))$
$\operatorname{Constant}-\operatorname{Delay}=\bigcup_{k} \operatorname{Delay}\left(n^{k}, 1\right)$.

Enumeration complexity classes

Separation:

QueryP $\subsetneq \mathbf{S D e l a y P} \subseteq$ Delay $\mathbf{P} \subseteq \operatorname{Inc} \mathbf{P} \subsetneq$ Total $\mathbf{P} \subsetneq$ EnumP.

Enumeration complexity classes

Separation:

QueryP $\subsetneq \mathbf{S D e l a y P} \subseteq$ DelayP \subseteq IncP \subsetneq TotalP \subsetneq EnumP.

Complete problem:

Enumeration complexity classes

Separation:

QueryP $\subsetneq \mathbf{S D e l a y P} \subseteq$ DelayP \subseteq IncP \subsetneq TotalP \subsetneq EnumP.

Complete problem:

No good notion of reduction out of parsimonious reduction.

Enumeration complexity classes

Separation:

QueryP $\subsetneq \mathbf{S D e l a y P} \subseteq$ DelayP \subseteq IncP \subsetneq TotalP \subsetneq EnumP.

Complete problem:
No good notion of reduction out of parsimonious reduction.

Boolean combination of solutions

> Proposition
> If $\mathrm{P} \neq \mathrm{NP}$ then the classes DelayP, IncP and TotalP are not stable by subtraction.

Proposition
If D \& ND then the classes DelayP, IncP and TotalP are not stable by intersection.

Boolean combination of solutions

> Proposition
> If $\mathrm{P} \neq \mathrm{NP}$ then the classes DelayP, IncP and TotalP are not stable by subtraction.

Proposition
If $\mathrm{P} \neq \mathrm{NP}$ then the classes DelayP, IncP and TotalP are not stable by intersection.

Boolean combination of solutions

```
Proposition
If \(\mathrm{P} \neq \mathrm{NP}\) then the classes DelayP, IncP and TotalP are not stable by subtraction.
```

Proposition
If $\mathrm{P} \neq \mathrm{NP}$ then the classes DelayP, IncP and TotalP are not stable by intersection.

The classes DelayP, IncP and TotalP are stable for:

- disjoint union
- union with an order

Boolean combination of solutions

```
Proposition
If \(\mathrm{P} \neq \mathrm{NP}\) then the classes DelayP, IncP and TotalP are not stable by subtraction.
```

Proposition
If $\mathrm{P} \neq \mathrm{NP}$ then the classes DelayP, IncP and TotalP are not stable by intersection.

The classes DelayP, IncP and TotalP are stable for:

- disjoint union
- union with an order
- union without order

Boolean combination of solutions

Proposition
 If $\mathrm{P} \neq \mathrm{NP}$ then the classes DelayP, IncP and TotalP are not stable by subtraction.

Proposition
If $\mathrm{P} \neq \mathrm{NP}$ then the classes DelayP, IncP and TotalP are not stable by intersection.

The classes DelayP, IncP and TotalP are stable for:

- disjoint union
- union with an order
- union without order

Meta-algorithms for enumeration and CSP

> Proposition (Creignou, Hebrard'97)
> The problem Enum•SAT (\mathcal{C}) is in DelayP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas.

Other meta-algorithms:

1. Schnoor: enumeration complexity dichotomy for conservative CSP over three element domain
2. Bulatov, Dalmau, Grohe, Marx: algebraic characterization of easy to enumerate CSP, bounded tree-width domain.

Meta-algorithms for enumeration and CSP

> Proposition (Creignou, Hebrard'97)
> The problem Enum•SAT (\mathcal{C}) is in DelayP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas.

Other meta-algorithms:

1. Schnoor: enumeration complexity dichotomy for conservative CSP over three element domain
2. Bulatov, Dalmau, Grohe, Marx: algebraic characterization of easy to enumerate CSP, bounded tree-width domain.

Introduction to Enumeration

Enumeration and logic

Enumeration and polynomials

Logic in half a slide

First order logic(FO):

- Variables: $x, y, z \ldots$
- The language σ, relations and functions: $R(x, y), f(z)$
- Unary and binary connectors: \wedge, \vee, \neg
- Quantifiers: \forall, \exists

Logic in half a slide

First order logic(FO):

- Variables: $x, y, z \ldots$
- The language σ, relations and functions: $R(x, y), f(z)$
- Unary and binary connectors: \wedge, \vee, \neg
- Quantifiers: \forall, \exists
- $\varphi \equiv \forall x \exists y E(x, y) \vee E(y, x)$

Logic in half a slide

First order $\operatorname{logic}(\mathrm{FO})$:

- Variables: $x, y, z \ldots$
- The language σ, relations and functions: $R(x, y), f(z)$
- Unary and binary connectors: \wedge, \vee, \neg
- Quantifiers: \forall, \exists
- $\varphi \equiv \forall x \exists y E(x, y) \vee E(y, x)$

Theorem (Goldberg)

For almost all first order graph property φ, the graphs of size n which satisfies φ can be enumerated with polynomial delay in n.

Enumeration problem defined by a formula

Second order logic(SO):
Second order variable: \mathbf{T}, denotes unknown relation over the domain.

Let $\Phi(\mathbf{z}, \mathbf{T})$ be a first order formula with free first and second
order variables.

Enumeration problem defined by a formula

Second order logic(SO):
Second order variable: \mathbf{T}, denotes unknown relation over the domain.

Let $\Phi(\mathbf{z}, \mathbf{T})$ be a first order formula with free first and second order variables.

Enumeration problem defined by a formula

Second order $\operatorname{logic}(\mathrm{SO})$:
Second order variable: T, denotes unknown relation over the domain.

Let $\Phi(\mathbf{z}, \mathbf{T})$ be a first order formula with free first and second order variables.

```
Enum·\Phi
    Input: A }\sigma\mathrm{ -structure }\mathcal{S
    Output: }\quad\Phi(\mathcal{S})={(\mp@subsup{\mathbf{z}}{}{*},\mp@subsup{\mathbf{T}}{}{*}):(\mathcal{S},\mp@subsup{\mathbf{z}}{}{*},\mp@subsup{\mathbf{T}}{}{*})\models\Phi(\mathbf{z},\mathbf{T})
```

Let \mathscr{F} be a subclass of first order formulas. We denote by Enum $\cdot \mathscr{F}$ the collection of problems Enum Φ for $\Phi \in \mathscr{F}$.

Example

Example

Independent sets:

$$
I S(T) \equiv \forall x \forall y T(x) \wedge T(y) \Rightarrow \neg E(x, y)
$$

Example

Hitting sets (vertex covers) of a hypergraph represented by the incidence structure $\langle D,\{V, E, R\}\rangle$.

$$
H S(T) \equiv \forall x(T(x) \Rightarrow V(x)) \wedge \forall y \exists x E(y) \Rightarrow(T(x) \wedge R(x, y))
$$

First-order queries with free second order variables

This presentation

- FO queries with free second-order variables
- Data complexity: the query is fixed
- The complexity in term of the size of the input structure's domain
- Quantifier depth as a parameter: EnUm• Σ_{1}

First-order queries with free second order variables

This presentation

- FO queries with free second-order variables
- Data complexity: the query is fixed
- The complexity in term of the size of the input structure's domain
- Quantifier depth as a parameter: EnUm. Σ_{1}
- Enum•IS \in Enum• Π_{1} and Enum•HS \in Enum• Π_{2}

Previous results

1. Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
2. Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear

Example

Enumeration of the k-cliques of a graph of bounded degree.

Previous results

1. Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
2. Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear delay

Monadic second order formula and bounded tree-width structure Bagan, Courcelle 2009: almost linear preprocessing

Example

Typical database query. Simple paths of length k.

Previous results

1. Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
2. Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear delay
3. Monadic second order formula and bounded tree-width structure Bagan, Courcelle 2009: almost linear preprocessing + linear delay

Example

Enumeration of the cliques of a bounded tree-width graph.

A hierarchy result for counting functions

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function:

$$
\# \Phi: \mathcal{S} \mapsto|\Phi(\mathcal{S})|
$$

Theorem (Saluja, Subrahmanyam, Thakur 1995)
 On linearly ordered structures: $\# \Sigma_{0} \subsetneq \# \Sigma_{1} \subsetneq \# \Pi_{1} \subsetneq \# \Sigma_{2} \subsetneq \# \Pi_{2}=\sharp P$.

Some \sharp P-hard problems in $\# \Sigma_{1}$ (but existence of FPRAS at this level).

A hierarchy result for counting functions

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function:

$$
\# \Phi: \mathcal{S} \mapsto|\Phi(\mathcal{S})|
$$

Theorem (Saluja, Subrahmanyam, Thakur 1995)
On linearly ordered structures:
$\# \Sigma_{0} \subsetneq \# \Sigma_{1} \subsetneq \# \Pi_{1} \subsetneq \# \Sigma_{2} \subsetneq \# \Pi_{2}=\sharp P$.
Some \sharp P-hard problems in $\# \Sigma_{1}$ (but existence of FPRAS at this level).

Corollary

On linearly ordered structures:
Enum $\cdot \Sigma_{0} \subsetneq$ Enum $\cdot \Sigma_{1} \subsetneq$ Enum $\cdot \Pi_{1} \subsetneq$ Enum $\cdot \Sigma_{2} \subsetneq$ Enum $\cdot \Pi_{2}$.

The first level: Enum• Σ_{0}

Theorem

For $\varphi \in \Sigma_{0}$, Enum $\cdot \varphi$ can be enumerated with preprocessing $O\left(|D|^{k}\right)$ and delay $O(1)$ where k is the number of free first order variables of φ and D is the domain of the input structure.

Simple ingredients:

1. Transformation of a f.o. formula $\Phi(\mathbf{z}, T)$ into a propositional formula:

- Try all values for first order variables: $\Phi\left(\mathbf{z}^{*}, T\right)$.
- Replace the atomic formulas by their truth value.
- Obtain a propositional formula with variables $T(\mathbf{w})$.

2. Gray Code Enumeration.

Bounded degree structure

Remark: The k-clique query is definable.
No hope to improve the $O\left(|D|^{k}\right)$ preprocessing.

Bounded degree structure

Remark: The k-clique query is definable.
No hope to improve the $O\left(|D|^{k}\right)$ preprocessing.
Theorem
Let $d \in \mathbb{N}$, on d-degree bounded input structures,
$\operatorname{Enum} \cdot \Sigma_{0} \in \operatorname{DELAY}(|D|, 1)$ where D is the domain of the input structure.

Idea of proof:

- Another transformation: $\Phi(\mathbf{z}, T)$ seen as a propositional formula whose variables are the atoms of Φ.
- From each solution, create a quantifier free formula without free second order variables.
- Enumerate the solutions of this formula thanks to [DG 2007]

Bounded degree structure

Remark: The k-clique query is definable.
No hope to improve the $O\left(|D|^{k}\right)$ preprocessing.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures, $\operatorname{Enum} \cdot \Sigma_{0} \in \operatorname{DELAY}(|D|, 1)$ where D is the domain of the input structure.

Idea of proof:

- Another transformation: $\Phi(\mathbf{z}, T)$ seen as a propositional formula whose variables are the atoms of Φ.
- From each solution, create a quantifier free formula without free second order variables.
- Enumerate the solutions of this formula thanks to [DG 2007].

Second level: Enum $\cdot \Sigma_{1}$

Theorem

Enum $\cdot \Sigma_{1} \subseteq$ DelayP. More precisely, EnUm $\cdot \Sigma_{1}$ can be computed with precomputation $O\left(|D|^{h+k}\right)$ and delay $O\left(|D|^{k}\right)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

Idea of Proof: $\Phi(\mathbf{y}, T)=\exists \mathbf{x} \varphi(\mathbf{x}, \mathbf{y}, T)$

- Substitute values for \mathbf{x}. Collection of formulas of the form:

$$
\varphi\left(\mathbf{x}^{*}, \mathbf{y}, T\right)
$$

- Need to enumerate the (non necessarily disjoint) union.

The case Enum $\cdot \Pi_{1}$

Proposition

Unless $\mathrm{P}=\mathrm{NP}$, there is no polynomial delay algorithm for Enum• Π_{1}.

Proof Direct encoding of SAT.

Hardness even:

- on the class of bounded degree structure
- if all clauses but one have at most two occurences of a second-order free variable

Tractable cases

Problem Enum $\cdot \Phi$ with $\Phi \in \Sigma_{i}$: transformation of Φ into a propositional formula $\tilde{\Phi}$.

Tractable cases

Problem Enum $\cdot \Phi$ with $\Phi \in \Sigma_{i}$: transformation of Φ into a propositional formula $\tilde{\Phi}$.

```
Corollary
Let }\Phi(\mathbf{z},T)\mathrm{ be a formula, such that, for all }\sigma\mathrm{ structures, all propositional formulas \(\tilde{\Phi}\) are either Horn, anti-Horn, affine or bijunctive. Then Enum• \(\Phi \subseteq\) DELAYP.
```


Tractable cases

Problem Enum• Φ with $\Phi \in \Sigma_{i}$: transformation of Φ into a propositional formula $\tilde{\Phi}$.

```
Corollary
Let }\Phi(\mathbf{z},T)\mathrm{ be a formula, such that, for all }\sigma\mathrm{ structures, all propositional formulas \(\tilde{\Phi}\) are either Horn, anti-Horn, affine or bijunctive. Then Enum• \(\Phi \subseteq\) DelayP.
```

Example: independent sets and hitting sets.

Conlusion and open problems

Enum $\cdot \Sigma_{0} \subsetneq$ Enum $\cdot \Sigma_{1} \subsetneq$ EnUm $\cdot \Pi_{1} \subsetneq$ EnUM $\cdot \Sigma_{2} \subsetneq$ Enum $\cdot \Pi_{2}=$ EnumP.

- Nice but small hierarchy.
- Other tractable classes above Σ_{1} (optimization operator)?
- Efficient probabilistic enumeration procedure?

Introduction to Enumeration

Enumeration and logic

Enumeration and polynomials

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

$$
\begin{gathered}
X_{1}=1, X_{2}=2, X_{3}=1 \\
1 * 2+1 * 1+2+1 \\
\text { Output }=6
\end{gathered}
$$

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

$$
\begin{gathered}
X_{1}=-1, X_{2}=1, X_{3}=2 \\
-1 * 1+-1 * 2+1+2 \\
\text { Output }=0
\end{gathered}
$$

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

- Problem: interpolation, compute P from its values.
- Complexity: time and number of calls to the oracle.

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

- Problem: interpolation, compute P from its values.
- Complexity: time and number of calls to the oracle.
- Parameters: number of variables and total degree.

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

- Problem: interpolation, compute P from its values.
- Complexity: time and number of calls to the oracle.
- Parameters: number of variables and total degree.

Enumeration problem: output the monomials one after the

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

- Problem: interpolation, compute P from its values.
- Complexity: time and number of calls to the oracle.
- Parameters: number of variables and total degree.

Enumeration problem: output the monomials one after the other.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix: cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix: cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3 -uniform hypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix: cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3 -uniform hypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix: cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3 -uniform hypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.

Only multilinear polynomials.

The decision problem

Polynomial Identity Testing Input: a polynomial given as a black box. Output: decides if the polynomial is zero.

The decision problem

Polynomial Identity Testing Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D, if x_{1}, \ldots, x_{n} are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P\left(x_{1}, \ldots, x_{n}\right)=0$ is bounded by ϵ.

The decision problem

Polynomial Identity Testing Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_{1}, \ldots, x_{n} are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P\left(x_{1}, \ldots, x_{n}\right)=0$ is bounded by ϵ.

No way to make PIT deterministic for black box.
Error exponentially small in the size of the integers!

The decision problem

Polynomial Identity Testing Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_{1}, \ldots, x_{n} are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P\left(x_{1}, \ldots, x_{n}\right)=0$ is bounded by ϵ.

No way to make PIT deterministic for black box.
Error exponentially small in the size of the integers!

Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers

Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.

Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time with a good delay.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial $Q=$ the sum of the generated monomials.
When there is a call, compute $P-Q$.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial $Q=$ the sum of the generated monomials.
When there is a call, compute $P-Q$.

Incremental delay.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial $Q=$ the sum of the generated monomials.
When there is a call, compute $P-Q$.
Incremental delay.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O\left(n^{7} D^{4}\right)$ calls, n number of variables and D the total degree

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O\left(n^{7} D^{4}\right)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O\left(n^{7} D^{4}\right)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O\left(n^{7} D^{4}\right)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O\left(n^{2} D^{d-1}\right)$ calls.
- Yes for polynomial whose each two monomials have distinct supports: $O\left(n^{2}\right)$ calls.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O\left(n^{7} D^{4}\right)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O\left(n^{2} D^{d-1}\right)$ calls.
- Yes for polynomial whose each two monomials have distinct supports: $O\left(n^{2}\right)$ calls.

Open question: how to efficiently represent and compute the partial polynomial at each step? Easier with circuits, formulas, polynomials of low degree, over fixed finite fields ?

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O\left(n^{7} D^{4}\right)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O\left(n^{2} D^{d-1}\right)$ calls.
- Yes for polynomial whose each two monomials have distinct supports: $O\left(n^{2}\right)$ calls.

Open question: how to efficiently represent and compute the partial polynomial at each step? Easier with circuits, formulas, polynomials of low degree, over fixed finite fields ?

Improving the delay

How to achieve a polynomial delay ?

We want to determine the degree of a subset S of variables of the polynomial.

Improving the delay

How to achieve a polynomial delay ?
We want to determine the degree of a subset S of variables of the polynomial.
pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree

Improving the delay

How to achieve a polynomial delay ?
We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
2. evaluate the polynomial on a large value for the variables of S and small random values for the others

Improving the delay

How to achieve a polynomial delay ?
We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
2. evaluate the polynomial on a large value for the variables of S and small random values for the others
3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to S

Improving the delay

How to achieve a polynomial delay ?
We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
2. evaluate the polynomial on a large value for the variables of S and small random values for the others
3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially small) and in polynomial time in the number of variables.

Improving the delay

How to achieve a polynomial delay ?
We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
2. evaluate the polynomial on a large value for the variables of S and small random values for the others
3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially small) and in polynomial time in the number of variables.

Multilinear polynomials

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables L_{1} and L_{2}
Output: accept if there is a monomial in the polynomial in which no variables of L_{1} appear, but all of those of L_{2} do.

When the polynomial is multilinear, this problem can be solved by finding the degree of $P_{\bar{L}_{1}}$ with regard to L_{2} : test if the degree is equal to $\left|L_{2}\right|$

Multilinear polynomials

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables L_{1} and L_{2}
Output: accept if there is a monomial in the polynomial in which no variables of L_{1} appear, but all of those of L_{2} do.

When the polynomial is multilinear, this problem can be solved by finding the degree of $P_{\overline{L_{1}}}$ with regard to L_{2} : test if the degree is equal to $\left|L_{2}\right|$.

Use this procedure for a depth first traversal of a tree whose leaves are the monomials.

Multilinear polynomials

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables L_{1} and L_{2}
Output: accept if there is a monomial in the polynomial in which no variables of L_{1} appear, but all of those of L_{2} do.

When the polynomial is multilinear, this problem can be solved by finding the degree of $P_{\overline{L_{1}}}$ with regard to L_{2} : test if the degree is equal to $\left|L_{2}\right|$.

Use this procedure for a depth first traversal of a tree whose leaves are the monomials.

Polynomial delay algorithm

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay polynomial in n, D and $\log (\epsilon)^{-1}$.

- The algorithm can be parallelized.

Polynomial delay algorithm

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay polynomial in n, D and $\log (\epsilon)^{-1}$.

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation)

Polynomial delay algorithm

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay polynomial in n, D and $\log (\epsilon)^{-1}$.

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized. STOC 2011, Saraf, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in

Polynomial delay algorithm

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay polynomial in n, D and $\log (\epsilon)^{-1}$.

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized. STOC 2011, Saraf, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in

Comparison to other algorithms

	Ben-Or Tiwari	Zippel	KS	My Algorithm
Algorithm type	Deterministic	Probabilistic	Probabilistic	Probabilistic
Number of calls	$2 T$	$t n D$	$t n^{7} D^{4}$	$t n D\left(n+\log \left(\epsilon^{-1}\right)\right)$
Total time	Quadratic in T	Quadratic in t	Quadratic in t	Linear in t
Enumeration	Exponential	TotalPP	IncPP	DelayPP
Size of points	$T \log (n)$	$\log \left(n T^{2} \epsilon^{-1}\right)$	$\log \left(n D \epsilon^{-1}\right)$	$\log (D)$

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear

Comparison to other algorithms

	Ben-Or Tiwari	Zippel	KS	My Algorithm
Algorithm type	Deterministic	Probabilistic	Probabilistic	Probabilistic
Number of calls	$2 T$	$t n D$	$t n^{7} D^{4}$	$t n D\left(n+\log \left(\epsilon^{-1}\right)\right)$
Total time	Quadratic in T	Quadratic in t	Quadratic in t	Linear in t
Enumeration	Exponential	TotalPP	IncPP	DelayPP
Size of points	$T \log (n)$	$\log \left(n T^{2} \epsilon^{-1}\right)$	$\log \left(n D \epsilon^{-1}\right)$	$\log (D)$

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear polynomials.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L_{1} and L_{2}
Output: accept if there is a monomial in the polynomial in which no variables of L_{1} appear, but all of those of L_{2} do.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables L_{1} and L_{2}
Output: accept if there is a monomial in the polynomial in which no variables of L_{1} appear, but all of those of L_{2} do.

The polynomial delay algorithm works by repeatedly solving this problem.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables L_{1} and L_{2}
Output: accept if there is a monomial in the polynomial in which no variables of L_{1} appear, but all of those of L_{2} do.

The polynomial delay algorithm works by repeatedly solving this problem.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables L_{1} and L_{2}
Output: accept if there is a monomial in the polynomial in which no variables of L_{1} appear, but all of those of L_{2} do.

The polynomial delay algorithm works by repeatedly solving this problem.

Proposition

The problem Partial-Monomial restricted to degree 2 polynomials is NP-hard.

Thanks!

Thanks!
Thanks,

Thanks!
Thanks, thanks,

Thanks!
Thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks,
thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks,
thanks, thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks

Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks Let's all do enumeration

