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Abstract. We consider the problem of defining the information leakage in in-
teractive systems where secrets and observables can alternate during the com-
putation. We show that the information-theoretic approachwhich interprets such
systems as (simple) noisy channels is not valid anymore. However, the principle
can be recovered if we consider more complicated types of channels, that in Infor-
mation Theory are known as channels with memory and feedback. We show that
there is a complete correspondence between interactive systems and such kind of
channels. Furthermore, we show that the capacity of the channels associated to
such systems is a continuous function of the Kantorovich metric.

1 Introduction

Information leakage refers to the problem that the observable parts of the behavior of
a system may reveal information that we would like to keep secret. In recent years,
there has been a growing interest in the quantitative aspects of this problem, partly
because it is convenient to represent the partial knowledgeof the secrets as a probability
distribution, and partly because the mechanisms to protectthe information may use
randomization to obfuscate the relation between the secrets and the observables.

Among the quantitative approaches, some of the most popularones are based on
Information Theory [4, 11, 3, 17]. The system is interpretedas an information-theoretic
channel, where the secrets are the input and the observables are the output. The channel
matrix is constituted by the conditional probabilitiesp(b | a), defined as the measure
of the executions that give observableb within those which contain the secreta. The
leakage is represented by themutual information, and the worst-case leakage by the
capacityof the channel.

In the above works, the secret value is assumed to be chosen atthe beginning of
the computation. In this paper, we are interested inInteractive systems, i.e. systems
in which secrets and observables can alternate during the computation, and influence
each other. Examples of interactive protocols includeauction protocolslike [22, 19,
18]. Some of these have become very popular thanks to their integration in Internet-
based electronic commerce platforms [8, 9, 13]. As for interactive programs, examples
include web servers, GUI applications, and command-line programs [2].

We investigate the applicability of the information-theoretic approach to interactive
systems. In [7] it was proposed to define the matrix elementsp(b | a) as the measure of
the traces with (secret, observable)-projection(a, b), divided by the measure of the trace
with secret projectiona. This follows the definition of conditional probability in terms
of joint and marginal probability. However, it does not define an information-theoretic



channel. In fact, by definition a channel should be invariantwith respect to the input
distribution, and such construction is not, as shown by the following example.

Example 1.Figure 1 represents a web-based interaction between one seller and two
possible buyers,rich andpoor. The seller offers two different products,cheapandex-
pensive, with given probabilities. Once the product is offered, each buyer may try to
buy the product, with a certain probability. For simplicitywe assume that the buyers
offers are exclusive. We assume that the offers are observables, in the sense that they
are made public in the website, while the identity of the buyer that actually buys the
product should be secret to an external observer. The symbols r, s, t, r, s, t represent
the probabilities, with the convention thatr = 1− r.

cheap expensive

poor rich
poor rich

r r

s s t t

Fig. 1.An interactive syst.

Following [7] we can compute the conditional proba-
bilities asp(b|a) = p(a,b)

p(a) , thus obtaining the matrix on Ta-
ble 1. However, the matrix is not invariant with respect to
the input distribution. For instance, let us assumer = r =
1
2 , s = 2

3 , andt = 2
3p, wherep is a parameter. Therefore

we havep(poor ) = rs + rt = 1
3 (1 + p) or, equivalently,

p = 3 · p(poor) − 1. Two different input distributions will
determine different values ofp, and thereforet. Hence also
the channel matrices will be different, as the two examples
in Table 2 show.

cheap expensive

poor rs
rs+rt

rt
rs+rt

rich rs
rs+rt

rt
rs+rt

Table 1. Channel matrix
for Example 1

Consequently, when the secrets occurafter the observ-
ables we cannot consider the conditional probabilities as
representing a (classical) channel, and we cannot apply the
standard information-theoretic concepts. In particular,we
cannot adopt the (classical) capacity to represent the worst-
case leakage, since the capacity is defined using a fixed
channel matrix over all possible input distributions.

The first contribution of this paper is to consider an
extension of the theory of channels which makes the
information-theoretic approach applicable also the case of interactive systems. It turns
out that a richer notion of channels, known in Information Theory aschannels with
memory and feedback, serves our purposes. The dependence of inputs on previous out-
puts corresponds to feedback, and the dependence of outputson previous inputs and
outputs corresponds to memory.

A second contribution of our work is the proof that the channel capacity is a contin-
uous function of the Kantorovich metric on interactive systems. This was pointed out
also in [7], however their construction does not work in our case due to the fact that (as
far as we understand) it assumes that the probability of a secret action, in any point of
the computation, is not0. This assumption is not guaranteed in our case and therefore
we had to proceed differently.

1.1 Plan of the paper

The paper is organized as follows. Section 2 reviews some important concepts fromPro-
babilistic Automata and Information Theory. It is also presented the concept of Inter-



cheap expensive Input distr.

poor 2
3

1
3

p(poor) = 1
2

rich 1
3

2
3

p(rich) = 1
2

(a)r = 1
2
, s = 2

3
, p = 1

2
, t = 1

3

cheap expensive Input distr.

poor 4
5

1
5

p(poor) = 5
12

rich 2
7

5
7

p(rich) = 7
12

(b) r = 1
2
, s = 2

3
, p = 1

4
, t = 1

6

Table 2.Two different channel matrices induced by two different input distributions

active Information Hiding Systems (IIHSs), which will be used all over the paper. In
Section 3 we discuss why the classical information theoretical approach needs to be
extended and we give an overview on how we do it in our model, along with the main
issues involved. Section 4 reviews the model of channels with memory and feedback
that are the core the model we propose. The concept of directed information is discussed
and also the generalized concept of capacity in the presenceof feedback. Section 5 con-
tains our main contribution. We explain how IIHSs can be modeled using channels with
memory and feedback. In particular we show that there is always a channel that simu-
lates the probabilistic behavior of any IIHS. In Section 6 wedefine the quantification of
information leakage as the channel’s directed informationfrom input to output, in the
case where the input distribution on secrets is known, or as the generalized capacity, in
the case the distribution on secrets is unknown. In Section 7we discuss a full example
of our model applied to a real protocol. The Cocaine Auction protocol is presented,
modeled as a channel with memory and feedback, and then the leakage of information
in three different scenarios is calculated. Section 8 discusses the topological properties
of IIHSs and their capacity. We show that the capacity of the channels associated to
interactive systems is a continuous function of the Kantorovich metric. In Sections 9
and 10 we review and discuss the main results of the paper and illustrate some future
work.

A short version of this paper (without proofs, and with less material) appeared in
the proceedings of CONCUR 2010.

2 Preliminaries

In this section we briefly review some basic notions that we will need along the paper.

2.1 Probabilistic automata

A functionµ : S → [0, 1] is adiscrete probability distributionon a countable setS if
∑

s∈S µ(s) = 1 andµ(s) ≥ 0 for all s. The set of all discrete probability distributions
onS isD(S).

A probabilistic automaton[15] is a quadrupleM = (S,L, ŝ, ϑ) whereS is a count-
able set ofstates, L a finite set oflabelsor actions, ŝ theinitial state, andϑ a transition
functionϑ : S → ℘f (D(L × S)). Here℘f (X) is the set of all finite subsets ofX . If



ϑ(s) = ∅ thens is a terminalstate. We writes→µ for µ ∈ ϑ(s), s ∈ S. Moreover, we
write s

ℓ
→r for s, r ∈ S whenevers→µ andµ(ℓ, r) > 0. A fully probabilistic automa-

ton is a probabilistic automaton satisfying|ϑ(s)| ≤ 1 for all states. Whenϑ(s) 6= ∅ we
overload the notation and denoteϑ(s) the distribution outgoing froms.

A path in a probabilistic automaton is a sequenceσ = s0
ℓ1→ s1

ℓ2→ · · · where
si ∈ S, ℓi ∈ L andsi

ℓi+1

→ si+1. A path can befinite in which case it ends with a state.
A path iscompleteif it is either infinite or finite ending in a terminal state. Given a
finite pathσ, last(σ) denotes its last state. LetPathss(M) denote the set of all paths,
Paths⋆s(M) the set of all finite paths, andCPathss(M) the set of all complete paths
of an automatonM , starting from the states. We will omit s if s = ŝ. Paths are ordered
by the prefix relation, which we denote by≤. The trace of a path is the sequence of
actions inL∗ ∪ L∞ obtained by removing the states, hence for the aboveσ we have
trace(σ) = l1l2 . . .. If L′ ⊆ L, thentraceL′(σ) is the projection oftrace(σ) on the
elements ofL′.

Let M = (S,L, ŝ, ϑ) be a (fully) probabilistic automaton,s ∈ S a state, and let
σ ∈ Paths⋆s(M) be a finite path starting ins. Theconegenerated byσ is the set of
complete paths〈σ〉 = {σ′ ∈ CPathss(M) | σ ≤ σ′}. Given a fully probabilistic
automatonM = (S,L, ŝ, ϑ) and a states, we can calculate theprobability value,

denoted byPs(σ), of any finite pathσ starting ins as follows:Ps(s) = 1 andPs(σ
ℓ
→

s′) = Ps(σ) µ(ℓ, s
′), where last(σ) → µ.

Let Ωs , CPathss(M) be the sample space, and letFs be the smallestσ-algebra
generated by the cones. ThenP induces a uniqueprobability measureonFs (which we
will also denote byPs) such thatPs(〈σ〉) = Ps(σ) for every finite pathσ starting in
s. Fors = ŝ we writeP instead ofPŝ.

Given a probability space(Ω,F , P ) and two eventsA,B ∈ F with P (B) > 0, the
conditional probabilityof A givenB, P (A | B), is defined asP (A ∩B)/P (B).

2.2 Concepts from Information Theory

For more detailed information on this part we refer to [5]. Let A,B denote two random
variables with corresponding probability distributionspA(·), pB(·), respectively. We
shall omit the subscripts when they are clear from the context. LetA = {a1, . . . , an},B =
{b1, . . . , bm} denote, respectively, the sets of possible values forA and forB.

Theentropyof A is defined asH(A) = −
∑

A p(ai) log p(ai) and it measures the
uncertainty ofA. It takes its minimum valueH(A) = 0 whenpA(·) is a delta of Dirac.
The maximum valueH(A) = log |A| is obtained whenpA(·) is the uniform distribu-
tion. Usually the base of the logarithm is set to be2 and the entropy is measured in
bits. The conditional entropyof A givenB is H(A|B) = −

∑

B p(bi)
∑

A p(aj |bi)
log p(aj |bi), and it measures the uncertainty ofA whenB is known. We can prove that
0 ≤ H(A|B) ≤ H(A). The minimum value,0, is obtained whenA is completely de-
termined byB. The maximum valueH(A) is obtained whenA andB are independent.
Themutual informationbetweenA andB is defined asI(A;B) = H(A) −H(A|B),
and it measures the amount of information aboutA that we gain by observingB. It can
be shown thatI(A;B) = I(B;A) and0 ≤ I(A;B) ≤ H(A).



The entropy and mutual information respect thechain laws. Namely, given a se-
quence of random variablesA1, A2, . . . , Ak andB, we have:

H(A1, A2, . . . , Ak) =

k
∑

i=1

H(Ai|A1, . . . , Ai−1) (1)

I(A1, A2, . . . , Ak;B) =

k
∑

i=1

I(Ai;B|A1, . . . , Ai−1) (2)

Let (V ,K) be a set equipped with aσ-algebra of subsets (i.e a Borel space). Let
(X ,BX ) a Polish space (i.e a separable and completely metrizable topological space),
equipped with its Borelσ-algebra. Letρ = {p(·|v)}v be a family of measures onX
parametrized overv ∈ V . We say thatρ is astochastic kernelfrom V to X if for every
Borel setB ∈ BX , the functionv 7→ ρ(B|v) ∈ [0, 1] is measurable1.

A (discrete memoryless) channelis a tuple(A,B, p(·|·)), whereA,B are the sets of
input and output symbols, respectively, andp(bj |ai) is the probability of observing the
output symbolbj when the input symbol isai. These conditional probabilities form a
stochastic kernel and constitute thechannel matrix. An input distributionp(ai) overA
determines, together with the channel, the joint distribution p(ai, bj) = p(ai|bj) · p(ai)
and consequentlyI(A;B). The maximumI(A;B) over all possible input distributions
is the channel’scapacity. Shannon’s famous result states that the capacity coincides
with the maximum rate by which information can be transmitted using the channel.

In this paper we consider input and outputsequencesinstead of just symbols.

Convention 1. LetA = {a1, . . . , an} be a finite set ofn different symbols (alphabet).
We use a Greek letter (α, β, . . . ) to denote a sequence of symbols (ordered in time).
Given a sequenceα = ai1ai2 . . . aim , we useαt to denote the symbol at timet, i.e.ait .
The notationαt stands for the sequenceαi1

αi2
. . . αit

. For instance, in the sequence
α = a3a7a5, we haveα2 = a7 andα2 = a3a7.

Convention 2. LetX be a random variable.Xt denotes the sequence oft consecutive
occurrencesX1, . . . , Xt of the random variableX .

When the channel is used repeatedly, the discrete memoryless channel described
above represents the case in which the behavior of the channel at the present time does
not depend upon the past history of inputs and outputs. If this assumption does not hold,
then we have a channelwith memory. Furthermore, if the outputs from the channel can
be fed back to the encoder, thus influencing the generation ofthe next input symbol,
then the channel is said to bewith feedback; otherwise it iswithout feedback.

Equation 3 makes explicit the probabilistic behavior of channels regarding those
classifications. Suppose a general channel fromA toB with the associated random vari-
ablesA for input andB for output. Using the notation introduced in Convention 1, the
channel behavior afterT uses can be fully described by the joint probabilityp(αT , βT ).

1 For the purpose of this paper, since we only deal with discrete random variables, we only need
to assume that for everyv ∈ V, p(·|v) is a probability distribution.



Using probability laws we derive:

p(αT , βT ) =

T
∏

t=1

p(αt|α
t−1, βt−1)p(βt|α

t, βt−1) (by the expansion law) (3)

The first termp(αt|α
t−1, βt−1) indicates that the probability ofαt depends not

only onαt−1, but also onβt−1 (feedback). The second termp(βt|α
t, βt−1) indicates

that the probability of eachβt depends on previous history of inputsαt and outputs
βt−1 (memory).

If the channel is without feedback, then we have thatp(αt|α
t−1, βt−1) = p(αt|α

t−1),
and if the channel is without memory, then we have alsop(βt|α

t, βt−1) = p(βt|αt).
From these we derivep(βT |αT ) =

∏T
t=1 p(βt|αt), which is the classic equation for

discrete memoryless channels without feedback.
We shall have a deeper discussion about the meaning and implications of Equa-

tion (3) later on this paper, when comparing the concepts of mutual information and
directed information, in Section 6.

3 Our model vs the classical approach

In this section we illustrate the issues involved in adopting a more general notion of
channel, by comparing it with the basic model.

By classical information theoretical approach, or simplyclassical approach, we
mean the use of discrete memoryless channels, which implicitly assume absence of
feedback, to model the problem of information leakage in computational systems. This
approach has been used for non-interactive systems, where secrets occur strictly before
observables during the computation and therefore do not depend on them. In this paper
we extend the classical approach with a richer notion of channels that also consider
memory and feedback. Our extension is a generalization of the classical model in the
sense that it can represent both interactive and non-interactive systems.

In non-interactive systems, since the secrets always precede the observables, it is
possible to group the sequence of secrets (and observables)in a single secret (resp. ob-
servable) string. If we consider only one activation of the system, or if each use of the
system is independent from the other, then we can model it as adiscrete classical chan-
nel (memoryless, and without feedback) from a single input string to a single output
string.

When we have interactive systems, however, inputs and outputs may interleave and
influence each other. Considering some sort of feedback in the channel is a way to cap-
ture this richer behavior. Secrets have a causal influence onobservables via the chan-
nel, and, in the presence of interactivity, observables have a causal influence on secrets
via the feedback. This alternating mutual influence betweeninputs and outputs can be
modeled by repeated uses of the channels. However, each timethe channel is used it
represents a different state of the computation, and the conditional probabilities of ob-
servables on secrets can depend on this state. The addition of memory to the model
allows expressing the dependency of the channel matrix on such state (which, as we
will see, can also be represented by the history of inputs andoutputs).



One important feature of the classical approach is that the secret choice is seen as
external to the system, i.e. determined by the environment.This implies that the prob-
ability distribution on the secrets (input distribution) constitutes the a priori knowledge
and does not count as leakage. In order to encompass the classical approach, in our
extended model we should preserve this principle, and the most natural way is to con-
sider the secret choices, at every stage of the computation,as external. Their probability
distributions, which is now in general a conditional probability distribution (depending
on the history of secrets and observables) should be considered as part of the external
knowledge, and should not be counted as leakage. This is an important point in our
framework, and we wish to draw the attention of the reader on it:

Principle 3. The probability distributions on the secret choices is partof the external
knowledge and it is not considered leakage.

In Section 9 we will discuss the case in which we remove this assumption, i.e. if we
consider leakage also the probabilistic knowledge inducedby the distributions on the
secret choices.

In summary, the main changes implied by the addition of memory and feedback are:

1. interactive systems are captured by the new model, as wellas non-interactive ones
as a particular case;

2. in contrast with the usual single use (or independent uses) in the classical approach,
the systems behavior is now represented by repeated and dependent uses of the
channel;

3. there is a causal relation not only from input to output (via the channel), but also
from output to input (via feedback).

Item 3 has a rather strong consequence: In non-interactive systems, only inputs have
a causal influence on outputs and mutual information is a goodmeasure of the infor-
mation flow from secrets to observables. However, in the presence of feedback, outputs
also have a causal influence on inputs and although this flow does not correspond to any
leakage of secret information (according to Principle 3), it increases mutual informa-
tion. By definition, indeed, mutual information does not represent causality, but, rather,
correlation. In this richer model, mutual information is not a good measure of informa-
tion leakage anymore. We will come back on this point in Section 4.2, and we will show
how to generalize the concept of leakage.

4 Discrete channels with memory and feedback

We adopt the model proposed in [20] for discrete channels with memory and feedback.
Such model, represented in Figure 2, can be decomposed in sequential components
as follows. At timet the internal channel’s behavior is represented by the conditional
probabilitiesp(βt|α

t, βt−1). The internal channel takes the inputαt and, according to
the history of inputs and outputs up to the time stept, produces an output symbolβt.
The output is then fed back to the encoder with delay one. On the other side, at time
t the encoder takes the message and the past output symbolsβt−1, and produces a



channel input symbolαt. At final timeT the decoder takes all the channel outputsβT

and produces the decoded messageŴ . The order is the following:

MessageW, α1, β1, α2, β2, . . . , αT , βT , Decoded MessagêW (4)

W //

Code-
Functions

ϕT

ϕt
//

Encoder
{αt = ϕt(β

t−1)}Tt=1

αt
//

Channel
{p(βt|α

t, βt−1)}Tt=1

βt
//

oo

Decoder

Ŵ = γ(βT )
//Ŵ

Time 0 Delay
βt−1

OO

Time T + 1
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Fig. 2. Model for discrete channel with memory and feedback

Let us describe such channel in more detail. LetA andB be two finite sets. Let
{At}Tt=1 (channel’s input) and{Bt}Tt=1 (channel’s output) be families of random vari-
ables inA andB respectively. Moreover, letAT andBT represent theirT -fold product
spaces. Achannelis a family of stochastic kernels{p(βt|α

t, βt−1)}Tt=1.
LetFt be the set of all measurable mapsϕt : B

t−1 → A endowed with a probability
distribution, and letFt be the corresponding random variable. LetFT , FT denote the
Cartesian product on the domain and the random variable, respectively. Achannel code
functionis an elementϕT = (ϕ1, . . . , ϕT ) ∈ FT .

Note that, by probability laws,p(ϕT ) =
∏T

t=1 p(ϕt|ϕ
t−1). Hence the distribution

onFT is uniquely determined by a sequence{p(ϕt|ϕ
t−1)}Tt=1. We will use the notation

ϕt(βt−1) to represent theA-valuedt-tuple(ϕ1, ϕ2(β
1), . . . , ϕt(β

t−1)).
In Information Theory this kind of channels are used to encode and transmit mes-

sages. IfW is a message set of cardinalityM with typical elementw, endowed with
a probability distribution, achannel codeis a set ofM channel code functionsϕT [w],
interpreted as follows: for messagew, if at time t the channel feedback isβt−1, then
the channel encoder outputsϕt[w](β

t−1). A channel decoderis a map fromBT to W
which attempts to reconstruct the input message after observing all the output history
βT from the channel.

4.1 The power of memory and feedback

The original purpose ofcommunication channelsmodels is to represent data transmis-
sion from a source to a receiver. Shannon’s famous result states that the maximum
information transmission rate with an arbitrarily small probability of error corresponds
exactly to the channel capacity. If the number of times the channel is used is large
enough, there is an encoding that achieves the optimal transmission rate, i.e the channel
capacity. However, Shannon did not explain how to determinesuch an encoding and,



as a matter of fact, a general way to generate an optimal encoding scheme has not been
found yet. But the use of feedback can make the encoding easier, as we shall see now.

0 1

0 0.8 0.2
1 0.2 0.8

Table 3.Channel ma-
trix for binary chan-
nel without feedback

Consider a discrete memoryless binary channel{A,B, p(.|.)}
with A = {0, 1} andB{0, 1} and the channel matrix of Ta-
ble 3. This channel is used to transmit the bits0 and1, where
the probability of error (i.e transmitting a1 when the desired bit
is0 or vice-versa) is0.2. Shannon’s theorem guarantees that the
maximum information transmission rate in this channel is (2 to
the power of) the channel capacity, i.e0.8 bits per use of the
channel.

The encoding that achieves the capacity can be obtained
easily if we add feedback to the channel. Imagine that every bit received on the right
hand end of the channel, is feedback noiselessly to the source with delay1. Define the
encoding as follows: for each bit transmitted, the encoder checks via feedback if the
received bit was the correct one. If not, the encoder retransmits the bit again and restart
the process. If yes, the transmission is considered complete 2.

It is easy to see that with this encoding the transmission rate is 0.8 bit per usage
of the channel, since in80% the cases the bit is transmitted properly, and in20% a
retransmission is needed. Note that the capacity, in this example, was not increased by
the use of feedback (it is0.8 bits with or without feedback). It is a special case of the
well known result thatfeedback does not increase the capacity of discrete memoryless
channels[5].

An example of channel with memory and feedback.Let us go a bit further with the
binary channel example and show how memory and feedback can be used.

Again, the set of possible messages isW = {0, 1}. The messageW to be trans-
mitted is going to be encoded via code functions into a suitable representation to the
stochastic kernel within the channel. The input alphabet isA = {0, 1, X} and the out-
put alphabet isB = {0, 1, X}, whereX is a special symbol used to mark the end of a
successful transmission. We assume that at mostT uses of the channel are allowed. We
uset, with 1 ≤ t ≤ T , to represent the t-th time step.

We assume a simple form of memory, in the form of a dependency of the stochastic
kernel on some sort of noise that can vary with time,µ(t). For the symbolX the trans-
mission is noiseless. More precisely, we assume a stochastic kernel defined as follows:

p(βt = 0|αt = αt−10, βt−1) = 0.8− µ(t) (5)

p(βt = 1|αt = αt−10, βt−1) = 0.2 + µ(t) (6)

p(βt = 0|αt = αt−11, βt−1) = 0.2 + µ(t) (7)

p(βt = 1|αt = αt−11, βt−1) = 0.8− µ(t) (8)

p(βt = X |αt = αt−1X, βt−1) = 1 (9)

2 If we are interested in transmitting a sequence of bits, the real encoding is a bit more compli-
cated, because we may need to introduce some sort of stop symbol to indicate that the source
considers a bit transmitted successfully and it is then proceeding to the transmission of the
next bit.



Correspondingly, the channel matrix is:

0 1 X

αt = 0, βt−1 0.8 + µ(t) 0.2− µ(t) 0

αt = 1, βt−1 0.2− µ(t) 0.8 + µ(t) 0

αt = X, βt−1 0 0 1

Now let us consider how to create the code-functions, havingin mind that the code-
functions depend on the message to be transmited. In timet = 0, the code functions
are chosen based on the message being transmited. Let us suppose that the message is
W = 0, the case whereW = 1 being analougous.

For t = 1 corresponds, the channel is used for its first time and the feedback history
so far is emptyβ0 = ∅. In that case the encoder selects the input symbolα0 = 0 by
assigning:

ϕ0[W = 0](β0 = ∅) = 0

For t = 2, there are two possibilities: the feedback history consists of only one bit,
and it is eitherβ1 = 0 or β1 = 1. In the first case, a succesfull transmition occurred,
and the encoder can select the end of transmition symbolα1 = X . On the other hand,
if β1 = 1, some noise occurred during the transmition, and the encoder will try to
retransmit the bit. We can write it formally as:

ϕ2[W = 0](β1 = 0) = X

ϕ2[W = 0](β1 = 1) = 0

In the next round,t = 3, the possible feedback histories areβ2 ∈ {0X, 10, 11}.
In the first case,β2 = 0X , the presence of the success symbolX indicates that the
transmition has already been completed in a correct way, so the encoder just selectsX
again. Ifβ2 = 0X , the transmition had failled in the first try, but has just succeded, so
again the encoder just selectsX as the new input symbol. In the last case,β2 = 11,
the transmition has not succeeded yet, so the encoder tries sending the right bit0 again.
Formally:

ϕ3[W = 0](β2 = 0X) = X

ϕ3[W = 0](β2 = 10) = X

ϕ3[W = 0](β2 = 11) = 0

We can generalize the above construction as follows: whenever a bit1 is fedback, a
retransmition of0 is needed. In the other cases, a succesfull transmition occurred and
the encoder considers the transmition completed and selects theX again. Guarding the
simetry when the message isW = 1, we can write formally, for every1 ≤ t ≤ T :



W = 0 W = 1

ϕt[W = 0](βt−1 = 1t−1) = 0 ϕt[W = 1](βt−1 = 0t−1) = 1

ϕt[W = 0](βt−1 6= 1t−1) = X ϕt[W = 1](βt−1 6= 1t−1) = X

Once all time steps0, 1, . . . , T have occurred, the decoder has the whole output
historyβT available to try to infer which was the original messageW . Our decoder will
proceed as follows. By the construction of the encoding scheme, if the received output
βT contains anX , it means that the bit was transmitted correctely, and it is exactly the
bit that just preceeds the first occurrence of a symbolX . Otherwise the encoder does
not decide whether the intended message was0 or 1, so it will always assign0 as the
decoded message. Formally:

Ŵ = γ(β1, . . . , 0, X, . . . , βT ) = 0 (10)

Ŵ = γ(β1, . . . , 1, X, . . . , βT ) = 1 (11)

Ŵ = γ(βT ) = 0 in any other case (12)

Table 4 shows a concrete example for the binnary channel withmemory and feed-
back in a scenario where the channel can be usedT = 3 times and the message being
transmitted isW = 0.

Time Code functions Feedback Encoder Channel Decoder
history

t = 0 Code functions forW = 0 ———- ———- ———- ———-
are selected.

t = 1 ϕ0[W = 0](β0 = ∅) = 0 ∅ α1 = ϕt(∅) = 0 According top(β1|0, ∅) ———-
producesβ1 = 1

t = 2 ϕ0[W = 0](β1 = 0) = X 1 α1 = ϕt(1) = 0 According top(β1|00, 1) ———-
ϕ0[W = 0](β1 6= 0) = 0 producesβ1 = 0

t = 3 ϕ0[W = 0](β2 = 11) = 0 10 α2 = ϕt(10) = X According top(β1|00X, 10) ———-
ϕ0[W = 0](β2 6= 11) = X producesβ1 = X

t = 4 ———- ———- ———- ———- Decoded message
Ŵ = γ(β3 = 10X) = 0

Table 4.Evolution of the binary channel with time, forT = 3 andW = 0

4.2 Directed information and capacity of channels with feedback

In classical Information Theory, the channel capacity, which is related to the channel’s
transmission rate by Shannon’s fundamental result, can be obtained as the supremum of
the mutual information over all possible input’s distributions. In presence of feedback,



however, this correspondence does not hold anymore. More specifically, mutual infor-
mation does not represent any longer the information flow fromAT to BT . Intuitively,
this is due to the fact that mutual information expresses correlation, and therefore it
is increased by feedback. But the feedback, i.e the way the output influences the next
input, is part of the information to be transmitted. If we want to maintain the corre-
spondence between the transmission rate and capacity, we need to replace the mutual
information withdirected information[12].

Definition 1. In a channel with feedback, the directed information from input AT to
outputBT is defined asI(AT → BT ) =

∑T
t=1 I(A

t;Bt|Bt−1). In the other di-
rection, the directed information fromBT to AT is defined as:I(BT → AT ) =
∑T

t=1 I(At;B
t−1|At−1).

In Section 6 we shall discuss relation between directed information and mutual
information, as well as the correspondence with information leakage. For the moment,
we only present the extension of the concept of capacity.

Let DT = {{p(αt|α
t−1, βt−1)}Tt=1} be the set of all input distributions. For finite

T , the capacity of a channel with memory and feedback{p(βt|α
t, βt−1)}Tt=1 is:

CT = sup
DT

1

T
I(AT → BT ) (13)

5 Interactive systems as channels with memory and feedback

Interactive Information Hiding Systems (IIHS) [1], are a variant of probabilistic au-
tomata in which we separate actions in secret and observable; “interactive” means that
secret and observable actions can interleave and influence each other.

Definition 2. A generalIIHS is a quadrupleI = (M,A,B,Lτ ), whereM is a prob-
abilistic automaton(S,L, ŝ, ϑ), L = A ∪ B ∪ Lτ whereA, B, and Lτ are pair-
wise disjoint sets of secret, observable, and internal actions respectively, andϑ(s) ⊆
D(B ∪ Lτ × S) implies |ϑ(s)| ≤ 1, for all s. The condition onϑ ensures that all
observable transitions are fully probabilistic.

Assumption In this paper we assume that general IIHSs arenormalized, i.e. once un-
folded, all the transitions between two consecutive levelshave either secret labels only,
or observable labels only. Moreover, the occurrences of secret and observable labels
alternate between levels. We will callsecret statesthe states from which only secrets-
labeled transitions are possible, andobservable statesthe others. Given a general IIHS,
it is always possible to find an equivalent one that satisfies this assumptions. The inter-
ested reader can find in the appendix the formal definition of the transformation.

Finally, we assume that every state is reachable from the initial state, and that for ev-
erys andℓ there exists a uniquer such thats

ℓ
→ r. Under this assumption we have that

the traces of a computation determine the final state, as expressed by the next proposi-
tion. In the followingtraceA andtraceB indicate the projection of the traces on secret
and observable actions, respectively.



Proposition 1. Let I = (M,A,B,Lτ ) be a generalIIHS. Consider two pathsσ and
σ′. Then,traceA(σ) = traceA(σ

′) andtraceB(σ) = traceB(σ
′) impliesσ = σ′.

Proof. The proof follows easily by induction under the stated assumptions that every
state is reachable from the initial state, and that for everystates and labelℓ, there exists
a unique stater such thats

ℓ
→ r.

The initial state of the automaton is uniquely determined bythe empty (input and
output) traces, because every state is reachable. Assume now we are in a states uniquely
determined by input and output tracesα andβ , respectively. Ifs makes an input tran-
sition s

a
→ s′, then there is only one states′ reachable froms via ana-transition, and

therefores′ is uniquely determined by the input traceα′ = αa and the output traceβ .
Similarly, if s makes an output transitions

b
→ s′, the states′ is uniquely determined by

the input traceα and the output traceβ ′ = βb.

In the following, we will consider two particular cases: thefully probabilisticIIHSs,
where there is no nondeterminism, and thesecret -nondeterministicIIHSs, where each
secret choice is fully nondeterministic. The latter will becalled simply IIHSs.

Definition 3. Let I = ((S,L, ŝ, ϑ),A,B,Lτ ) be a generalIIHS. ThenI is:

– fully probabilistic ifϑ(s) ⊆ D(A× S) implies|ϑ(s)| ≤ 1 for eachs ∈ S.
– secret-nondeterministic ifϑ(s) ⊆ D(A×S) implies that for eachs ∈ S there exist
si’ such thatϑ(s) = {δ(ai, si)}ni=1.

We show now how to construct a channel with memory and feedback from IIHSs.
We will see that an IIHS determines a channel as specified by its stochastic kernel,
while a fully probabilistic IIHS determines, additionally, also the input distribution.
In Section 7 we will give an extensive and detailed example ofhow to make such a
construction for a real security protocol.

Given a pathσ of length2t− 1, we will denotetraceA(σ) byαt, andtraceB(σ) by
βt−1.

Definition 4. For eacht, the channel’s stochastic kernel corresponding toI is defined
asp(βt|α

t, βt−1) = ϑ(q)(βt, q
′), whereq is the state reached from the root via the path

σ whose input-trace isαt and output traceβt−1.

Note thatq andq′ in previous definitions are well defined: by Proposition 1,q is
unique, and since the choice ofβt is fully probabilistic,q′ is also unique.

The following example shows how to apply Definition 4, with the help of Proposi-
tion 1 to build the channel matrix of a simple example.

Example 2.Let us consider an extended version of the website interactive system of
Figure 1. We maintain the general definition of the system, i.e, there are two possi-
ble buyers (rich andpoor represented byrc. andpr., respectively) and two possible
products (cheap andexpensive, represented bychp. andexp., respectively). We still
assume that offers are observables, since they are visible to everyone on the website, but
the identity of buyers should be kept secret. We consider twoconsecutive rounds of of-
fers and buys, which implies, after normalization,T = 3. Figure 3 shows an automaton
for this example in normalized form. Transitions with null probability are omitted.



To construct the channel matrix{p(βt|α
t, βt−1)}Tt=1, we need to determine the

conditional probability of an observable at timet given the history up to timet.
Let us take the caset = 2 and compute the conditional probability of observable

β2 = cheap given that the history of secrets until timet = 2 is α2 = a∗, poor and
the history of observables isβ1 = expensive. Applying Definition 4, we see that
p(β2 = cheap|α2 = a∗, poor, β

1 = expensive) = ϑ(q)(cheap, q′). By Proposition 1,
the tracesα2 = a∗, poor, β

1 = expensive determine a unique stateq in the automaton,
namely, the stateq = 5. Moreover, from the state5 a unique transition labelled with the
actioncheap is possible, leading to the stateq′ = 11. Therefore, we can conclude that
p(β2 = cheap|α2 = a∗, poor, β

1 = expensive) = ϑ(q = 5)(cheap, q′ = 11) = p23.
Simirlarly, with t = 1 and historyα1 = a∗, β

0 = ∅, the output symbolβ1 =
expensive can be observed with probabilityp(β1 = expensive|α1 = a∗, β

0 = ∅) =
ϑ(q = 0)(cheap, q′ = 2) = p1.

If I is fully probabilistic, then it determines also the input distribution and the de-
pendency ofαt uponβt−1 (feedback) andαt−1.

Definition 5. If I is fully probabilistic, the associated channel has a conditional input
distribution for eacht defined asp(αt|α

t−1, βt−1) = ϑ(q)(αt, q
′), whereq is the state

reached from the root via the pathσ whose input-trace isαt−1 and output trace isβt−1.

Example 3.Since the system of Example 2 is fully probabilistic, we can calculate the
values of the conditional probabilities{p(αt|α

t−1, βt−1)}Tt=1.
Let us take as an example the case wheret = 2 and compute the conditional proba-

bility of secretα2 = poor given that the history of secrets until timet = 2 is α1 = a∗
and the history of observables isβ1 = expensive. Applying Definition 4, we see that
p(α2 = poor|α1 = a∗, β

1 = expensive) = ϑ(q)(poor, q′). By Proposition 1, the
tracesα1 = a∗, β

1 = expensive determine a unique stateq in the automaton, namely,
the stateq = 2. Moreover, from the state2 a unique transition labelled with the ac-
tion poor is possible, leading to the stateq′ = 5. Therefore, we can conclude that
p(α2 = poor|α1 = a∗, β

1 = expensive) = ϑ(q = 2)(poor, q′ = 5) = q12.
Similarly, with t = 3 and historyα2 = a∗, rich, β

2 = cheap, expensive, the out-
put symbolα3 = rich can be observed with probabilityp(α3 = rich|α2 = α∗, rich, β

0 =
cheap, expensive) = ϑ(q = 10)(cheap, q′ = 21) = q24.

5.1 Lifting the channel inputs to reaction functions

Definitions 4 and 5 define the joint probabilitiesp(αt, βt) for a fully probabilistic IIHS.
We still need to show in what sense these define a information-theoretic channel.

The{p(βt|α
t, βt−1)}Tt=1 determined by the IIHS correspond to a channel’s stochas-

tic kernel. The problem resides in the conditional probability of {p(αt|α
t−1, βt−1)}Tt=1.

In an information-theoretic channel, the value ofαt is determined in the encoder by a
deterministic functionϕt(β

t−1). However, inside the encoder there is no possibility for
a probabilistic description ofαt. The solution is to externalize this probabilistic behav-
ior to the code functions.
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Fig. 3. A longer, normalized version of the interactive system of Figure 1

As showed in [20], the original channel with feedback from input symbolsAT

to output symbolsBT can be lifted to an equivalent channel without feedback from
code functionsFT to output symbolsBT . This transformation will also allows us to
calculate the channel capacity. Let{p(ϕt|ϕ

t−1)}Tt=1 be a sequence of code function
stochastic kernels and let{p(βt|α

t, βt−1)}Tt=1 be a channel with memory and feedback.
The channel fromFT to BT is constructed using a joint measureQ(ϕT , αT , βT ) that
respects the following constraints:

Definition 6. A measureQ(ϕT , αT , βT ) is said to beconsistentwith respect to the
code function stochastic kernels{p(ϕt|ϕ

t−1)}Tt=1 and the channel{p(βt|α
t, βt−1)}Tt=1

if, for eacht:

1. There is no feedback to the code functions:Q(ϕt|ϕ
t−1, αt−1, βt−1) = p(ϕt|ϕ

t−1).
2. The input is a function of the past outputs:Q(αt|ϕ

t, αt−1, βt−1) = δ{ϕt(β
t−1)}(αt)

whereδ is the Dirac measure.
3. The properties of the underlying channel are preserved:

Q(βt|F
t = ϕt, At = αt, Bt−1 = βt−1) = p(βt|α

t, βt−1)

The following result states that there is only one consistent measureQ(ϕT , αT , βT ):

Theorem 4 ([20]).Given{p(ϕt|ϕ
t−1)}Tt=1 and a channel{p(βt|α

t, βt−1)}Tt=1, there
exists only one consistent measureQ(ϕT , αT , βT ). Furthermore the channel fromFT

toBT is given by:
Q(βt|ϕ

t, βt−1) = p(βt|ϕ
t(βt−1), βt−1) (14)

Since in our setting the concept of encoder makes no sense as there is no information
to encode, we externalize the probabilistic behavior ofαt as follows. Code functions



become simplereaction functionsϕt that depend only onβt−1 (the messagew does
not play a role any more). Reaction functions can be seen as a model of how the envi-
ronment reacts to given system outputs, producing new system inputs (they do not play
a role of encoding a message). These reaction functions are endowed with a probability
distribution that generates the probabilistic behavior ofthe values ofαt.

Definition 7. A reactoris a distribution on reaction functions, i.e., a stochasticker-
nel {p(ϕt|ϕ

t−1)}Tt=1. A reactorR is consistent with a fully probabilistic IIHSI if it
induces the compatible distributionQ(ϕT , αT , βT ) such that, for every1 ≤ t ≤ T ,
Q(αt|α

t−1, βt−1) = p(αt|α
t−1, βt−1), where the latter is the probability distribution

induced byI.

The main result of this section states that for any fully probabilistic IIHS there is a
reactor that generates the probabilistic behavior of the IIHS.

Lemma 1. LetX ,Y be finite sets, and let̃x ∈ X , ỹ ∈ Y. Letp : X × Y → [0, 1] be a
function such that, for everyx ∈ X , we have:

∑

y∈Y p(x, y) = 1. Then:

∑

f∈X→Y

f(x̃)=ỹ

∏

x∈X

p(x, f(x)) = p(x̃, ỹ)

Proof. By induction on the number of elements ofX .

Base case:X = {x̃}. In this case:

∑

f∈X→Y

f(x̃)=ỹ

∏

x∈X

p(x, f(x)) = p(x̃, f(x̃)) = p(x̃, ỹ)

Inductive case: LetX = X ′ ∪ {x̊}, with x̊ 6= x̃, andx̃ ∈ X . Then:

∑

f∈X ′∪{x̊}→Y

f(x̃)=ỹ

∏

x∈X ′∪{x̊}

p(x, f(x))

= (by distributivity)















∑

f∈X ′→Y

f(x̃)=ỹ

∏

x∈X ′

p(x, f(x))













·
∑

g∈{x̊}→Y

p(̊x, g(̊x))

= (by the assumption)
∑

f∈X ′→Y

f(x̃)=ỹ

∏

x∈X ′

p(x, f(x))

= (by the induction hypothesis)

p(x̃, ỹ)

Theorem 5. Given a fully probabilisticIIHS I , we can construct a channel with mem-
ory and feedback, and probability distributionQ(ϕT , αT , βT ), which corresponds toI

in the sense that, for everyt,αt andβt, with1 ≤ t ≤ T ,Q(αt, βt)
def
=

∑

ϕT Q(ϕT , αt, βt) =

p(αt, βt) holds, wherep(αt, βt) is the joint probability of input and output traces in-
duced byI.

Proof. First of all we note that, by probability laws,Q(αt, βt) =
∑

ϕt Q(ϕt, αt, βt).
So we need to show that

∑

ϕt Q(ϕt, αt, βt) = p(αt, βt) by induction ont.

Base case:t = 1. Let us defineQ(ϕ1|ǫ) = p(ϕ1(ǫ)) andQ(β1|α
1, ǫ) = p(β1|α1).

Then:
∑

ϕ1

Q(ϕ1, α1, β1) =
∑

ϕ
1

Q(ϕ1, α1, β1)

=
∑

ϕ
1

Q(ϕ1|ǫ, ǫ, ǫ)Q(α1|ϕ1, ǫ, ǫ)Q(β1|ϕ1, α1, ǫ) (by the chain rule)

=
∑

ϕ
1

Q(ϕ1|ǫ)δ{ϕ1
(ǫ)}(α1)Q(β1|α

1, ǫ) (by Definition 6)

=
∑

ϕ
1

p(ϕ1(ǫ))δ{ϕ1
(ǫ)}(α1)p(β1|α1)

= p(α1)p(β1|α1) (by definition ofδ)

= p(α1, β1)

= p(α1, β1)

Inductive case: Let us defineQ(βt|α
t, βt−1) = p(βt|α

t, βt−1), and

Q(ϕt|ϕ
t−1) =

∏

βt−1

p(ϕt(β
t−1)|ϕt−1(βt−2), βt−1)



Note that, if we considerX = {βt−1 | βi ∈ B, 1 ≤ i ≤ t − 1}, Y = A, and
p(βt−1, αt) = p(αt|ϕ

t−1(βt−2), βt−1), thenX , Y andp satisfy the hypothesis of
Lemma 1.
Then:
∑

ϕt

Q(ϕt, αt, βt)

= (by the chain Rule)
∑

ϕt

Q(ϕt−1, αt−1, βt−1)Q(ϕt|ϕ
t−1, αt−1, βt−1)Q(αt|ϕ

t, αt−1, βt−1)Q(βt|ϕ
t, αt, βt−1)

= (by Definition 6)
∑

ϕt

Q(ϕt−1, αt−1, βt−1)Q(ϕt|ϕ
t−1), δ{ϕt(β

t−1)}(αt)Q(βt|α
t, βt−1)

= (by construction ofQ)

∑

ϕt

Q(ϕt−1, αt−1, βt−1)





∏

β
′t−1

p(ϕt(β
′t−1)|ϕt−1(β

′t−2), β
′t−1)



 δ{ϕt(β
t−1)}(αt)p(βt|α

t, βt−1)

= (by definition ofδ)

∑

ϕt

ϕt(β
t−1)=αt

Q(ϕt−1, αt−1, βt−1)





∏

β
′t−1

p(ϕt(β
′t−1)|ϕt−1(β

′t−2), β
′t−1)



 p(βt|α
t, βt−1)

=

∑

ϕt−1

Q(ϕt−1, αt−1, βt−1)p(βt|α
t, βt−1)

∑

ϕt

ϕt(β
t−1)=αt

∏

β
′t−1

p(ϕt(β
′t−1)|ϕt−1(β

′t−2), β
′t−1)

= (by Lemma 1)
∑

ϕt−1

Q(ϕt−1, αt−1, βt−1) · p(βt|α
t, βt−1) · p(αt|α

t−1, βt−1)

=

p(βt|α
t, βt−1) · p(αt|α

t−1, βt−1) ·
∑

ϕt−1

Q(ϕt−1, αt−1, βt−1)

= (by induction hypothesis)

p(βt|α
t, βt−1) · p(αt|α

t−1, βt−1) · p(αt−1, βt−1)

= (by the chain rule)

p(αt, βt)



Corollary 1. Let a I be a fully probabilisticIIHS. Let {p(βt|α
t, βt−1)}Tt=1 be a se-

quence of stochastic kernels and{p(αt|α
t−1, βt−1)}Tt=1 a sequence of input distribu-

tions defined byI according to Definitions 4 and 5. Then the reactorR = {p(ϕt|ϕ
t−1)}Tt=1

compatible with respect to theI is given by:

p(ϕ1) = p(α1|α
0, β0) = p(α1) (15)

p(ϕt|ϕ
t−1) =

∏

βt−1

p(ϕt(β
t−1)|ϕt−1(βt−2), βt−1), 2 ≤ t ≤ T (16)

Figure 4 depicts the model for IIHS. Note that, in relation toFigure 2, there are
some simplifications: (1) no messagew is needed; (2) the decoder is not used. At the
beginning, a reaction function sequenceϕT is chosen and then the channel is used
T times. At each usaget, the encoder decides the next input symbolαt based on the
reaction functionϕt and the output fed backβt−1. Then the channel produces an output
βt based on the stochastic kernelp(βt|α

t, βt−1). The output is then fed back to the
encoder with a delay one.

Reaction-
Functions

ϕT

ϕt
//

“Interactor”
{αt = ϕt(β

t−1)}Tt=1

αt
//

Channel
{p(βt|α

t, βt−1)}Tt=1

βt
//

ooDelay
βt−1

OO
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Fig. 4. Channel with memory and feedback model for IIHS

We conclude this section by remarking an intriguing coincidence: The notion of
reaction function sequenceϕT , on the IIHSs, corresponds to the notion of deterministic
scheduler. In fact, each reaction functionϕt selects the next step,αt, on the basis of the
βt−1 andαt−1 (generated byϕt−1), andβt−1, αt−1 represent the path until that state.

6 Leakage in Interactive Systems

Mutual information expressescorrelation between two random variables. In fact, the
symmetry of mutual information,I(AT ;BT ) = I(BT ;AT ), reflects the fact that the
amount of information we can get fromBT by observingAT is the same amount of
information that we get fromAT by observingBT . There is no concept ofcausality, in
the sense that neitherAT is seen as causingBT , nor the inverse.

Mathematically, forT usages of the channel, the mutual informationI(AT ;BT )
can be calculated with the help of the chain law of Equation 2:

I(AT ;BT ) =

T
∑

t=1

I(AT ;Bt|B
t−1) (17)



Note that in the equation above, each term of the sum is the mutual information
between the random variableBt and the whole sequence of random variablesAT =
A1, . . . , AT , given the history onBt−1. The equation shows that at time1 ≤ t ≤ T ,
even though only the inputsαt = α1, α2, . . . , αt have been fed to the channel, the
whole sequenceαT , includingαt+1, αt+2, . . . , αT , has a statistical correlation with the
outputβt. Although it can sound surprising at first, we need to remember that in princi-
ple the channel can be used with some sort of feedback, and since mutual information
is symmetric, it is indeedβt that has an influence onαt+1, αt+2, . . . , αT .

Directed information, presented in Definition 1, captures the concept ofcausality,
to which the definition of mutual information is indifferent. It splits the correlation
between inputs and outputsI(AT ;BT ) into the information that flows from input to
output through the channelI(AT → BT ) and the information that flows from output
to the input via feedbackI(BT → AT ). Note that the directed information is not
symmetric: the flow fromAT to BT takes into account the correlation betweenαt and
βt, while the flow fromBT to AT is based on the correlation betweenβt−1 andαt .
Intuitively, this is becauseαt influencesβt, but, in the other direction, it isβt−1 that
influencesαt.

It can be proved [20] that

I(AT ;BT ) = I(AT → BT ) + I(BT → AT )

i.e, the mutual information is the sum of the directed information flow in both senses.
That is the reason why it is symmetric.

Once we can split mutual information into directed information in two different di-
rections, it is important to understand the different role that the information flow in each
direction plays. The directed information from inputs to outputsI(AT → BT ) repre-
sents the system behavior: via the channel the information flows from inputs to outputs
according to the system specification, modeled by the channel stochastic kernels. This
flow represents the amount of information an attacker can gain from the inputs by ob-
serving the outputs and we argue that this is the real information leakage.

On the other hand, the directed information from outputs to inputsI(AT → BT )
represents how the environment reacts to the protocol: given the system outputs, the
environment reacts producing new inputs. We argue that the information flow from out-
puts to inputs induced by this dependence is independent of any particular system, it is
a characteristic of the environment itself. Hence, if an attacker knows how the environ-
ment reacts to outputs, i.e the probabilistic behavior of the environment reactions given
the system outputs, this knowledge is part of thea priori knowledge, and should not be
counted as leakage.

If a channel does not have feedback, thenI(BT → AT ) = 0 and it follows that
I(AT ;BT ) = I(AT → BT ). In channels without feedback mutual information is a
good measure of information flow because it coincides with directed information from
input to output. This correspondence does not hold anymore if the channel is used
with feedback and, therefore, we should consider the directed information as the real
measure of information transmitted by the channel. The following example should help
understanding why.



Example 4.Consider the discrete memoryless channel with input alphabetA = {a1, a2}
and output alphabetB = {b1, b2} whose matrix is represented in Table 5.

b1 b2
a1 0.5 0.5
a2 0.5 0.5

Table 5.Channel ma-
trix for Example 4

Suppose that the channel is used with feedback, in such a
way that, for allt’s, αt+1 = a1 if βt = b1, andαt+1 = a2 if
βt = b2. It is easy to show that ift ≥ 2 thenI(At;Bt) 6= 0.
However, there is no leakage fromAt to Bt, since the rows of
the matrix are all equal. We have indeed thatI(At → Bt) = 0,
and the mutual informationI(At;Bt) is only due to the feed-
back information flowI(Bt → At).

Having in mind the above discussion, we now propose a notion of information flow
based on our model. We follow the idea of defining leakage and maximum leakage
using the concepts of mutual information and capacity (see for instance [3]), making
the necessary adaptations.

Since the directed informationI(AT → BT ) is a measure of how much information
flows from AT to BT in a channel with feedback (cfr. Section 4.2), it is natural to
consider it as a measure of leakage of information by the protocol.

Definition 8. The information leakage of anIIHS is defined as:I(AT → BT ) =
∑T

t=1 H(At|A
t−1, Bt−1)−H(AT |BT ).

Note that
∑T

t=1 H(At|At−1, Bt−1) can be seen as the entropyHR of reactorR.
Compare this definition with the classical Information-theoretic approach to infor-

mation leakage: when there is no feedback, the leakage is defined as:

I(AT ;BT ) = H(AT )−H(AT |BT ) (18)

The principle behind (18) is that the leakage is equal to the difference between
thea priori uncertaintyH(AT ) and thea posteriori uncertaintyH(AT |BT ) (gain in
knowledge about the secret by observing the output). Our definition maintains the same
principle, with the proviso that the a priori uncertainty isnow represented byHR. In
the Section 7 we give an extensive and detailed example of howto calculate the leakage
for a real security protocol.

6.1 Maximum leakage as capacity

In the case of secret-nondeterministic IIHS, we have a stochastic kernel but no distri-
bution on the code functions. In this case it seems natural toconsider the worst leakage
over all possible distributions on code functions. This is exactly the concept of capacity.

Definition 9. Themaximum leakageof an IIHS is defined as the capacityCT of the
associated channel with memory and feedback.



7 Modeling IIHSs as channels: An example

In this section we show the application of our approach to theCocaine Auction Proto-
col [18]. Let us imagine a situation where several mob individuals are gathered around
a table. An auction is about to be held in which one of them offers his next shipment
of cocaine to the highest bidder. The seller describes the merchandise and proposes a
starting price. The others then bid increasing amounts until there are no bids for 30
consecutive seconds. At that point the seller declares the auction closed and arranges a
secret appointment with the winner to deliver the goods.

The basic protocol is fairly simple and is organized as a succession of rounds of
bidding. Roundi starts with the seller announcing the bid pricebi for that round. Buyers
havet seconds to make an offer (i.e. to say yes, meaning “I’m willing to buy at the
current bid pricebi”). As soon as one buyer anonymously says yes, he becomes the
winnerwi of that round and a new round begins. If nobody says anything for t seconds,
round i is concluded by timeout and the auction is won by the winnerwi−1 of the
previous round, if one exists. If the timeout occurs during round0, this means that
nobody made any offers at the initial priceb0, so there is no sale.

Although our framework allows the formalization of this protocol for an arbitrary
number of bidders and bidding rounds, for illustration purposes, we will consider the
case of two bidders (CandlemakerandScarface) and two rounds of bids. Furthermore,
we assume that the initial bid is always1 dollar, so the first bid does not need to be
announced by the seller. In each turn the seller can choose how much he wants to
increase the actual bid. This is done by adding an increment to the last bid. There
are two options of increments, namelyinc1 (1 dollar) andinc2 (2 dollars). In that way,
bi+1 is eitherbi + inc1 or bi + inc2. We can describe this protocol as anormalized
IIHS I = (M,A,B,Lτ ), whereA = {Candlemaker,Scarface, a∗} is the set of secret
actions,B = {inc1, inc2, b∗} is the set of observable actions,Lτ = ∅ is the set of
hidden actions, and the probabilistic automatonM is represented in Figure 5. For clarity
reasons, we omit transitions with probability0 in the automaton. Note that the special
secret actiona∗ represents the situation where neitherCandlemakernor Scarfacebid.
The special observable actionb∗ is only possible after no one has bidden, and signalizes
the end of the auction and, therefore, no bid is allowed anymore.
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Fig. 5. Cocaine Auction example



Table 6 shows all the stochastic kernels for this example. The formalization of this
protocol in terms of IIHSs using our framework makes it possible to prove the claim
in[18] suggesting that if the seller knows the identity of the bidders then the (strong)
anonymity guaranties are not provided anymore.

α1 → β1 inc1 inc2 b
∗

Candlemaker q4 q5 0
Scarface q6 q7 0
a∗ 0 0 1

(a) t=1, p(β1|α
1, β0)

α1, β1, α2 → β2 CheapExpensiveb
∗

Candlemaker,inc1 ,Candlemaker q22 q23 0
Candlemaker,inc1,Scarface q24 q25 0
Candlemaker,inc1,a

∗
0 0 1

Candlemaker,inc2,Candlemaker q27 q28 0
Candlemaker,inc2,Scarface q29 q30 0
Candlemaker,inc2,a

∗
0 0 1

Scarface,inc1,Candlemaker q32 q33 0
Scarface,inc1,Scarface q34 q35 0
Scarface,inc1,a

∗
0 0 1

Scarface,inc2,Candlemaker q37 q38 0
Scarface,inc2,Scarface q39 q40 0
Scarface,inc2,a

∗
0 0 1

a
∗
,b

∗
,a

∗
0 0 1

All other lines 0 0 1

(b) t = 2, p(β2|α
2, β1)

Table 6.Stochastic kernels for the Cocaine Auction example.

The next step is to construct all the possible reaction functions{ft(β
t−1)}Tt=1. As

seen in Section 5.1, the reaction functions are the correspondent to the encoder in the
channel. They take the feedback story and decide how the world is going to react to this
situation. For this example, Table 7 shows the reaction functions for each timet.

Now we need to define the reactor, i.e., the reaction functions stochastic kernel.
Corollary 1 shows that we can do so by using the following equations:

p(ϕ1) = p(α1|α
0, β0) = p(α1)

p(ϕt|ϕ
t−1) =

∏

βt−1

p(ϕt(β
t−1)|ϕt−1(βt−2), βt−1), 2 ≤ t ≤ T

For instance,p(f1(1)) = p(Candlemaker ) = p1. In the same way,p(f1(2)) =

p(Scarface) = p2 andp(f1(3)) = p(a∗) = p3.

Let us take as an example the calculation ofp(f2(6)|f1(3)):



β0 f1(1) f1(2) f1(3)

∅ CandlemakerScarface a
∗

(a) All 3 reaction functionsϕ1

β1 f2(1)(β
1) f2(2)(β

1) f2(3)(β
1) f2(4)(β

1) f2(5)(β
1) f2(6)(β

1) f2(7)(β
1)

inc1 CandlemakerCandlemakerCandlemakerCandlemakerCandlemakerCandlemakerCandlemaker

inc2 CandlemakerCandlemakerCandlemaker Scarface Scarface Scarface a
∗

b
∗

Candlemaker Scarface a
∗

Candlemaker Scarface a
∗

Candlemaker

β1 f2(8)(β
1) f2(9)(β

1) f2(10)(β
1) f2(11)(β

1) f2(12)(β
1) f2(13)(β

1) f2(14)(β
1)

inc1 CandlemakerCandlemaker Scarface Scarface Scarface Scarface Scarface

inc2 a
∗

a
∗

CandlemakerCandlemakerCandlemaker Scarface Scarface

b
∗

Scarface a
∗

Candlemaker Scarface a
∗

Candlemaker Scarface

β1 f2(15)(β
1) f2(16)(β

1) f2(17)(β
1) f2(18)(β

1) f2(19)(β
1) f2(20)(β

1) f2(21)(β
1)

inc1 Scarface Scarface Scarface Scarface a
∗

a
∗

a
∗

inc2 Scarface a
∗

a
∗

a
∗

CandlemakerCandlemakerCandlemaker

b
∗

a
∗

Candlemaker Scarface a
∗

Candlemaker Scarface a
∗

β1 f2(22)(β
1) f2(23)(β

1) f2(24)(β
1) f2(25)(β

1) f2(26)(β
1) f2(27)(β

1) -

inc1 a
∗

a
∗

a
∗

a
∗

a
∗

a
∗

-

inc2 Scarface Scarface Scarface a
∗

a
∗

a
∗

-

b
∗

Candlemaker Scarface a
∗

Candlemaker Scarface a
∗

-

(b) All 27 reaction functionsϕ2(β
1)

Table 7.Reaction functions for the cocaine auction example.

p(f2(6)|f1(1)) =
∏

β1

p(f2(6)(β
1)|ϕ1(1), β

1)

= p(f2(6)(inc1)|Candlemaker, inc1) · p(f2(6)(inc2)|Candlemaker, inc2)

p(f2(6)(b∗)|Candlemaker, b∗)

= p(Candlemaker|Candlemaker, inc1) · p(Scarface|Candlemaker, inc2)

p(a∗|Candlemaker, b∗)

= p9 · p13 · 1

= p9p13 (19)



Note that some reaction functions can have probability0, which is consistent with
probabilistic automaton. For instance:

p(f2(25)|f1(3)) =
∏

β1

p(f2(4)(β
1)|ϕ1(3), β

1)

= p(f2(4)(inc1)|a∗, inc1) · p(f2(4)(inc2)|a∗, inc2) · p(f2(4)(b∗)|a∗, b∗)

= p(b∗|a∗, inc1) · p(b∗|a∗, inc2) · p(Candlemaker|a∗, b∗)

= 1 · 1 · 0

= 0 (20)

7.1 Calculating the information leakage

Let us now calculate the information leakage for this cocaine auction example using the
concepts from Section 6. We are going to analyze three different scenarios:

Examplea: There is feedback, but the probability of an observable doesnot depend on
the history of secrets. In the auction protocol, this corresponds to a scenario where
the probability of one of the mob members to bid can depend on the increment
imposed by the seller, but the history of who has previously bid in the past has
no influence on the choice of increments by the seller during the coming turns.
In other words, the seller cannot use the information of who has been bidding to
change his strategy of defining the new increments. This situation corresponds to
the original description of the protocol in [18], where the seller does not have access
to the identity of the bidder, for the sake of anonymity preservation. In general, we
have thatp(βt|α

t, βt−1) = p(βt|β
t−1) for every1 ≤ t ≤ T . However, there is

an exception: if there is no bidder, case modeled by the secret beinga∗, then the
auction terminates, which is signaled by the observableb∗.

Exampleb: This is most general case: no restrictions. The presence of feedback allows
the probability of the bidder to depend on the increment on the price. For instance,
if Candlemakeris richer thanScarface, it is more likely that the latter bids if the
increment in the price isinc2 instead ofinc1. Also, the probability of an observable
can depend on the history of secrets, i.e., in generalp(βt|α

t, βt−1) 6= p(βt|β
t−1)

for 1 ≤ t ≤ T . This scenario can represent a situation where the seller iscorrupted
and can use his information to affect the outcome of the auction. As an example,
suppose that the seller is a friend ofScarfaceand he wants to help him in the
auction. One way of doing so is to check who was the winner of the last bidding
round. Whenever the winner isCandlemaker, the seller chooses for increment the
small valueinc1, hoping that it will giveScarfacea good chance to bid in the next
round. On the other hand, whenever the seller detects that the winner isScarface, he
chooses for the next increment the greater valueinc2, hoping that it will minimize
the chances ofCandlemakerto bid in the next round (and therefore maximizing the
chances of the auction to end havingScarfaceas the final winner).

Examplec: There is no feedback. In the cocaine auction, we can have the (maybe
unrealistic) situation in which the increment added to the bid has no influence on



the probability ofCandlemakeror Scarfacebeing the bidder. Mathematically, we
have thatp(αt|α

t−1, βt−1) = p(αt|α
t−1) for every1 ≤ t ≤ T . However, like in

Exampleb, we do not impose any restriction top(βt|α
t, βt−1).

For each scenario we need to attribute values to the probabilities in the protocol tree
in Figure 5. The probabilities for each example are listed inTable 8.

Probability Examplea Exampleb Examplec
variable value value value

p1 0.7 0.7 0.7
p2 0.2 0.2 0.2
p3 0.1 0.1 0.1
q4 0.9 0.1 0.1
q5 0.1 0.9 0.9
q6 0.9 0.9 0.9
q7 0.1 0.1 0.1
p9 0.6 0.6 0.6
p10 0.3 0.3 0.3
p11 0.1 0.1 0.1
p12 0.5 0.5 0.6
p13 0.3 0.3 0.3
p14 0.2 0.2 0.1
p15 0.4 0.4 0.5
p16 0.4 0.4 0.2
p17 0.2 0.2 0.3
p18 0.6 0.6 0.5
p19 0.3 0.3 0.2
p20 0.1 0.1 0.3
q22 0.4 0.1 0.1
q23 0.6 0.9 0.9
q24 0.7 0.9 0.9
q25 0.3 0.1 0.1
q27 0.2 0.1 0.1
q28 0.8 0.9 0.9
q29 0.1 0.9 0.9
q30 0.9 0.1 0.1
q32 0.4 0.1 0.1
q33 0.6 0.9 0.9
q34 0.7 0.9 0.9
q35 0.3 0.1 0.1
q37 0.2 0.1 0.1
q38 0.8 0.9 0.9
q39 0.1 0.9 0.9
q40 0.9 0.1 0.1

Table 8.Values of the probabilities in Figure 5 in 3 different examples.



Table 9 shows a comparison between some relevant values on the three cases.

Interpretation Symbol Example aExample bExample c

Input uncertainty H(AT ) 2.3833 2.4891 2.3607

Reactor uncertainty HR 2.3768 2.4832 2.3607

A posteriori uncertaintyH(AT |BT ) 1.3683 0.0677 0.6646

Mutual information I(AT ;BT ) = H(AT )−H(AT |BT ) 1.0150 1.8214 1.6961

Leakage I(AT → BT ) = HR −H(AT |BT ) 1.0085 1.8155 1.6961

Feedback information I(BT → AT ) 0.185955 0.0060 0.0000
Table 9.Values for the examples.

In Examplea, since the probability of observables does not depend on thehistory
of secrets, there is (almost) no information flowing from theinput to the output, and
the directed informationI(AT → BT ) is close to zero, i.e., there leakage is low. The
only reason why the leakage is not zero is because the end of anauction needs to be
signaled. However, due to presence of feedback, the directed information in the other
senseI(BT → AT ) is non-zero, and so is the mutual informationI(AT ;BT ). This is
an example where the mutual information does not correspondto the real information
leakage, since some (in this case, most) of the correlation between input and output can
be attributed to the feedback.

In Exampleb the information flow from input to outputI(AT → BT ) is signifi-
cantly higher than zero, but still, due to feedback, the information flow from outputs to
inputsI(BT → AT ) is not zero and the mutual informationI(AT ;BT ) is higher than
the directed informationI(AT → BT ) which gives the actual leakage.

In Examplec , the absence of feedback implies thatI(BT → AT ) is zero. In that
case the values ofI(AT ;BT ) andI(AT → BT ) coincide, and correspond to leakage.

8 Topological properties ofIIHSs and their Capacity

In this section we show how to extend to IIHSs the notion of pseudometric defined
in [7] for Concurrent Labelled Markov Chains, and we prove that the capacity of the
corresponding channels is a continuous function on this pseudometric. The metric con-
struction is sound for general IIHSs, but the result on capacity is only valid for secret-
nondeterministic IIHSs.

Given a set of statesS, a pseudometric (or distance) is a functiond that yields a
non-negative real number for each pair of states and satisfies the following:d(s, s) = 0;
d(s, t) = d(t, s), andd(s, t) ≤ d(s, u) + d(u, t). We say that a pseudometricd is c-
bounded if∀s, t : d(s, t) ≤ c, wherec is a positive real number.

Note that, in contrast to metrics, in pseudometrics two elements can have distance0
without being identical. The reason for considering pseudometrics instead than metrics
is because the purpose is to extend the notion of (probabilistic) bisimulation: having
distance0 will correspond to being bisimilar.



We now define a complete lattice on pseudometrics, in order todefine the distance
between IIHSs as the greatest fixpoint of a particular transformation, in line with the
coinductive theory of bisimilarity. Since larger bisimulations identify more, the natural
extension of the ordering to metrics must shorten the distances as we go up in the lattice:

Definition 10. M is the class of1-bounded pseudometrics on states with the ordering

d � d′ if ∀s, s′ ∈ S : d(s, s′) ≥ d′(s, s′).

It is easy to see that(M,�) is a complete lattice. In order to define pseudometrics
on IIHSs, we now need to lift the pseudometrics on states to pseudometrics on distribu-
tions inD(L× S). Following standard lines [21, 7, 6], we apply the construction based
on the Kantorovich metric [10].

Definition 11. For d ∈ M, andµ, µ′ ∈ D(L × S), we defined(µ, µ′) (overloading
the notationd) asd(µ, µ′) = max

∑

(ℓi,si)∈L×S(µ(ℓi, si) − µ′(ℓi, si))xi where the
maximization is on all possible values of thexi’s, subject to the constraints0 ≤ xi ≤ 1
andxi − xj ≤ d̂((ℓi, si), (ℓj , sj)), where

d̂((ℓi, si), (ℓj , sj)) =

{

1 if ℓi 6= ℓj
d(si, sj) otherwise

It can be shown that with this definitionm is a pseudometric onD(L × S).

Definition 12. d ∈ M is abisimulation metricif, for all ǫ ∈ [0, 1), d(s, s′) ≤ ǫ implies
that if s → µ, then there exists someµ′ such thats′ → µ′ andd(µ, µ′) ≤ ǫ.

Note that it is not necessary to require the converse of the condition in Definition
12 to get a complete analogy with bisimulation: the converseis indeed implied by the
symmetry ofd as a pseudometric. Note also that we prohibitǫ to be1 because through-
out this paper1 represents the maximum distance, which includes the case where one
state may perform a transition and the other may not.

The greatest bisimulation metric isdmax =
⊔

{d ∈ M | d is a bisimulation metric}.
We now characterizedmax as a fixed point of a monotonic functionΦ onM. Eventu-
ally we are interested in the distance between IIHSs, and forthe sake of simplicity, from
now on we consider only the distance between states belonging to different IIHSs. The
extension to the general case is trivial. For clarity purposes, we assume that different
IIHSs have disjoint sets of states.

Definition 13. Given twoIIHSs with transition relationsθ andθ′ respectively, and a
preudometricd on states, defineΦ : M → M as:

Φ(d)(s, s′) =



































maxi d(si, s
′
i) if ϑ(s) = {δ(a1,s1), . . . , δ(am,sm)}

and ϑ′(s′) = {δ(a1,s
′

1
), . . . , δ(am,s′m)}

d(µ, µ′) if ϑ(s) = {µ} andϑ′(s′) = {µ′}

0 if ϑ(s) = ϑ′(s′) = ∅

1 otherwise



It is easy to see that the definition ofΦ is a particular case of the functionF defined
in [7, 6]. Hence it can be proved, by adapting the proofs of theanalogous results in [7,
6], thatF (d) is a pseudometric, and that the following property holds.

Lemma 2. For ǫ ∈ [0, 1), Φ(d)(s, s′) ≤ ǫ holds if and only if whenevers → µ, there
exists someµ′ such thats′ → µ′ andd(µ, µ′) ≤ ǫ.

Corollary 2. d is a bisimulation metric iffd � Φ(d).

As a consequence of Corollary 2, we have thatdmax =
⊔

{d ∈ M | d � Φ(d)},
and still as a particular case ofF in [7, 6], we have thatΦ is monotonic onM.

We can now apply Tarski’s fixed point theorem, which ensures that dmax is the
greatest fixed point ofΦ. Furthermore, by Corollary 2 we know thatdmax is indeed a
bisimulation metric, and that it is the greatest bisimulation metric. In addition, the finite
branchingness of IIHSs ensures that the closure ordinal ofΦ is ω (cf. Lemma 3.10 in
the full version of [7], available on the authors’ web pages). Therefore one can proceed
in a standard way to show thatdmax = {Φi(⊤) | i ∈ N}, where⊤ is the greatest
pseudometric (i.e.⊤(s, s′) = 0 for everys, s′), andΦ0(⊤) = ⊤.

Given two IIHSsI andI′, with initial statess ands′ respectively, we define the dis-
tance betweenI andI′ asd(I, I′) = dmax (s, s

′). The following properties are auxiliary
to the theorem which states the continuity of the capacity.

Lemma 3. Consider twoIIHSs I and I
′ with transition functionsϑ and ϑ′ respec-

tively. Givent ≥ 2 and two sequencesαt and βt, assume that bothI(αt−1, βt−1)
and I

′(αt−1, βt−1) are defined, thatdmax (I(α
t−1, βt−1), I′(αt−1, βt−1)) < p(βt |

αt, βt−1), andϑ(I(αt, βt−1)) 6= ∅. Then:

1. ϑ′(I′(αt, βt−1)) 6= ∅ holds as well,
2. I(αt, βt) andI′(αt, βt) are both defined,p(βt | αt, βt−1) > 0, and

dmax (I(α
t, βt), I′(αt, βt)) ≤

dmax (I(α
t−1, βt−1), I′(αt−1, βt−1))

p(βt | αt, βt−1).

Proof.

1. Assumeϑ(I(αt, βt−1)) 6= ∅ and, by contradiction,ϑ′(I′(αt, βt−1)) = ∅. Since
dmax is a fixed point ofF , we havedmax = F (dmax ), and therefore

dmax (I(α
t, βt−1), I′(αt, βt−1)) = F (dmax )(I(α

t, βt−1), I′(αt, βt−1))

= 1

≥ p(βt | αt, βt−1),

against the hypothesis.

2. If ϑ(I(αt, βt−1)) 6= ∅, then, by the first point of this lemma,ϑ′(I′(αt, βt−1)) 6= ∅
holds as well, and therefore bothI(αt, βt) and I

′(αt, βt) are defined. The hy-
pothesisdmax (I(α

t−1, βt−1), I′(αt−1, βt−1)) < p(βt | αt, βt−1) ensures that



p(βt | αt, βt−1) < 0. Let us now prove the bound ondmax (I(α
t, βt), I′(αt, βt)).

By definition ofΦ, we have

Φ(dmax )(I(α
t−1, βt−1), I′(αt−1, βt−1)) ≥ dmax (I(α

t, βt−1), I′(αt, βt−1)).

Sincedmax = Φ(dmax ), we have

dmax (I(α
t−1, βt−1), I′(αt−1, βt−1)) ≥ dmax (I(α

t, βt−1), I′(αt, βt−1)). (21)

By definition ofΦ and of the Kantorovich metric, we have

Φ(dmax )(I(α
t, βt−1), I′(αt, βt−1)) ≥ p(βt | αt, βt−1)·

dmax (I(α
t, βt), I′(αt, βt)).

Using againdmax = Φ(dmax ), we get

dmax (I(α
t, βt−1), I′(αt, βt−1)) ≥ p(βt | α

t, βt−1)·
dmax (I(α

t, βt), I′(αt, βt)),

which, together with (21), allows us to conclude.

Lemma 4. Consider twoIIHSs I and I
′, and letp(· | ·, ·) and p′(· | ·, ·) be their

distributions on the output nodes. GivenT > 0, and two sequencesαT andβT , assume
thatp(βt | αt, βt−1) > 0 for everyt < T . Letm = min1≤t<T p(βt | αt, βt−1) and let
ǫ ∈ (0,mT−1). Assumed(I, I′) < ǫ. Then, for everyt ≤ T , we have

p(βt | α
t, βt−1)− p′(βt | α

t, βt−1) <
ǫ

mT−1
.

Proof. Observe that, for everyt < T , I(αt, βt) must be defined, and, by repeatedly
applying Lemma 3(1), we get that alsoI′(αt, βt) is defined. By definition ofϕ, and of
the Kantorovich metric, we have

p(βt | α
t, βt−1)− p′(βt | α

t, βt−1) ≤ Φ(dmax )(I(α
t−1, βt−1), I′(αt−1, βt−1)),

and sincedmax is a fixed point ofΦ, we get

p(βt | α
t, βt−1)− p′(βt | α

t, βt−1) ≤ dmax (I(α
t−1, βt−1), I′(αt−1, βt−1)). (22)

By applyingt− 1 times Lemma 3(2), from (22) we get

p(βt | αt, βt−1)− p′(βt | αt, βt−1) ≤ dmax (I(α
0,β0),I′(α0,β0))
mt−1

= d(I,I′)
mt−1

≤ d(I,I′)
mT−1

< ǫ
mT−1



Note that previous lemma states a sort of continuity property of the matrices ob-
tained from IIHSs, but not uniform continuity, because of the dependence on one of the
two IIHSs. It is easy to see (from the proof of the Lemma) that uniform continuity does
not hold.

The main contribution of this section, stated in next theorem, is the continuity of
the capacity w.r.t. the metric on IIHSs. For this theorem, weassume that the IIHSs are
normalized. Furthermore, it is crucial that they are secret-nondeterministic (while the
definition of the metric holds in general).

Theorem 6. Consider two normalizedIIHSsI andI′, and fix aT > 0. For everyǫ > 0
there existsν > 0 such that if d(I, I′) < ν then |CT (I)− CT (I

′)| < ǫ.

Proof. Consider two normalized IIHSsI andI′ and chooseT, ǫ > 0. Observe that

|CT (I)− CT (I
′)| = |max

pF (·)

1

T
I(AT → BT )−max

pF (·)

1

T
I(A′T → B′T )|

≤ 1
T
max
pF (·)

|I(AT → BT )− I(A′T → B′T )|

Since the directed informationI(AT → BT ) is defined by means of arithmetic opera-
tions and logarithms on the joint probabilitiesp(αt, βt) and on the conditional probabil-
itiesp(αt, βt), p(αt, βt−1), which in turn can be obtained by means of arithmetic oper-
ations from the probabilitiesp(βt | αt, βt−1) andpF (ϕt), we have thatI(AT → BT )
is a continuous functions of the distributionsp(βt | αt, βt−1) and pF (ϕ

t), for ev-
ery t ≤ T . Let p(βt | αt, βt−1), p′(βt | αt, βt−1) be the distributions on the out-
put nodes ofI andI′, modified in the following way: starting from levelT , whenever
p(βt | αt, βt−1) = 0, then we redefine the distributions in all the output nodes ofthe
subtree rooted inI(αt, βt) so that they coincide with the distribution of the correspond-
ing nodes of inI′, and analogously forp′(βt | αt, βt−1). Note that this transformation
does not change the directed information, because the subtree rooted inI(αt, βt) does
not contribute to it, due to the fact that it depends the probability of reaching any of its
nodes is0. The continuity ofI(AT → BT ) implies that there existsǫ′ > 0 such that, if
|p(βt | αt, βt−1)− p′(βt | αt, βt−1)| < ǫ′ for all t ≤ T and all sequencesαt, βt, then,
for anypF (ϕt), we have|I(AT → BT )− I(A′T → B′T )| < ǫ. The result then follows
from Lemma 4, by choosing

ν = ǫ′ ·min( min
1 ≤ t < T

p(βt | αt, βt−1) > 0

p(βt | α
t, βt−1), min

1 ≤ t < T

p′(βt | αt, βt−1) > 0

p′(βt | α
t, βt−1)).

We conclude this section with an example showing that the continuity result for the
capacity does not hold if the construction of the channel is done starting from a system
in which the secrets are endowed with a probability distribution. This is also the reason
why we could not simply adopt the proof technique of the continuity result in [7] and
we had to come up with a different reasoning.



Example 5.Consider the two following programs, wherea1, a2 are secrets,b1, b2 are
observable,‖ is the parallel operator, and+p is a binary probabilistic choice that assigns
probabilityp to the left branch, and probability1− p to the right one.

s) (send(a1) +p send(a2)) ‖ receive(x).output(b2)
t) (send(a1)+q send(a2)) ‖ receive(x).if x = a1 then output(b1) else output(b2).

Table 10 shows the fully probabilistic IIHSs correspondingto these programs, and
their associated channels, which in this case (since the secret actions are all at the top-
level) are classic channels, i.e. memoryless and without feedback. As usual for classic
channels, they do not depend onp and q. It is easy to see that the capacity of the
first channel is0 and the capacity of the second one is1. Hence their difference is1,
independently fromp andq.

Let nowp = 0 andq = ǫ. It is easy to see that the distance betweens andt is ǫ.
Therefore (when the automata have probabilities on the secrets), the capacity is not a
continuous function of the distance.

s t

p 1−p

0 1 0 1

a1 a2

b1 b2 b1 b2

q 1−q

1 0 0 1

a1 a2

b1 b2 b1 b2

s b1 b2
a1 0 1

a2 0 1

(a)

t b1 b2
a1 1 0

a2 0 1

(b)

Table 10.The IIHSs of Example 5 and their corresponding channels

9 Conclusion and discussion

In this paper we have investigated the problem of information leakage in interactive
systems, and we have proved that these systems can be modeledas channels with mem-
ory and feedback. The situation is summarized in Table 11(a). The comparison with the
classical situation of non-interactive systems is represented in (b). Furthermore, we have
proved that the channel capacity is a continuous function ofthe kantorovich metric.

Thorough the paper we have assumed Principle 3. What happensif this assumption
is removed? First f all, we observe that the removal could make sense, i.e. in certain
cases we could argue that the probabilistic knowledge associated to the secret choices
(and its dependence on the observables)could be considered as part of the leakage. In
the casesa andb of the cocaine auction example in Section 7, for instance, one may
want to consider the information that we can deduce about thesecrets (the identities
of the bidder) from the observables (the increments of the seller) as a leak due to the
protocol. Our framework can encompass also this case, and the model remains the same.
But the leakage would be represented by the mutual information rather than by the
directed one.



IIHSsas automata IIHSsas channels Notion of leakage

Normalized IIHSs with nondeterministicSequence of stochastic kernelsLeakage as capacity
inputs and probabilistic outputs {p(βt|α

t, βt−1)}Tt=1

Normalized IIHSs with a deterministic Sequence of stochastic kernels
scheduler solving the nondeterminism{p(βt|α

t, βt−1)}Tt=1 +
reaction function seq.ϕT

Fully probabilistic normalized IIHSs Sequence of stochastic kernelsLeakage as directed
{p(βt|α

t, βt−1)}Tt=1 + informationI(AT → BT )
reactor{p(ϕt|ϕ

t−1)}Tt=1

(a)

Classical channels Channels with memory and feedback

The protocol is modeled in independent uses ofThe protocol is modeled in several
the channel, often a unique use. consecutive uses of the channel.

The channel is fromAT → BT , i.e., its input The channel is fromF → B, i.e. its
is a single stringαT = α1 . . . αT of secret input is a reaction functionϕt and its
symbols and its output is a single stringβT = output is an observableβt.
β1 . . . βT of observable symbols.
The channel is memoryless and in general The channel has memory. Despite the fact that the
implicitly it is assumed the absence of channel fromF → B does not have
feedback. feedback, the internal stochastic kernels

do.
The capacity is calculated using information The capacity is calculated using mutual
I(AT ;BT ). directed informationI(AT → BT ).

(b)

Table 11.

In some other cases the flow of information from the observables to the secrets may
even be considered as a consequence of the active attacks of an adversary, which uses
the observables to modify the probability of the secrets. Inthis case the leakage would
be divided in two parts: the one due to the protocol, represented byI(AT → BT ), and
the one due to the attacks of the adversaries, and represented by I(BT → AT ). THe
total leakage would still be represented by the mutual information.

10 Future work

We would like to provide algorithms to compute the leakage and maximum leakage
of interactive systems. These problems result very challenging given the exponential
growth of reaction functions (needed to compute the leakage) and the quantification
over infinitely many reactors (given by the definition of maximum leakage in terms
of capacity). One possible solution is to study the relationbetween deterministic sched-
ulers and sequence of reaction functions. In particular, webelieve that for each sequence
of reaction functions and distribution over it there existsa probabilistic scheduler for the
automata representation of the secret-nondeterministic IIHS. In this way, the problem of



computing the leakage and maximum leakage would reduce to a standard probabilistic
model checking problem (where the challenge is to compute probabilities ranging over
infinitely many schedulers).

In addition, we plan to investigate measures of leakage for interactive systems other
than mutual information and capacity.

We intend to study the applicability of our framework to the area of game theory.
In particular, the interactive nature of games such asPrisoner Dilemma[14] andStag
and Hunt[16] (in their iterative versions) can be modeled as channels with memory and
feedback following the techniques proposed in this work. Furthermore, (probabilistic)
strategies can be encoded as reaction functions. In this way, optimal strategies are at-
tained by reaction functions maximizing the leakage of the channel.
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Appendix

A: Normalization of IIHS trees

In this section we will address the problem ofnormalizingan IIHS in such a way it is
compatible with the assumptions made along the paper. The process of normalization
described bellow is general enough to be applied to any IIHS without loss of generality
or expression power.

Consider a general IIHSI = (M,A,B,Lτ ) with M = (Q,L, ŝ, ϑ), whereL =
A ∪ B ∪ Lτ . Let I represent an interactive system, such as a protocol. Let us consider
that we are interested only in a finite execution of the protocol, so the automaton tree is
already unfolded up to a certain level in such a way that the longest input trace isαT ′

and the longest output trace isβT ′′

.
In the normalization process, first we will extend the input alphabetA with a new

symbola∗ /∈ A and, in the same way, the output alphabetB with a new symbolb∗ /∈ B.
As we will see soon, those new symbols will be used as placeholders when we need to
rebalance the tree. The new input and output alphabets will be referred asA′ = A∪{a∗}
andB′ = B ∪ {b∗}, respectively.



Let us defineT = max(T ′, T ′′), i.e., the maximum length of any input or output
trace in the unfolded tree of the automaton. The functionLabels (I, t) : IIHS ×
{1, . . . , T } → ℘(L) from an IIHSI and a given level1 ≤ t ≤ T of its unfolded tree to
the setL of input symbols, output symbols and unobservable symbols of I. Informally,
Labels (I, t) is the set of all labels of transitions that can be performed with a non-zero
probablity from the states at thetth level of the automaton ofI.

Definition 14. For an IIHS I = (M,A,B,Lτ ) with M = (Q,L, ŝ, ϑ), whereL =
A ∪ B ∪ Lτ , and fort ≥ 0:

Labels(I, t) ≡ {ℓ ∈ L | ∃σ, s . |σ| = t, last(σ)
ℓ
→ s}

The process of normalization of a tree relies on the fact thatit is possible to construct
an equivalent IIHSI′ = (M ′,A′,B′,Lτ ), whereM ′ = (Q′,L′, ŝ′, ϑ′) such thatL′ =
A′ ∪ B′ ∪ Lτ and its unfolded tree up to depth2T respects, for every1 ≤ t ≤ T :

1. Labels (I′, t) ∩ A′ = ∅ or Labels (I′, t) ∩ B′ = ∅;
2. A′ ⊆ Labels (I′, t) or B′ ⊆ Labels (I′, t);
3. A′ ⊆ Labels (I′, t) iff B′ ⊆ Labels (I′, t+ 1), where we consider the arith-

metic ont modulo2T ;
4. A′ ⊆ Labels (I′, 1);
5. | traceA′(σ)| = | traceB′(σ)| = T , for all pathσ in the unfolded tree.

Condition 1 states that each level can admit input actions oroutput actions, but
not both. Condition 2 states that all input actions need to belisted in an input level,
and the same for output levels and actions (as we will see soon, even if we need to
associate probability zero to an action). Condition 3 states that input and output levels
must necessarily alternate. Condition 4 assures that we always start with an input level.
Condition 5 assures that all the leaves of the unfolded tree are in the same level, i.e., the
tree isbalanced.

The proof is straightforward, but we shall give an intuitionof it. First, the new
symbolsa∗ andb∗ are place holders for the absence of an input and output symbol,
respectively. Now, if in a given levelt we want to have only input symbols, we can
postpone output symbols by addinga∗ to the level and “moving” all the output symbols
to the subtree ofa∗. Figure 6 exemplifies the local transformations we desire ina tree.

Note that in 6(b) the introduction of new nodes changed the probabilities. In general,
if we are in an input level, we need to introducea∗ to postpone the output symbols, and
the probabilities change as follows:

1. For everyai, 1 ≤ i ≤ n, the associated is probability is mantained asp′a
i
= pa

i
;

2. The probability of the new symbola∗ is introduced aspa
∗
=

∑m
i=0 pbi ;

3. If pa
∗
6= 0, then for1 ≤ i ≤ m, the associated probability ofbj is updated to

p′bj
= pb

j
/pa

∗
= pb

j
/
∑m

k=0 pbk . If pa
∗
= 0, thenp′bj = 0, for 1 ≤ i ≤ m, and

pb
∗
= 1.
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(a) Local nodes of the tree before the
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(b) Local nodes of the tree af-
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Fig. 6.Local transformation on an IIHS tree

The subtrees of each node of the original tree are preserved as they are, until we
apply the same transformation to them. If a node does not havea sutree (i.e, no descen-
dants), we create a subtree by adding all the possible actions in B with probability0,
and the actionb∗ with probability1.

If we are in an output level, the same rules apply, guarding the proper symmetry
between input and outputs. We proceed with the same transformation on the next levels
of the tree. Figure 7 shows an example of a full transformation on a tree (for the sake of
readability, we omit the levels where onlya∗ = 1 or b∗ = 1).
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Fig. 7. Transformation on an IIHS tree


