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Abstract. We consider the problem of defining the information leakag@#
teractive systems where secrets and observables canatdtetaring the com-
putation. We show that the information-theoretic approabfch interprets such
systems as (simple) noisy channels is not valid anymore.dderythe principle
can be recovered if we consider more complicated types aofreds, that in Infor-
mation Theory are known as channels with memory and feedbelshow that
there is a complete correspondence between interactitensgsnd such kind of
channels. Furthermore, we show that the capacity of thengtarassociated to
such systems is a continuous function of the Kantorovichimet

1 Introduction

Information leakage refers to the problem that the obséevadrts of the behavior of
a system may reveal information that we would like to keepetetn recent years,
there has been a growing interest in the quantitative aspedhis problem, partly
because itis convenientto representthe partial knowletldpe secrets as a probability
distribution, and partly because the mechanisms to protectnformation may use
randomization to obfuscate the relation between the searet the observables.

Among the quantitative approaches, some of the most popukes are based on
Information Theory [4,11, 3, 17]. The system is interpreasdin information-theoretic
channe]where the secrets are the input and the observables aretthé.orhe channel
matrix is constituted by the conditional probabilitie® | a), defined as the measure
of the executions that give observablavithin those which contain the secret The
leakage is represented by theutual information and the worst-case leakage by the
capacityof the channel.

In the above works, the secret value is assumed to be chogka heginning of
the computation. In this paper, we are interestet¢hieractive systems.e. systems
in which secrets and observables can alternate during tiwat@tion, and influence
each other. Examples of interactive protocols incladetion protocoldike [22, 19,
18]. Some of these have become very popular thanks to theigristion in Internet-
based electronic commerce platforms [8, 9, 13]. As for axtve programs, examples
include web servers, GUI applications, and command-liogmms [2].

We investigate the applicability of the information-thetic approach to interactive
systems. In [7] it was proposed to define the matrix elemgfitsa) as the measure of
the traces with (secret, observable)-projectior), divided by the measure of the trace
with secret projection. This follows the definition of conditional probability ietms
of joint and marginal probability. However, it does not defamn information-theoretic



channel. In fact, by definition a channel should be invanaitih respect to the input
distribution, and such construction is not, as shown by ¢flewing example.

Example 1.Figure 1 represents a web-based interaction between dee artl two
possible buyergjch andpoor. The seller offers two different productheapandex-
pensive with given probabilities. Once the product is offered,fedayer may try to
buy the product, with a certain probability. For simplicitye assume that the buyers
offers are exclusive. We assume that the offers are obdesyab the sense that they
are made public in the website, while the identity of the upat actually buys the
product should be secret to an external observer. The symbel¢, 7, 5, t represent
the probabilities, with the convention that= 1 — r.

Following [7] we can compute the conditional proba-
bilities asp(b|a) = %, thus obtaining the matrix on Ta-
ble 1. However, the matrix is not invariant with respect to
the input distribution. For instance, let us assume 7 =
3, s = 2, andt = 2p, wherep is a parameter. Therefore
we havep(poor) = rs + Tt = %(1 + p) or, equivalently,
p =3 - p(poor) — 1. Two different input distributions will
determine different values of and therefore. Hence also Fig. 1. An interactive syst.
the channel matrices will be different, as the two examples
in Table 2 show.

Consequently, when the secrets ocafier the observ-
ables we cannot consider the conditional probabilities|as || cheap | ezpensive |
representing a (classical) channel, and we cannot apply[the

. . . . poor
standard information-theoretic concepts. In particula,
cannot adopt the (classical) capacity to represent thetwofrg;cp, || —5- _Tt_

. . N . . . rs+7rt rs+rt
case leakage, since the capacity is defined using a fixed
channel matrix over a!l possiblg inputdi;tributions: Table 1. Channel matrix

Thg first contribution of this paper is t_o consider agy, Example 1
extension of the theory of channels which makes the
information-theoretic approach applicable also the céseteractive systems. It turns
out that a richer notion of channels, known in Informatioredty aschannels with
memory and feedbagckerves our purposes. The dependence of inputs on previbus o
puts corresponds to feedback, and the dependence of owpyievious inputs and
outputs corresponds to memory.

A second contribution of our work is the proof that the chdapacity is a contin-
uous function of the Kantorovich metric on interactive sys$. This was pointed out
also in [7], however their construction does not work in case due to the fact that (as
far as we understand) it assumes that the probability of @saction, in any point of
the computation, is ndt. This assumption is not guaranteed in our case and therefore
we had to proceed differently.

TS Tt
rs+7rt rs+7rt

1.1 Plan of the paper

The paper is organized as follows. Section 2 reviews somelitapt concepts fromPro-
babilistic Automata and Information Theory. It is also peted the concept of Inter-



| || cheap | expensive || Input distr. | | || cheap | expensive || Input distr. |

poor|| 2 : p(poor) = 3 | |poor|| 32 i p(poor) = 3
rich : 2 p(rich) = 3 | |rich 2 s p(rich) =
@r=tos=2p= b= Or=bs=2p=tict

Table 2. Two different channel matrices induced by two differentuingistributions

active Information Hiding Systems (IIHSs), which will beadsall over the paper. In
Section 3 we discuss why the classical information thecaieipproach needs to be
extended and we give an overview on how we do it in our modehaith the main
issues involved. Section 4 reviews the model of channels migmory and feedback
that are the core the model we propose. The concept of difedtamation is discussed
and also the generalized concept of capacity in the presdrieedback. Section 5 con-
tains our main contribution. We explain how IIHSs can be nkediesing channels with
memory and feedback. In particular we show that there isysvaachannel that simu-
lates the probabilistic behavior of any IIHS. In Section 6deéine the quantification of
information leakage as the channel’s directed informatiiom input to output, in the
case where the input distribution on secrets is known, dnagéneralized capacity, in
the case the distribution on secrets is unknown. In Sectiwe discuss a full example
of our model applied to a real protocol. The Cocaine Auctiootqcol is presented,
modeled as a channel with memory and feedback, and thenakade of information
in three different scenarios is calculated. Section 8 dises the topological properties
of IIHSs and their capacity. We show that the capacity of thennels associated to
interactive systems is a continuous function of the Kantitometric. In Sections 9
and 10 we review and discuss the main results of the papeilasttate some future
work.

A short version of this paper (without proofs, and with lesstenial) appeared in
the proceedings of CONCUR 2010.

2 Preliminaries

In this section we briefly review some basic notions that wierveied along the paper.

2.1 Probabilistic automata

A functionp: S — [0,1] is adiscrete probability distributioron a countable sef if
> scs i(s) = Landu(s) > 0 for all s. The set of all discrete probability distributions
onSisD(S).

A probabilistic automatoifil 5] is a quadruplé! = (S, £, §,v) whereS is a count-
able set oktates £ a finite set olabelsor actions s theinitial state, and! atransition
functiond : S — p;(D(L x S)). Herep;(X) is the set of all finite subsets of . If



9(s) = g) thens is aterminalstate. We writes—p for i € 9(s), s € S. Moreover, we
write s—r for s, € S whenevers—p andu(¢, ) > 0. A fully probabilistic automa-
tonis a probabilistic automaton satisfying(s)| < 1 for all states. Wherd(s) # 0 we
overload the notation and denatés) the distribution outgoing from.

A pathin a probabilistic automaton is a sequence= sg 4 $1 % ... where
s; € S, ¢; € Lands; ='s;.1. A path can bdinite in which case it ends with a state.
A path iscompleteif it is either infinite or finite ending in a terminal state.v@&h a
finite patho, last(o) denotes its last state. LBaths, (M) denote the set of all paths,
Paths*s(M) the set of all finite paths, andPaths, (M) the set of all complete paths
of an automator/, starting from the state We will omit s if s = 3. Paths are ordered
by the prefix relation, which we denote ky. Thetrace of a path is the sequence of
actions in£* U £ obtained by removing the states, hence for the alsowes have
trace(o) = lila.... If L' C L, thentraces (o) is the projection oftrace(o) on the
elements of’.

Let M = (S, L, $,9) be a (fully) probabilistic automatos, € S a state, and let
o € Pathsi(M) be a finite path starting in. The conegenerated by is the set of
complete pathgo) = {0’ € CPathss;(M) | ¢ < ¢’}. Given a fully probabilistic
automatonM = (S, L, §,9) and a states, we can calculate theprobability value

denoted byP (), of any finite pathy starting ins as follows:P,(s) = 1 andP(c N
s') =Pgs(o) u(t,s"), wherelast(o) — p.

Let 2, & CPathss(M) be the sample space, and JEf be the smallest-algebra
generated by the cones. ThBrinduces a uniquprobability measuren F, (which we
will also denote byP,) such that?,((c)) = P(c) for every finite pathr starting in
s. Fors = 5 we write P instead ofP;.

Given a probability spacg?, F, P) and two eventsi, B € F with P(B) > 0, the
conditional probabilityof A givenB, P(A | B), is defined as®(A N B)/P(B).

2.2 Concepts from Information Theory

For more detailed information on this part we refer to [5]t Ye B denote two random
variables with corresponding probability distributiops(-), ps(-), respectively. We
shall omit the subscripts when they are clear from the cantexA = {a,,...,a,},B =
{b,...,b,,} denote, respectively, the sets of possible valuesifand forB.

Theentropyof A is defined agi(A) = —>_ 4 p(a;)logp(a;) and it measures the
uncertainty ofA. It takes its minimum valuél (A) = 0 whenp4(-) is a delta of Dirac.
The maximum valuéd (A) = log |.A| is obtained whem 4(+) is the uniform distribu-
tion. Usually the base of the logarithm is set toband the entropy is measured in
bits. The conditional entropyof A given B is H(A|B) = — > 5z p(b;) > 4 p(a;[b;)
log p(a,|b;), and it measures the uncertaintyfvhenB is known. We can prove that
0 < H(A|B) < H(A). The minimum value), is obtained whem is completely de-
termined byB. The maximum valué/ (A) is obtained whem andB are independent.
Themutual informatiorbetweenAd and B is defined ad (A; B) = H(A) — H(A|B),
and it measures the amount of information ahduhat we gain by observing. It can
be shown thaf (A; B) = I(B; A) and0 < I(A; B) < H(A).



The entropy and mutual information respect th&in laws Namely, given a se-

quence of random variables, As, ..., Ay and B, we have:
k
H(Ay, s, Ay) =Y H(AilAr,. . Aia) (1)
1=1
k
I(A1, Ag,..., A B) = > I(Ai; BJAs, ..., Aiy) )
1=1

Let (V,K) be a set equipped with @algebra of subsets (i.e a Borel space). Let
(X, Bx) a Polish space (i.e a separable and completely metrizgbtéomgical space),
equipped with its Boreb-algebra. Letp = {p(:|v)}, be a family of measures aoft
parametrized over € V. We say thap is astochastic kerndrom V' to &’ if for every
Borel setB € By, the functionv — p(B|v) € [0, 1] is measurablé.

A (discrete memoryleyshannels a tuple(A, B, p(-|-)), whereA, B are the sets of
input and output symbols, respectively, arnd,|a,) is the probability of observing the
output symbob, when the input symbol is,. These conditional probabilities form a
stochastic kernel and constitute ttigannel matrix An input distributionp(a, ) over.A
determines, together with the channel, the joint distitup(a;, b;) = p(a,|b;) - p(a;)
and consequentlli(A; B). The maximuny (4; B) over all possible input distributions
is the channel'sapacity Shannon’s famous result states that the capacity coisicide
with the maximum rate by which information can be transmditising the channel.

In this paper we consider input and outgatjuencemstead of just symbols.

Convention 1. Let A = {a4,...,a,} be afinite set of. different symbolsglphabek

We use a Greek letten( 3, ...) to denote a sequence of symbols (ordered in time).
Given a sequence = a;, a;, - - - a;,, , We Usey, to denote the symbol at tinigi.e.a;, .

The notation’ stands for the sequeneg, o, ... «;, . For instance, in the sequence
a = azazas, We havev, = a, anda? = asa,.

Convention 2. Let X be a random variableX! denotes the sequencetafonsecutive
occurrencesXy, ..., X; of the random variablex .

When the channel is used repeatedly, the discrete memsrgtesnel described
above represents the case in which the behavior of the chainthe present time does
not depend upon the past history of inputs and outputs.dfaksumption does not hold,
then we have a channeith memory Furthermore, if the outputs from the channel can
be fed back to the encoder, thus influencing the generatidheohext input symbol,
then the channel is said to bath feedbackotherwise it iswithout feedback

Equation 3 makes explicit the probabilistic behavior of s regarding those
classifications. Suppose a general channel frbto B with the associated random vari-
ablesA for input andB for output. Using the notation introduced in Conventionhk, t
channel behavior aftéf uses can be fully described by the joint probabitity” , 37).

! For the purpose of this paper, since we only deal with diea@tdom variables, we only need
to assume that for every € V, p(:|v) is a probability distribution.



Using probability laws we derive:

T

pa”, B7) = [ p(eula’ =", B )p(B,la’, B71)  (by the expansion law) (3)

t=1

The first termp(a,|a’~1, 371) indicates that the probability of, depends not
only ona~!, but also onz‘~! (feedback The second term(3,|af, 3~1) indicates
that the probability of eacl¥, depends on previous history of input$ and outputs
Bt (memory.

If the channel is without feedback, then we have ti{at, |a! =1, 371) = p(a,|at™1),
and if the channel is without memory, then we have al§g|a!, 5:~1) = p(3,|a,).
From these we derive(87|a) = Hthlp(ﬁt|at), which is the classic equation for
discrete memoryless channels without feedback.

We shall have a deeper discussion about the meaning anccatiptis of Equa-
tion (3) later on this paper, when comparing the concepts uttiai information and
directed information, in Section 6.

3 Our model vs the classical approach

In this section we illustrate the issues involved in adgptnmore general notion of
channel, by comparing it with the basic model.

By classical information theoretical approacbr simply classical approachwe
mean the use of discrete memoryless channels, which irtiplacgsume absence of
feedback, to model the problem of information leakage in gotational systems. This
approach has been used for non-interactive systems, wienets occur strictly before
observables during the computation and therefore do narakpn them. In this paper
we extend the classical approach with a richer notion of nhlnthat also consider
memory and feedback. Our extension is a generalizationeo€ldssical model in the
sense that it can represent both interactive and non-titegasystems.

In non-interactive systems, since the secrets always gecite observables, it is
possible to group the sequence of secrets (and observab&esingle secret (resp. ob-
servable) string. If we consider only one activation of thistem, or if each use of the
system is independent from the other, then we can model itlaeete classical chan-
nel (memoryless, and without feedback) from a single inprinig to a single output
string.

When we have interactive systems, however, inputs and tautpay interleave and
influence each other. Considering some sort of feedbacleioltannel is a way to cap-
ture this richer behavior. Secrets have a causal influenabearvables via the chan-
nel, and, in the presence of interactivity, observableg lravausal influence on secrets
via the feedback. This alternating mutual influence betwepats and outputs can be
modeled by repeated uses of the channels. However, eachiht@r@hannel is used it
represents a different state of the computation, and thdittonal probabilities of ob-
servables on secrets can depend on this state. The additmmemory to the model
allows expressing the dependency of the channel matrix oh state (which, as we
will see, can also be represented by the history of inputartglts).



One important feature of the classical approach is thatdébees choice is seen as
external to the system, i.e. determined by the environnidmns.implies that the prob-
ability distribution on the secrets (input distributiomrestitutes the a priori knowledge
and does not count as leakage. In order to encompass th&alagsproach, in our
extended model we should preserve this principle, and thet magural way is to con-
sider the secret choices, at every stage of the computasa@xternal. Their probability
distributions, which is now in general a conditional proitighdistribution (depending
on the history of secrets and observables) should be caesides part of the external
knowledge, and should not be counted as leakage. This is poriamt point in our
framework, and we wish to draw the attention of the readet:on i

Principle 3. The probability distributions on the secret choices is pHrthe external
knowledge and it is not considered leakage.

In Section 9 we will discuss the case in which we remove thssiaption, i.e. if we
consider leakage also the probabilistic knowledge indumethe distributions on the
secret choices.

In summary, the main changes implied by the addition of mgrand feedback are:

1. interactive systems are captured by the new model, asawelbn-interactive ones
as a particular case;

2. in contrast with the usual single use (or independen)urséise classical approach,
the systems behavior is now represented by repeated anddipeises of the
channel;

3. there is a causal relation not only from input to outpua (ie channel), but also
from output to input (via feedback).

Item 3 has a rather strong consequence: In non-interagtiterss, only inputs have
a causal influence on outputs and mutual information is a goedsure of the infor-
mation flow from secrets to observables. However, in thegres of feedback, outputs
also have a causal influence on inputs and although this fles dot correspond to any
leakage of secret information (according to Principle Bjéreases mutual informa-
tion. By definition, indeed, mutual information does notresgent causality, but, rather,
correlation. In this richer model, mutual information istaogood measure of informa-
tion leakage anymore. We will come back on this pointin $ecsi.2, and we will show
how to generalize the concept of leakage.

4 Discrete channels with memory and feedback

We adopt the model proposed in [20] for discrete channels mi#mory and feedback.
Such model, represented in Figure 2, can be decomposed ulergigs] components
as follows. At timet the internal channel’s behavior is represented by the tiondi

probabilitiesp(3,|at, 3~1). The internal channel takes the inpytand, according to
the history of inputs and outputs up to the time steproduces an output symbg].

The output is then fed back to the encoder with delay one. @rother side, at time
t the encoder takes the message and the past output sygibdisand produces a



channel input symbal,. At final time T the decoder takes all the channel outpits
and produces the decoded messBgeThe order is the following:

MessageW, «q,f5;, 9,0y, ..., ap,Bp, DecodedMessagél (4)
r-——"">">"">"""~"""~"~""—~ -~ -~ -~ -~ “"“~" - -~~~ al
| |
W Fucn.i'(tliins ! Encoder ) Channel ] B, ! ADecoder W
@T | {a, = @ (B}, {p(Bilat, B}, : W =~(8")
I |
I |
| |
B Fyeoem|
Time 0 : —t1 Delay < : Time T + 1
| |
| Time |
I t=1...T !

Fig. 2. Model for discrete channel with memory and feedback

Let us describe such channel in more detail. Meand B be two finite sets. Let
{A}L, (channel's input) and B, }1_; (channel’s output) be families of random vari-
ables inA andB respectively. Moreover, let” andB” represent thei’-fold product
spaces. Achannels a family of stochastic kernels(3,|at, 5*~1)} ;.

Let F; be the set of all measurable mags: B~! — A endowed with a probability
distribution, and letF; be the corresponding random variable. [Zf, FT denote the
Cartesian product on the domain and the random variablggecéigely. Achannel code
functionis an elemenp” = (p,...,pp) € FT.

Note that, by probability lawg)(¢”) = T, p(¢|¢""). Hence the distribution
onFT is uniquely determined by a sequer{géyp, |©* 1)} ;. We will use the notation
ot (B171) to represent thel-valuedt-tuple (¢, 05 (BL), ..., 0, (B171)).

In Information Theory this kind of channels are used to ercadd transmit mes-
sages. W is a message set of cardinality with typical elementw, endowed with
a probability distribution, @hannel codés a set ofM channel code functions” [w],
interpreted as follows: for message if at time ¢ the channel feedback j&~*, then
the channel encoder outputs[w](3~1). A channel decodeis a map fromB7 to W
which attempts to reconstruct the input message after wvinseall the output history
BT from the channel.

4.1 The power of memory and feedback

The original purpose cdommunication channetaodels is to represent data transmis-
sion from a source to a receiver. Shannon’s famous resu#ssthat the maximum
information transmission rate with an arbitrarily smalbpability of error corresponds
exactly to the channel capacity. If the number of times thendkel is used is large
enough, there is an encoding that achieves the optimahtiae®n rate, i.e the channel
capacity. However, Shannon did not explain how to determireh an encoding and,



as a matter of fact, a general way to generate an optimal @mgedheme has not been
found yet. But the use of feedback can make the encodingreasiere shall see now.

Consider a discrete memoryless binary chaquelB, p(.|.) }
with A = {0,1} and3{0,1} and the channel matrix of Ta- | [[0 ] 1]
ble 3. This channel is used to transmit the Bitand1, where 0110.8]0.2
the probability of error (i.e transmittinglawhen the desired bit 1110.2]0.8
is 0 or vice-versa) i9).2. Shannon’s theorem guarantees that the
maximum information transmission rate in this channe2ig( Table 3.Channel ma-
the power of) the channel capacity, D& bits per use of the trix for binary chan-
channel. nel without feedback

The encoding that achieves the capacity can be obtained
easily if we add feedback to the channel. Imagine that evigmebeived on the right
hand end of the channel, is feedback noiselessly to the sovitl delayl. Define the
encoding as follows: for each bit transmitted, the encotieccks via feedback if the
received bit was the correct one. If not, the encoder retnésghe bit again and restart
the process. If yes, the transmission is considered coatlet

It is easy to see that with this encoding the transmissiom isat.8 bit per usage
of the channel, since i80% the cases the bit is transmitted properly, an®0% a
retransmission is needed. Note that the capacity, in tlasngke, was not increased by
the use of feedback (it i8.8 bits with or without feedback). It is a special case of the
well known result thateedback does not increase the capacity of discrete meessryl
channeld5].

An example of channel with memory and feedback.Let us go a bit further with the
binary channel example and show how memory and feedbackecasdd.

Again, the set of possible message3Vis= {0, 1}. The messagé#/’ to be trans-
mitted is going to be encoded via code functions into a slataépresentation to the
stochastic kernel within the channel. The input alphabet is {0, 1, X} and the out-
put alphabet i3 = {0,1, X}, whereX is a special symbol used to mark the end of a
successful transmission. We assume that at ffiagtes of the channel are allowed. We
uset, with 1 < ¢ < T, to represent the t-th time step.

We assume a simple form of memory, in the form of a dependeityestochastic
kernel on some sort of noise that can vary with timé,). For the symboKX the trans-
mission is noiseless. More precisely, we assume a stoch@stiel defined as follows:

p(B; =0la’ =a'10,87") = 0.8 — u(t) (5)
p(B, = 1|’ =o'7t0, 517 =0.2+ u(t) (6)
(B, =0l = a1, 171 = 0.2 + u(t) (7)
p(B, = 1la* = a1, 871) = 0.8 — p(t) (8)

B, =X =a71X, 7)) =1 9)

2 |f we are interested in transmitting a sequence of bits, ¢aéencoding is a bit more compli-
cated, because we may need to introduce some sort of stopktaribdicate that the source
considers a bit transmitted successfully and it is thengeding to the transmission of the
next bit.



Correspondingly, the channel matrix is:

| L o [ 1 [y
o, =0,87110.8 + u(t)][0.2 — u(t)| 0
a, =1,87110.2 — u(t)[0.8 + u(t)| 0
a, = X,8t71 0 0

Now let us consider how to create the code-functions, hawimgind that the code-
functions depend on the message to be transmited. Int#irme), the code functions
are chosen based on the message being transmited. Let wssuppt the message is
W =0, the case wher#/ = 1 being analougous.

Fort = 1 corresponds, the channel is used for its first time and trabfaek history
so far is empty3® = (). In that case the encoder selects the input symiok 0 by
assigning:

oW =0](8° =0) =0

Fort = 2, there are two possibilities: the feedback history coasiébnly one bit,
and it is either3! = 0 or 8! = 1. In the first case, a succesfull transmition occurred,
and the encoder can select the end of transmition sympet X. On the other hand,
if 31 = 1, some noise occurred during the transmition, and the emawiletry to
retransmit the bit. We can write it formally as:

po[W =0](8' =1) =0

In the next round¢ = 3, the possible feedback histories &€ € {0X,10,11}.
In the first casep? = 0X, the presence of the success symioindicates that the
transmition has already been completed in a correct wayesericoder just selecfs
again. If 32 = 0X, the transmition had failled in the first try, but has justceaed, so
again the encoder just selectsas the new input symbol. In the last cagd, = 11,
the transmition has not succeeded yet, so the encoderériding the right bit again.
Formally:

We can generalize the above construction as follows: whareebit1 is fedback, a
retransmition of) is needed. In the other cases, a succesfull transmitionm@ztand
the encoder considers the transmition completed and sélexk again. Guarding the
simetry when the messageli§ = 1, we can write formally, for every <¢ < T=



| W =0 | W=1 |
P W =0](8"1 =11 = 0|, [W =18t =0"1) =1
oW = 0)(B! #171) = X[, [V = 1](8'1 £1¢1) = X

Once all time step$, 1,...,T have occurred, the decoder has the whole output
history 87 available to try to infer which was the original mess&jeOur decoder will
proceed as follows. By the construction of the encoding isehéf the received output
BT contains anX, it means that the bit was transmitted correctely, and ixé&cty the
bit that just preceeds the first occurrence of a symboDtherwise the encoder does
not decide whether the intended message Wwais1, so it will always assigr) as the
decoded message. Formally:

I/I/:’y(ﬁla"woaXa"wﬁT):O (10)
W=~8,....1,X,....8;) =1 (12)
W =~(3")=0 inanyother case (12)

Table 4 shows a concrete example for the binnary channelmétmory and feed-
back in a scenario where the channel can be Used 3 times and the message being
transmitted iV = 0.

Time Code functions Feedback Encoder Channel
history

Decoder

t = 0|| Code functions foi’ = 0 _
are selected.

t=1{ poW =0](8"=0)=0 0 a1 = ¢, (0) =0 | According top(:0, )
produces3; =1

t=2[ po[W =0](' =0) =X 1 a; = ¢,(1) =0 | According top(,]00, 1)

wo[W =0](B* #0) =0 produces3; = 0
t=3[lo[W=0](8"=11)=0| 10 [as = ¢,(10) = X|According top(3,]00X, 10) _
wo[W =0](8% #11) = X produces?; = X

- Decoded message
W =~(8°=10X) =0

Table 4. Evolution of the binary channel with time, faf = 3 andWW = 0

4.2 Directed information and capacity of channels with feetdack

In classical Information Theory, the channel capacity,chtis related to the channel’s
transmission rate by Shannon’s fundamental result, cabtaéned as the supremum of
the mutual information over all possible input’s distrilouts. In presence of feedback,




however, this correspondence does not hold anymore. Medfaally, mutual infor-
mation does not represent any longer the information flomfdd” to BT . Intuitively,
this is due to the fact that mutual information expressesetation, and therefore it
is increased by feedback. But the feedback, i.e the way thmubinfluences the next
input, is part of the information to be transmitted. If we w#m maintain the corre-
spondence between the transmission rate and capacity, edetoeeplace the mutual
information withdirected informatiorj12].

Definition 1. In a channel with feedback, the directed information fromunA” to
output BT is defined as/ (A7 — BT) = Y./ | I(A%; B;|B*~1). In the other di-
rection, the directed information fronB” to A7 is defined asI(BT — AT) =
S I(Ay; B AR,

In Section 6 we shall discuss relation between directedrinéion and mutual
information, as well as the correspondence with infornrmatéakage. For the moment,
we only present the extension of the concept of capacity.

Let D7 = {{p(ay|a’~1, 3771} |} be the set of all input distributions. For finite
T, the capacity of a channel with memory and feedbdls, |of, 3:~1)}L; is:

1
Cr =sup =I(AT — BT) (13)
pr T

5 Interactive systems as channels with memory and feedback

Interactive Information Hiding Systems (IIHS) [1], are arieat of probabilistic au-
tomata in which we separate actions in secret and obserVatikractive” means that
secret and observable actions can interleave and influeatecther.

Definition 2. A generalllHS is a quadruplel = (M, A, B, L), whereM is a prob-
abilistic automaton(S, £, 5,v9), L = AU B U L, where 4, B, and L. are pair-

wise disjoint sets of secret, observable, and internaloactirespectively, and(s) C

DB UL, x S) implies|d(s)| < 1, for all s. The condition on) ensures that all
observable transitions are fully probabilistic.

Assumption In this paper we assume that general IIHSsravamalizedi.e. once un-
folded, all the transitions between two consecutive lekaige either secret labels only,
or observable labels only. Moreover, the occurrences akesemnd observable labels
alternate between levels. We will cakkcret statethe states from which only secrets-
labeled transitions are possible, astukervable statethe others. Given a general IIHS,
it is always possible to find an equivalent one that satisfissassumptions. The inter-
ested reader can find in the appendix the formal definitioh@ttansformation.

Finally, we assume that every state is reachable from tkialigiate, and that for ev-
ery s and/ there exists a uniquesuch thats X4 7. Under this assumption we have that
the traces of a computation determine the final state, agssged by the next proposi-
tion. In the followingtrace 4 andtraceg indicate the projection of the traces on secret
and observable actions, respectively.



Proposition 1. LetJ = (M, A, B, L,;) be a generallHS. Consider two paths and
o'. Then,trace 4 (o) = trace o(c’) andtracep (o) = traceg(o’) implieso = o’.

Proof. The proof follows easily by induction under the stated agsions that every
state is reachable from the initial state, and that for estates and labe¥, there exists
a unigue state such thats L

The initial state of the automaton is uniquely determinedHgyempty (input and
output) traces, because every state is reachable. Assungenare in a state uniquely
determined by input and output tracesand 3, respectively. Ifs makes an input tran-
sition s % s/, then there is only one staté reachable frons via ana-transition, and
therefores’ is uniquely determined by the input tragé = a.a and the output tracg.
Similarly, if s makes an output transition-> s’, the states’ is uniquely determined by
the input tracer and the output trace’ = 3b. O

In the following, we will consider two particular cases: fady probabilisticllHSs,
where there is no nondeterminism, and sleeret -nondeterministitHSs, where each
secret choice is fully nondeterministic. The latter willdaled simply I1HSs.

Definition 3. Let] = ((S, L, §,9), A, B, L) be a generallHS. ThenJ is:

— fully probabilistic if ¢(s) C D(A x S) implies|d(s)| < 1 for eachs € S.
— secret-nondeterministicif(s) C D(A x §) implies that for eacls € S there exist
s;" such thatd(s) = {0(as, i)} ;.

We show now how to construct a channel with memory and feddfvtam IIHSs.
We will see that an IIHS determines a channel as specifiedsbgtitchastic kernel,
while a fully probabilistic IIHS determines, additionallgiso the input distribution.
In Section 7 we will give an extensive and detailed examplamf to make such a
construction for a real security protocol.

Given a pathr of length2t — 1, we will denotetrace 4(o) by o, andtraces (o) by

Bt_l-

Definition 4. For eacht, the channel’s stochastic kernel corresponding te defined
asp(B,|at, B=1) = 9(q)(B,, ¢'), whereg is the state reached from the root via the path
o whose input-trace ia‘ and output traces* 1.

Note thatq and¢’ in previous definitions are well defined: by Propositiory is
unique, and since the choice @f is fully probabilistic,q’ is also unique.

The following example shows how to apply Definition 4, witte thelp of Proposi-
tion 1 to build the channel matrix of a simple example.

Example 2.Let us consider an extended version of the website intemsiistem of
Figure 1. We maintain the general definition of the system,there are two possi-
ble buyers fich andpoor represented byc. andpr., respectively) and two possible
products ¢heap andexpensive, represented byhp. andexp., respectively). We still
assume that offers are observables, since they are visibleetyone on the website, but
the identity of buyers should be kept secret. We considerctwisecutive rounds of of-
fers and buys, which implies, after normalizati@h= 3. Figure 3 shows an automaton
for this example in normalized form. Transitions with nulbpability are omitted.



To construct the channel matrifp(8,]at, 58~1)}L_,, we need to determine the
conditional probability of an observable at timgiven the history up to time

Let us take the case= 2 and compute the conditional probability of observable
B, = cheap given that the history of secrets until time= 2 is a® = a,, poor and
the history of observables i8! = expensive. Applying Definition 4, we see that
p(By = cheap|a? = a,,poor, B = expensive) = 9(q)(cheap, ¢'). By Proposition 1,
the tracesy®> = a,, poor, ' = expensive determine a unique stagen the automaton,
namely, the state = 5. Moreover, from the stateéa unique transition labelled with the
actioncheap is possible, leading to the staje= 11. Therefore, we can conclude that
p(By = cheap|la? = a,, poor, B = expensive) = ¥(q = 5)(cheap, ¢ = 11) = pa3.

Simirlarly, with t = 1 and historya! = a,,3° = (), the output symbopB;, =
expensive can be observed with probabilipf3, = expensivela! = a,, 5’ = 0) =
¥(q = 0)(cheap, ¢’ = 2) = 1.

If Jis fully probabilistic, then it determines also the inpustdibution and the de-
pendency ofy, upon3t~! (feedback) and!~!.

Definition 5. If J is fully probabilistic, the associated channel has a coodil input
distribution for eacht defined ag(a,|at~t, B1=1) = ¥(q)(oy, ¢'), Whereg is the state
reached from the root via the pathwhose input-trace ia*~! and output trace ig* .

Example 3.Since the system of Example 2 is fully probabilistic, we caltulate the
values of the conditional probabilitigp (c, |a~1, 3171)}L ;.

Let us take as an example the case where2 and compute the conditional proba-
bility of secreta,, = poor given that the history of secrets until time= 2 is o = a,
and the history of observablesf$ = expensive. Applying Definition 4, we see that
play, = poor|a; = a,, B = expensive) = 9(q)(poor,q'). By Proposition 1, the
tracesa! = a,, 3! = expensive determine a unique stagein the automaton, namely,
the statey = 2. Moreover, from the state a unique transition labelled with the ac-
tion poor is possible, leading to the stag¢ = 5. Therefore, we can conclude that
play = poor|a; = a,, B = expensive) = 9(q = 2)(poor,q’ =5) = q12.

Similarly, with t = 3 and historya? = a,, rich, 3% = cheap, expensive, the out-
put symbok, = rich can be observed with probabilitya; = rich|a? = a,, rich, 8% =
cheap, expensive) = 9(q = 10)(cheap, ¢’ = 21) = Gag.

5.1 Lifting the channel inputs to reaction functions

Definitions 4 and 5 define the joint probabilitig&?, 3*) for a fully probabilistic IIHS.

We still need to show in what sense these define a informaiiearetic channel.
The{p(B3,|at, Bt=1)}L_, determined by the IIHS correspond to a channel’s stochas-

tic kernel. The problem resides in the conditional prolighuif {p(a,|af~t, g1} .

In an information-theoretic channel, the valuecgfis determined in the encoder by a

deterministic functiorp, (3'~!). However, inside the encoder there is no possibility for

a probabilistic description af,. The solution is to externalize this probabilistic behav-

ior to the code functions.



Fig. 3. A longer, normalized version of the interactive system ofufé 1

As showed in [20], the original channel with feedback frorpuhsymbols.A”
to output symbolsB” can be lifted to an equivalent channel without feedback from
code functionsF* to output symbol€3”. This transformation will also allows us to
calculate the channel capacity. Lgi(¢,|¢* 1)}, be a sequence of code function
stochastic kernels and 1€b(3,|af, 3~1)}_; be a channel with memory and feedback.
The channel fronE'” to BT is constructed using a joint measupéo’, o', 57) that
respects the following constraints:

Definition 6. A measureQ(¢”,a®, 57 is said to beconsistentwith respect to the
code function stochastic kerndls(y,|¢* 1)}, and the channdlp(B,|at, Bt =1},
if, for eacht:

1. Thereis no feedback to the code functiapép, |0’ 1, o' =1, B11) = p(p,|et1).

2. Theinputis a function of the past outpufoy, |, o' 1, 8*71) = 61, (ge-1)3 (o)
wherej is the Dirac measure.

3. The properties of the underlying channel are preserved:

QB IF" =" A' =o', B"™" = g'71) = p(B,]a", B )
The following result states that there is only one conststeasure) (o, o, 57):

Theorem 4 ([20]).Given{p(p,|¢*~1)}_; and a channe{p(3,|at, B1~1)}E,, there
exists only one consistent meas@ey”, o, 37). Furthermore the channel frotA”
to BT is given by:

QB 871 = p(Bule' (B°1), 871 (14)

Since in our setting the concept of encoder makes no seniserads no information
to encode, we externalize the probabilistic behaviotphs follows. Code functions



become simpleeaction functionsp, that depend only o’~! (the message does

not play a role any more). Reaction functions can be seen axdalrof how the envi-
ronment reacts to given system outputs, producing newrsyisiguts (they do not play
arole of encoding a message). These reaction functionsdmwved with a probability
distribution that generates the probabilistic behaviahefvalues oty,.

Definition 7. A reactoris a distribution on reaction functions, i.e., a stochadtar-
nel {p(p,|¢* 1)} ,. A reactor R is consistent with a fully probabilistic IHS if it
induces the compatible distributia@(x”, o, 87) such that, for every < ¢t < T,
Qo= B71) = p(ay]al=1t, B1~1), where the latter is the probability distribution
induced byl.

The main result of this section states that for any fully @dobstic IIHS there is a
reactor that generates the probabilistic behavior of tH&1I

Lemma 1. LetX, Y be finite sets,and let € X,y € Y. Letp: X x Y — [0,1] be a
function such that, for every € X', we have}_, _,, p(z,y) = 1. Then:

Z H p(l’,f(l’)) = p(‘%ag)
fex—y rzeX
f(@)=19

Proof. By induction on the number of elements.f

Base case:X = {Z}. In this case:

Z Hp(maf(m)) :p(.f’,f(.f’)) :p(-%,?j)
fex—y “€X
f(@)=3

Inductive case: Let X = X’ U {z}, with z # %, andZ € X. Then:

> I »rer@)

FeX U{E} =Y zeX'U{z}
f(@)=y

= (by distributivity)



S I pes@) |- S plag)

fex'oy zeX/ ge{z} =Y
@)=y

= (by the assumption)

> 11 vl f

fEX/—>y TeX’
F(@)=7

= (by the induction hypothesis)
p(Z,7)
O

Theorem 5. Given a fully probabilistidiIHS J, we can construct a channel with mem-
ory and feedback, and probability distributigi(o”', o', 37, which corresponds tb

in the sense that, for evetya! ands?, with1 < ¢ < T, Q(cat, 3%) def 2T QT at, Bl =
p(at, %) holds, wherep(at, 3?) is the joint probability of input and output traces in-
duced by.

Proof. First of all we note that, by probability law& (o', 8°) = > . Q(¢", o', B).
So we need to show that ., Q(et, at, gt) = p(at, 5) by induction ory.

Base caseit = 1. Let us defineQ(¢,|e) = p(p,(€)) andQ(B;]at,€) = p(B;]ay).
Then:

D Qe et 8 = ZQ 1y, By)
‘101

= ZQ P11, €,€)Q(ay @y, €,€)Q(By 1wy, ay, €) (by the chain rule)

= Z Q#116)015, (0} (a1)Q(Bs|a' €) (by Definition 6)
= ZP ©q (€ 5{%(5)}(@1) (Bilay)

= P(al p(Bylay) (by definition of&)
= p(ala 51)

=p(at, 8)

Inductive case: Let us defingQ (8,|at, 5:71) = p(B,|at, B~ 1), and

Qe le™™) H Pl (B Dl 1B 72), 871
ﬁt 1



Note that, if we conside®X = {3~ | 8, € B,1 <i <t—1},Y = A, and
p(B7L, o) = ploy |~ (B172), B1~1), thenX, Y andp satisfy the hypothesis of
Lemma 1.

Then:

PINICRRED

f (by the chain Rule)

D QW T a T B TR(p e T o BT le o T BTHRQ(B e o BT
: (by Definition 6)

D QU T BTNR(e e ), O, (-1 () Q(Bylaf, B

p

= (by construction of))

> Qo g ( 11 p(wt<ﬁ’t-1>|sof—1<6/t-2>,6“)) Sty (51-1)1 (a)p(Blat, 871
pt ﬁ’t—l
= (by definition ofd)

Yo QT a B ( 11 p(sat(ﬂ’“)w1(&’”%5’“)) p(Blat, 8171

ﬁ’t—l

(Pt

Pt (ﬁtil):at

Z Q((pt—l’at—l’ﬁt—l)p(ﬁtlat,ﬁt—l) Z H p(@t(ﬁ/t—1)|(pt—1(6/t—2)’ﬁ’t—1)

t—1 Tt—1
® ® B

‘Pt(Btitl):O‘f,
= (byLemmal)

Z Q((pt_l,at_l,ﬁt_l) 'p(ﬁtlataﬁt_l) -p(at|at_1,ﬁt_1)
pt—1

p(Bela’, 1) plagla’™, 871 - Y Qe el B
[Pt—l
= (by induction hypothesis)

p(Belat, 8171 - play|at ™, B71) - plafh, BT
= (by the chain rule)
p(at, BY)



Corollary 1. Let aJ be a fully probabilisticlHS. Let {p(8,]at, 3771)}L_, be a se-
quence of stochastic kernels afig o, |a!~1, 3771)}L_, a sequence of input distribu-
tions defined by according to Definitions 4 and 5. Then the reacie= {p(p, |0 =)},
compatible with respect to tHkis given by:

plpy) = p(a1|a0, ﬂo) = play) (15)
plede’™") = T ple (BNl (872),871), 2<t<T (16)
ﬂt—l

Figure 4 depicts the model for IIHS. Note that, in relationFigure 2, there are
some simplifications: (1) no messages needed; (2) the decoder is not used. At the
beginning, a reaction function sequeng€ is chosen and then the channel is used
T times. At each usage the encoder decides the next input symbpbased on the
reaction functionp, and the output fed bagk —!. Then the channel produces an output
3, based on the stochastic kerngl3,|a!, 3~1). The output is then fed back to the
encoder with a delay one.

e .
. | |
IP“}SEZ‘EZE; e ! “Interactor” a, Channel 5l
o I {ay = ¢f</3t71)}tT:1 {p(Bylat, /3t71)}3“:1 :
! |
! |
! |
Be1 Mo L
: (Dol |

Fig. 4. Channel with memory and feedback model for IIHS

We conclude this section by remarking an intriguing coieaick: The notion of
reaction function sequencg€’, on the IIHSs, corresponds to the notion of deterministic
scheduler. In fact, each reaction functipnselects the next step,, on the basis of the
Bt~1 andat~! (generated byt~1), andBt~!, ot~ represent the path until that state.

6 Leakage in Interactive Systems

Mutual information expresserrelation between two random variables. In fact, the
symmetry of mutual information;,(A”; BT) = I(BT; AT), reflects the fact that the
amount of information we can get frol” by observingA” is the same amount of
information that we get froml” by observingB” . There is no concept @fausality in
the sense that neithef’ is seen as causing’, nor the inverse.

Mathematically, forl’ usages of the channel, the mutual informatiga”; BT')
can be calculated with the help of the chain law of Equation 2:

T
I(A";BT) =Y I(A";B|B"™) (17)

t=1



Note that in the equation above, each term of the sum is theahirtformation
between the random variablg, and the whole sequence of random variatiés =
Ay, ..., A, given the history orB'~!. The equation shows that at time< ¢ < T,
even though only the inputs’ = «,, a,,...,a, have been fed to the channel, the
whole sequence’, includinga, , 1, o, - - . , -, has a statistical correlation with the
outputs,. Although it can sound surprising at first, we need to remertita in princi-
ple the channel can be used with some sort of feedback, acé sintual information
is symmetric, it is indeegd, that has aninfluence an, |, o 5, ..., ap.

Directed information, presented in Definition 1, captutes toncept otausality
to which the definition of mutual information is indiffererit splits the correlation
between inputs and outpuf$A”'; BT) into the information that flows from input to
output through the channé(A” — BT) and the information that flows from output
to the input via feedback(BT — AT). Note that the directed information is not
symmetric: the flow fromd” to BT takes into account the correlation betweérand
8., while the flow fromB7 to AT is based on the correlation betwegit! anda, .
Intuitively, this is because! influencesg,, but, in the other direction, it i$*~! that
influencesy,.

It can be proved [20] that

I(AT; B") = (AT — BT) 4+ (BT — AT)

i.e, the mutual information is the sum of the directed infation flow in both senses.
That is the reason why it is symmetric.

Once we can split mutual information into directed inforioatin two different di-
rections, it is important to understand the different rbkgt the information flow in each
direction plays. The directed information from inputs taputs (A7 — BT) repre-
sents the system behavior: via the channel the informatiersffrom inputs to outputs
according to the system specification, modeled by the chatmehastic kernels. This
flow represents the amount of information an attacker cam fyam the inputs by ob-
serving the outputs and we argue that this is the real infoom#eakage.

On the other hand, the directed information from outputsyputs7 (A7 — BT)
represents how the environment reacts to the protocolngive system outputs, the
environment reacts producing new inputs. We argue thahfoemation flow from out-
puts to inputs induced by this dependence is independemygbarticular system, it is
a characteristic of the environment itself. Hence, if ancker knows how the environ-
ment reacts to outputs, i.e the probabilistic behavior efahvironment reactions given
the system outputs, this knowledge is part ofdh@iori knowledge, and should not be
counted as leakage.

If a channel does not have feedback, tH¢B? — AT) = 0 and it follows that
I(AT; BT) = I(AT — BT). In channels without feedback mutual information is a
good measure of information flow because it coincides witbaded information from
input to output. This correspondence does not hold anynfatteei channel is used
with feedback and, therefore, we should consider the diceittformation as the real
measure of information transmitted by the channel. The¥dhg example should help
understanding why.



Example 4.Consider the discrete memoryless channel with input alehéb= {a,, a,}
and output alphabéd = {b,, b,} whose matrix is represented in Table 5.

Suppose that the channel is used with feedback, in such a .l
way that, for allt’s, a;  ; = a; if 3, = by, anday,; = a, if a,|/0.5]0.5
B, = by. Itis easy to show that if > 2 thenI(A?; B*) # 0. a5(|0.5{0.5
However, there is no leakage frost to BY, since the rows of
the matrix are all equal. We have indeed that* — B') =0, Table 5.Channel ma-
and the mutual informatiofi( A*; B') is only due to the feed- trix for Example 4
back information flow/ (B! — A?).

Having in mind the above discussion, we now propose a notfanformation flow
based on our model. We follow the idea of defining leakage aagimum leakage
using the concepts of mutual information and capacity (seénktance [3]), making
the necessary adaptations.

Since the directed informatiai{ A” — BT) is a measure of how much information
flows from AT to BT in a channel with feedback (cfr. Section 4.2), it is natuaal t
consider it as a measure of leakage of information by theopobt

Definition 8. The information leakage of ahHS is defined asi(A” — BT) =
S H(AJA™Y, B — H(AT|BT).

Note thaty;_, H(A;|A*~!, Bt~1) can be seen as the entrofy; of reactorR.
Compare this definition with the classical Informationdgtetic approach to infor-
mation leakage: when there is no feedback, the leakage isedidis:

I(AT;BT) = H(A") - H(AT|B") (18)

The principle behind (18) is that the leakage is equal to iifferdnce between
thea priori uncertainty H(A”) and thea posteriori uncertaintyd (A”|BT) (gain in
knowledge about the secret by observing the output). Oumitiefi maintains the same
principle, with the proviso that the a priori uncertaintynisw represented b¥/y. In
the Section 7 we give an extensive and detailed example otdoelculate the leakage
for a real security protocol.

6.1 Maximum leakage as capacity

In the case of secret-nondeterministic IIHS, we have a ststahkernel but no distri-
bution on the code functions. In this case it seems natuigider the worst leakage
over all possible distributions on code functions. Thisdiaatly the concept of capacity.

Definition 9. Themaximum leakagef an IIHS is defined as the capacityr of the
associated channel with memory and feedback.



7 Modeling IIHSs as channels: An example

In this section we show the application of our approach toGbeaine Auction Proto-
col[18]. Let us imagine a situation where several mob individaae gathered around
a table. An auction is about to be held in which one of themrsffés next shipment
of cocaine to the highest bidder. The seller describes threlhmadise and proposes a
starting price. The others then bid increasing amounts thire are no bids for 30
consecutive seconds. At that point the seller declaresutbtgom closed and arranges a
secret appointment with the winner to deliver the goods.

The basic protocol is fairly simple and is organized as a asgion of rounds of
bidding. Round starts with the seller announcing the bid prégéor that round. Buyers
havet seconds to make an offer (i.e. to say yes, meaning “I'm vgllia buy at the
current bid priceb;”). As soon as one buyer anonymously says yes, he becomes the
winnerw; of that round and a new round begins. If nobody says anytluingdeconds,
roundi is concluded by timeout and the auction is won by the winngr; of the
previous round, if one exists. If the timeout occurs duringnd 0, this means that
nobody made any offers at the initial prieg so there is no sale.

Although our framework allows the formalization of this pvool for an arbitrary
number of bidders and bidding rounds, for illustration msgs, we will consider the
case of two biddergGandlemakeandScarfacg and two rounds of bids. Furthermore,
we assume that the initial bid is alwaysdollar, so the first bid does not need to be
announced by the seller. In each turn the seller can choosenthiach he wants to
increase the actual bid. This is done by adding an increntetié last bid. There
are two options of increments, namehe; (1 dollar) andinc, (2 dollars). In that way,
biy1 Is eitherb; + incy or b; + ince. We can describe this protocol asxarmalized
IIHSZ = (M, A, B, L), whereA = {CandlemakeiScarfacea*} is the set of secret
actions,B = {incy,inca, b, } is the set of observable actions, = § is the set of
hidden actions, and the probabilistic automatdétis represented in Figure 5. For clarity
reasons, we omit transitions with probabilityn the automaton. Note that the special
secret actior,, represents the situation where neit@@ndlemakenor Scarfacebid.
The special observable actibpis only possible after no one has bidden, and signalizes
the end of the auction and, therefore, no bid is allowed amgmo

P1o
incg incy
23 q24

/ o

12 4 15

P13

b, incy incy incy b, inc incy incy

1" Q27 q28 429 1 32 33 q34
o

Fig. 5. Cocaine Auction example
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Table 6 shows all the stochastic kernels for this example.fohmalization of this
protocol in terms of 1IHSs using our framework makes it pblesto prove the claim
in[18] suggesting that if the seller knows the identity of thidders then the (strong)
anonymity guaranties are not provided anymore.

la, B, a0 = Bo |[CheapExpensivéb, |
Candlemakegnc; ,Candlemakell go2 q23 0
Candlemakeinc; ,Scarface q24 q25 0
Candlemakegnc ,a. 0 0 1
Candlemakegnce,Candlemakell go7 q2s 0
| o — B || incs | inca b, Candlemakeincs,Scarface q29 q30 0
Candlemakegncs,a, 0 0 1

Candlemakdf g4 gs |0 .
Scarfaceinc; ,Candlemaker q32 q33 0

Scarface g6 qr 0 -
- 0 1 Scarfaceincy ,Scarface q34 q3s 0
a Scarfacenc,a, 0 0 1
Scarfaceince,Candlemaker qs7 qss 0

a)t=1 1 g0

@) P(Biler, B7) Scarfaceincs,Scarface 30 qio |0
Scarfacencs,a, 0 0 1
Qy,bs,a, 0 0 1
All other lines 0 0 1

(b)t = 2,p(52|062,ﬂ1)

Table 6. Stochastic kernels for the Cocaine Auction example.

The next step is to construct all the possible reaction fanst{ f,(3~1)}L,. As
seen in Section 5.1, the reaction functions are the cornelgrd to the encoder in the
channel. They take the feedback story and decide how the&igogbing to react to this
situation. For this example, Table 7 shows the reactiontfans for each time.

Now we need to define the reactor, i.e., the reaction funstginchastic kernel.
Corollary 1 shows that we can do so by using the following ¢qua:

pp1) = play |0407 ﬂo) =p(ay)

plele™") = [] ple(B NI (872),871), 2<t<T
ﬂtfl

For instancep(f,;)) = p(Candlemaker) = pi. In the same wayp(f,,)) =
p(Scarface = po andp(f1(3)) = p(a,) = ps.
Let us take as an example the calculatiom»(ng(G) |f1(3)):
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Table 7. Reaction functions for the cocaine auction example.
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Note that some reaction functions can have probabilitwhich is consistent with
probabilistic automaton. For instance:

P(f2(25) |f1(3)) = Hp(f2(4) (51)|901(3) ) 51)
Bl

= p(f2(4) (inc1)la,, incy) 'p(f2(4) (incz)la,, incz) 'p(f2(4) (0,)la,b,)
= p(b,|a,,inc1) - p(b,|a,,incz) - p(Candlemaket,,b,)

=1-1-0

-0 (20)

7.1 Calculating the information leakage

Let us now calculate the information leakage for this coeainction example using the
concepts from Section 6. We are going to analyze three diftescenarios:

Examplea: There is feedback, but the probability of an observable doedepend on
the history of secrets. In the auction protocol, this cqroesls to a scenario where
the probability of one of the mob members to bid can depencheriricrement
imposed by the seller, but the history of who has previouglyity the past has
no influence on the choice of increments by the seller duttiregcoming turns.
In other words, the seller cannot use the information of was been bidding to
change his strategy of defining the new increments. Thigtsitn corresponds to
the original description of the protocolin [18], where tledlesr does not have access
to the identity of the bidder, for the sake of anonymity preagon. In general, we
have thatp(3,|at, B1~1) = p(B,|8t1) for everyl < t < T. However, there is
an exception: if there is no bidder, case modeled by the sbeiega,, then the
auction terminates, which is signaled by the observahle

Exampleb: Thisis mostgeneral case: no restrictions. The preseneedbfck allows
the probability of the bidder to depend on the increment emifice. For instance,
if Candlemakeis richer thanScarfaceit is more likely that the latter bids if the
increment in the price igwco instead ofinc; . Also, the probability of an observable
can depend on the history of secrets, i.e., in gengrglat, 5:~1) # p(3,1871)
for1 <t¢ < T. This scenario can represent a situation where the selteriapted
and can use his information to affect the outcome of the ancts an example,
suppose that the seller is a friend $€arfaceand he wants to help him in the
auction. One way of doing so is to check who was the winner eflaist bidding
round. Whenever the winner Gandlemakerthe seller chooses for increment the
small valueinc,, hoping that it will giveScarfacea good chance to bid in the next
round. On the other hand, whenever the seller detects thatitimer isScarfacehe
chooses for the next increment the greater vatug, hoping that it will minimize
the chances dfandlemaketo bid in the next round (and therefore maximizing the
chances of the auction to end havifgarfaceas the final winner).

Examplec: There is no feedback. In the cocaine auction, we can haventhghe
unrealistic) situation in which the increment added to thkHas no influence on



the probability ofCandlemakenr Scarfacebeing the bidder. Mathematically, we
have thap(a,|af~1, B771) = p(ay|ai~1) for everyl < ¢t < T. However, like in
Exampleb, we do not impose any restriction g3, |, 3171).

For each scenario we need to attribute values to the prdtiedih the protocol tree
in Figure 5. The probabilities for each example are listed@iahle 8.

Probability|| Examplea |Exampleb |Examplec
variable value value value
p1 0.7 0.7 0.7
D2 0.2 0.2 0.2
3 0.1 0.1 0.1
qa 0.9 0.1 0.1
qs 0.1 0.9 0.9
g6 0.9 0.9 0.9
qr 0.1 0.1 0.1
Do 0.6 0.6 0.6
P10 0.3 0.3 0.3
P11 0.1 0.1 0.1
P12 0.5 0.5 0.6
P13 0.3 0.3 0.3
P15 0.4 0.4 0.5
P18 0.6 0.6 0.5
P19 03 03 02
q22 0.4 0.1 0.1
q23 0.6 0.9 0.9
q24 0.7 0.9 0.9
q25 0.3 0.1 0.1
Q28 0.8 0.9 0.9
q29 0.1 0.9 0.9
q30 0.9 0.1 0.1
q33 0.6 0.9 0.9
q34 0.7 0.9 0.9
q3s5 0.3 0.1 0.1
qs7 0.2 0.1 0.1
qss 0.8 0.9 0.9
q40 0.9 0.1 0.1

Table 8. Values of the probabilities in Figure 5 in 3 different exaegl



Table 9 shows a comparison between some relevant valueg tinrée cases.

Interpretation ‘Symbol HExampIe ziaExampIe $Example ¢
Input uncertainty H(AT) 2.3833 | 2.4891 | 2.3607
Reactor uncertainty |Hr 2.3768 | 2.4832 | 2.3607
A posteriori uncertainty (A”|B™) 1.3683 | 0.0677 | 0.6646
Mutual information  |I(AT; BT) = H(AT) — H(AT|BT)|| 1.0150 | 1.8214 | 1.6961
Leakage I(AT — BT) = Hr — H(AT|BT) || 1.0085 | 1.8155 | 1.6961
Feedback information|I (BT — AT) 0.185955/ 0.0060 | 0.0000

Table 9. Values for the examples.

In Examplea, since the probability of observables does not depend ohithery
of secrets, there is (almost) no information flowing from thput to the output, and
the directed informatiod(A” — BT is close to zero, i.e., there leakage is low. The
only reason why the leakage is not zero is because the endaiaion needs to be
signaled. However, due to presence of feedback, the ditéctermation in the other
sensel (BT — AT) is non-zero, and so is the mutual informatibfi”; BT). This is
an example where the mutual information does not correspmtite real information
leakage, since some (in this case, most) of the correlagbmden input and output can
be attributed to the feedback.

In Exampleb the information flow from input to output(A” — BT) is signifi-
cantly higher than zero, but still, due to feedback, therimfation flow from outputs to
inputsI(BT — AT) is not zero and the mutual informatiditA”; BT) is higher than
the directed informatiodi(A” — BT') which gives the actual leakage.

In Examplec, the absence of feedback implies thaB” — AT) is zero. In that
case the values dif A”; BT) andI(A” — BT) coincide, and correspond to leakage.

8 Topological properties oflIHSs and their Capacity

In this section we show how to extend to IIHSs the notion ofupeenetric defined
in [7] for Concurrent Labelled Markov Chains, and we provattthe capacity of the
corresponding channels is a continuous function on thisgm®etric. The metric con-
struction is sound for general IIHSs, but the result on ciéyp&conly valid for secret-
nondeterministic 1IHSs.

Given a set of stateS, a pseudometric (or distance) is a functidthat yields a
non-negative real number for each pair of states and satibiéfollowing:d(s, s) = 0;
d(s,t) = d(t,s), andd(s,t) < d(s,u) + d(u,t). We say that a pseudometids c-
bounded ifvs, ¢ : d(s,t) < ¢, wherec is a positive real number.

Note that, in contrast to metrics, in pseudometrics two eletsican have distante
without being identical. The reason for considering pseuelnics instead than metrics
is because the purpose is to extend the notion of (probadjlisisimulation: having
distance) will correspond to being bisimilar.



We now define a complete lattice on pseudometrics, in ordéetime the distance
between IIHSs as the greatest fixpoint of a particular tanshtion, in line with the
coinductive theory of bisimilarity. Since larger bisimtitms identify more, the natural
extension of the ordering to metrics must shorten the digtsias we go up in the lattice:

Definition 10. M is the class of -bounded pseudometrics on states with the ordering
d=difVs,s"€S:d(s,s)>d(ss).

Itis easy to see thdiM, <) is a complete lattice. In order to define pseudometrics
on IIHSs, we now need to lift the pseudometrics on stateseagsmetrics on distribu-
tions inD(L x S). Following standard lines [21, 7, 6], we apply the consinrcbased
on the Kantorovich metric [10].

Definition 11. For d € M, andu, ' € D(L x S), we definei(u, ') (overloading
the notationd) asd(u, 1') = max 3}, ) erxs(blli,si) — ' (L, si))z; where the
maximization is on all possible values of thes, subject to the constraints< z; < 1
andx; — T < CZ((EZ, Si), (@j, Sj)), where

1 if €; # ¢
d(si, sj) otherwise

(s, 1), (4,55)) = {

It can be shown that with this definition is a pseudometric oR(L x S).

Definition 12. d € M is abisimulation metridf, for all € € [0,1), d(s, s’) < eimplies
that if s — u, then there exists somé such thats’ — p/ andd(u, ') < e.

Note that it is not necessary to require the converse of thditon in Definition
12 to get a complete analogy with bisimulation: the convessedeed implied by the
symmetry ofd as a pseudometric. Note also that we prohilbit be1 because through-
out this papeil represents the maximum distance, which includes the casesvame
state may perform a transition and the other may not.

The greatest bisimulation metricds, .., = | [{d € M | d is a bisimulation metrig.
We now characterizé,, ., as a fixed point of a monotonic functi@ghon M. Eventu-
ally we are interested in the distance between IIHSs, antthéosake of simplicity, from
now on we consider only the distance between states belgptgidifferent IHSs. The
extension to the general case is trivial. For clarity pugspsve assume that different
IIHSs have disjoint sets of states.

Definition 13. Given twollHSs with transition relationsy and ¢’ respectively, and a
preudometrial on states, defineé : M — M as:

max; d(S“ S;) if 19(8) = {6(,11751), ey 5(am75m)}
and 19/(8/) = {6(,1175/1), ceey 5(am75/m)}

B(d)(s,s') = { dlw, 1) if J(s) = {u} and’(s) = {p'}

0 if 9(s) = 0/ (s') = 0

1 otherwise




Itis easy to see that the definition®fis a particular case of the functigndefined
in [7, 6]. Hence it can be proved, by adapting the proofs ofaha@ogous results in [7,
6], thatF'(d) is a pseudometric, and that the following property holds.

Lemma 2. Fore € [0,1), (d)(s,s") < e holds if and only if whenever — p, there
exists some’ such thats’ — p/ andd(u, p') <.

Corollary 2. d is a bisimulation metric iffl < &(d).

As a consequence of Corollary 2, we have that, = | [{d € M | d 2 &(d)},
and still as a particular case 6fin [7, 6], we have tha® is monotonic onM.

We can now apply Tarski's fixed point theorem, which ensuneg d,,,. is the
greatest fixed point ob. Furthermore, by Corollary 2 we know théyt, ., is indeed a
bisimulation metric, and that it is the greatest bisimwiatinetric. In addition, the finite
branchingness of IIHSs ensures that the closure ordin@lisfw (cf. Lemma 3.10 in
the full version of [7], available on the authors’ web pag@&sjerefore one can proceed
in a standard way to show thdt,,, = [1{®*(T) | i € N}, whereT is the greatest
pseudometric (i.€T (s, s') = 0 for everys, s’), and®®(T) = T.

Given two IIHSsJ andJ’, with initial statess ands’ respectively, we define the dis-
tance betweefiandd’ asd(J,7’) = dmasz (s, s'). The following properties are auxiliary
to the theorem which states the continuity of the capacity.

Lemma 3. Consider twollHSs J and J’ with transition functionsy and v’ respec-
tively. Givent > 2 and two sequences’ and 3¢, assume that botfi(a’~!, g~ 1)
and 7' (o=, pt=1) are defined, thatl,,.. (I(af=t, Bt=1), 7 (at=1, B71)) < p(B: |
at, g1, andd(I(at, B11)) # (. Then:

1. 9'(3(at, Bt71)) # 0 holds as well,
2. J(at, Bt) andJ’(at, 5) are both definedy(3; | of, Bt~1) > 0, and

, dmlw(j(at_l,ﬁt_l),jl(at_l,ﬁt_l))
dmaz(j(atvﬁt)aj (atvﬁt)) S p(ﬂt | atvﬂtfl)'

Proof.
1. Assumed(J(at, Bi=1)) # 0 and, by contradictiony’ (7' (af, 31=1)) = (. Since
dmas is a fixed point ofF, we haved,,,o; = F(dmaz ), and therefore
dimaz (I(a’, B71), T (al, B71)) = F(dmas)(I(a’, 1), T (aF, B1))
=1
Z p(ﬁt | at7ﬁt_1)a
against the hypothesis.
2. If9(I(at, Bt71)) # 0, then, by the first point of this lemma&; (7' (at, Bt~1)) # 0

holds as well, and therefore boftia?, 5*) and J'(a?, ') are defined. The hy-
pothesisd a. (Il =1, B171), 7 (=1, B71)) < p(B: | of,B'~1) ensures that



p(B: | at, B71) < 0. Let us now prove the bound a@h,.. (J(at, 5),9'(at, BY)).
By definition of®, we have

D(dmas) (a1, 67, 7@ 7)) 2 diae (I(a’, 571), T (, B71)).
Sincedar = D(dmaz ), We have

Amaz (3@ 71, 71,7071, B571) = dimae (I(t, 71,7 (F, 871)). (21)
By definition of® and of the Kantorovich metric, we have

é(dmam)(j(ata Bt_l)a j/(at7 Bt_l)) Z p(ﬁt | ata Bt_l)'
dinas (I(a?, B), 7 (a, BY)).
Using againi,,q, = ®(dpma.), We get
dm@ﬂ?(j(ata Btil)a j/(atv Btil)) Z p(ﬁt | ata Btil)'
dinas (I, BY), 7' (e, BY)),
which, together with (21), allows us to conclude.
O

Lemma 4. Consider twollHSs J and 7', and letp(- | -,-) andp/(- | -,-) be their
distributions on the output nodes. Giv&r> 0, and two sequences andj3”, assume
thatp(B: | of, Bt=1) > 0 for everyt < T'. Letm = minj<¢<7 p(Bt | of, 371) and let
e € (0,mT~1). Assumel(J,J’) < e. Then, for every < T, we have

€

p(/Bt | atvﬂtil) 7p/(ﬂt | atvﬂtil) <

mIT-1 '

Proof. Observe that, for every < T, J(at, 3t) must be defined, and, by repeatedly
applying Lemma 3(1), we get that al§ga’, 5?) is defined. By definition of>, and of
the Kantorovich metric, we have

p(/Bt | atvﬂtil) 7p/(ﬂt | ata/@til) S qs(dmaf)(j(atilaﬂtil)vj/(atilvﬂtil))a
and sincel,, . is a fixed point o, we get
p(ﬂt | ataﬂtil) 7p/(/8t | atvﬂtil) S dmaI(j(atilvﬂtil)aj/(atilaﬂtil))' (22)

By applyingt — 1 times Lemma 3(2), from (22) we get

0 0 ’ aU 0
P(ﬁt | at,ﬁt_l) —p/(ﬁt | at,ﬁt_l) < dpmaz (I( ,;,ft—),lj( ,87))

d(3,7")
1

om?

d(3,7")
mT—l

<

<

€
mT-1



Note that previous lemma states a sort of continuity prgpefrthe matrices ob-
tained from IIHSs, but not uniform continuity, because @& ttependence on one of the
two IIHSs. It is easy to see (from the proof of the Lemma) thratarm continuity does
not hold.

The main contribution of this section, stated in next thegris the continuity of
the capacity w.r.t. the metric on IIHSs. For this theorem assume that the IIHSs are
normalized. Furthermore, it is crucial that they are senpgtdeterministic (while the
definition of the metric holds in general).

Theorem 6. Consider two normalizedHSsJ andJ’, and fix aI" > 0. For everye > 0
there exists’ > 0 such that ifd(7,7") < v then |Cr(J) — Cr(7)] <e.

Proof. Consider two normalized IIHSkandJ’ and choosé’, e > 0. Observe that

1 1
|Cr(3) — Cr(7")] = | max ?I(AT — BT) — max ?I(A/T — B

pr () pr ()

A

%Ef}.% |I(AT - BT) — 1(A'"T — B'T)|

Since the directed informatiof AT — BT) is defined by means of arithmetic opera-
tions and logarithms on the joint probabilitigy?, 3t) and on the conditional probabil-
itiesp(at, BY), p(at, Bt=1), which in turn can be obtained by means of arithmetic oper-
ations from the probabilities(3; | of, 3~1) andpr(o'), we have thaf (AT — BT)

is a continuous functions of the distributiop§s; | «of, 3'=1) and pr(y?), for ev-
eryt < T.Letp(B | of,871), p'(B: | of,371) be the distributions on the out-
put nodes off andJ’, modified in the following way: starting from lev&l, whenever
p(B: | af, Bt=1) = 0, then we redefine the distributions in all the output nodethef
subtree rooted ifi(a’, 3") so that they coincide with the distribution of the corresghon
ing nodes of ird’, and analogously for'(3; | o, 3~1). Note that this transformation
does not change the directed information, because theegutwtoted irf (o, ¢) does
not contribute to it, due to the fact that it depends the podiba of reaching any of its
nodes i9). The continuity of (AT — BT) implies that there exist€ > 0 such that, if
Ip(Be | ot, BE1) — p'(Be | of, B171)| < € forall t < T and all sequences, 3¢, then,
foranypr(¢?), we have I(AT — BT) - I(A'T — B'T)| < e. The result then follows
from Lemma 4, by choosing

v=¢ - min( min p(ﬁt | at7ﬁt_1)7 min pl(ﬁt | Oét,ﬁt_l)).
1<t<T 1<t<T
p(Be |, 871 >0 P (Be |t BN > 0
O

We conclude this section with an example showing that théiroity result for the
capacity does not hold if the construction of the channebisedstarting from a system
in which the secrets are endowed with a probability distidyu This is also the reason
why we could not simply adopt the proof technique of the auuity result in [7] and
we had to come up with a different reasoning.



Example 5.Consider the two following programs, wheig, a» are secretdy, bo are
observable|| is the parallel operator, ang, is a binary probabilistic choice that assigns
probabilityp to the left branch, and probability— p to the right one.

S) (send(a1) +, send(az)) || receive(x).output(bs)
t) (send(a1)+4 send(az)) || receive(z).if * = a1 then output(b1) else output(bs).

Table 10 shows the fully probabilistic IIHSs correspondinghese programs, and
their associated channels, which in this case (since thretsactions are all at the top-
level) are classic channels, i.e. memoryless and withaafack. As usual for classic
channels, they do not depend prandq. It is easy to see that the capacity of the
first channel i9) and the capacity of the second ond isHence their difference i,
independently fronp andg.

Let nowp = 0 andg = e. It is easy to see that the distance betweemdt is .
Therefore (when the automata have probabilities on thees®¢the capacity is not a
continuous function of the distance.

(1101 CL11
a2 | 0|1 a2 | 0|1

(@) (b)

Table 10.The IIHSs of Example 5 and their corresponding channels

9 Conclusion and discussion

In this paper we have investigated the problem of infornmatémkage in interactive
systems, and we have proved that these systems can be maseleahnels with mem-
ory and feedback. The situation is summarized in Table 1T¢e® comparison with the
classical situation of non-interactive systems is repregkin (b). Furthermore, we have
proved that the channel capacity is a continuous functigdghe@kantorovich metric.

Thorough the paper we have assumed Principle 3. What hagkissassumption
is removed? First f all, we observe that the removal couldersdnse, i.e. in certain
cases we could argue that the probabilistic knowledge &dedcto the secret choices
(and its dependence on the observabtesiid be considered as part of the leakalye
the cases andb of the cocaine auction example in Section 7, for instance,roay
want to consider the information that we can deduce abousébeets (the identities
of the bidder) from the observables (the increments of thleryas a leak due to the
protocol. Our framework can encompass also this case, anmdddel remains the same.
But the leakage would be represented by the mutual infoomatther than by the
directed one.



[lIHSsas automata

[IIHSs as channels

[Notion of leakage

Normalized IIHSs with nondeterminis
inputs and probabilistic outputs

iBeque

{p(ﬂtlat7 ﬁtil)}?:l

nce of stochastic kerrélsakage as capacity

Normalized IIHSs with a deterministic|
scheduler solving the nondeterminism

Seque

{p(Bilat, B M)y +

reaction function segp”

nce of stochastic kernels

Fully probabilistic normalized IIHSs |Seque

{p(Bilat, B, +
reactor{p(y,|' 1)},

nce of stochastic kernélsakage as directed

information (AT — BT)

(@)

|Classical channels |

Channels with memory and feedback |

The protocol is modeled in independent useg
the channel, often a unique use.

sIdfe protocol is modeled in several

consecutive uses of the channel.

The channel is fromd” — BT, i.e., its input
is a single stringx” = a ... as of secret
symbols and its output is a single strifd =
B ... By of observable symbols.

The channel is fronF — B, i.e. its
input is a reaction functiop, and its
output is an observable,.

The channel is memoryless and in general
implicitly it is assumed the absence of
feedback.

The channel has memory. Despite the fact tha
channel fromF — B does not have
feedback, the internal stochastic kernels
do.

t the

The capacity is calculated using information
I(AT; BT).

The capacity is calculated using mutual

directed informationf (AT — BT).

®

Table

11.

In some other cases the flow of information from the obsepstu the secrets may
even be considered as a consequence of the active attachksadf/arsary, which uses
the observables to modify the probability of the secretshis case the leakage would
be divided in two parts: the one due to the protocol, reptesgoy 1 (AT — BT), and
the one due to the attacks of the adversaries, and reprddgnfé BT — AT). THe
total leakage would still be represented by the mutual imftion.

10 Future work

We would like to provide algorithms to compute the leakaged amaximum leakage

of interactive systems. These problems
growth of reaction functions (needed to

result very chgiltengiven the exponential
compute the leakagd the quantification

over infinitely many reactors (given by the definition of maxim leakage in terms
of capacity). One possible solution is to study the relatietween deterministic sched-
ulers and sequence of reaction functions. In particulahe&lieve that for each sequence
of reaction functions and distribution over it there exesfwobabilistic scheduler for the
automata representation of the secret-nondeterminibt&: Iin this way, the problem of



computing the leakage and maximum leakage would reducettmédard probabilistic
model checking problem (where the challenge is to computkalilities ranging over
infinitely many schedulers).

In addition, we plan to investigate measures of leakagenteractive systems other
than mutual information and capacity.

We intend to study the applicability of our framework to threaof game theory.
In particular, the interactive nature of games suclPasoner Dilemmdg14] andStag
and Hunt[16] (in their iterative versions) can be modeled as chaswvéh memory and
feedback following the techniques proposed in this worktharmore, (probabilistic)
strategies can be encoded as reaction functions. In thisopdiynal strategies are at-
tained by reaction functions maximizing the leakage of thenmel.
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Appendix

A: Normalization of IIHS trees

In this section we will address the problemrajrmalizingan IIHS in such a way it is
compatible with the assumptions made along the paper. Tdeeps of normalization
described bellow is general enough to be applied to any IIHISowt loss of generality
or expression power.

Consider a general IIH$ = (M, A, B, L;) with M = (Q, L, §,9), whereL =

AUBUL,. LetJ represent an interactive system, such as a protocol. Letnsder
that we are interested only in a finite execution of the prote» the automaton tree is
already unfolded up to a certain level in such a way that thgést input trace ia”"
and the longest output trace48” .

In the normalization process, first we will extend the inpphabetA with a new

symbola, ¢ A and, in the same way, the output alphaBetith a new symbob, ¢ B.
As we will see soon, those new symbols will be used as pladen®ivhen we need to
rebalance the tree. The new input and output alphabetsevidterred asl’ = AU{a,}
andB’ = BU {b,}, respectively.



Let us definél’ = max(7’,T"), i.e., the maximum length of any input or output
trace in the unfolded tree of the automaton. The functiabels (J,¢) : IIHS x
{1,...,T} = p(£) from an IIHSJ and a given level <t < T of its unfolded tree to
the setC of input symbols, output symbols and unobservable symtfdlslaformally,
Labels (J,t) is the set of all labels of transitions that can be performid avnon-zero
probablity from the states at th&" level of the automaton df.

Definition 14. For anllIHS J = (M, A, B, L;) with M = (Q, L, §,9), whereL =
AUBU L., and fort > 0:

Label s(J,t) ={¢ € L |3o,s . |o| =t, last(o) 4 s}

The process of normalization of a tree relies on the factitigpossible to construct
an equivalent IHS" = (M', A',B’, L), whereM' = (Q’', L', ,%¥') such thatl’ =
A" U B’ U L, and its unfolded tree up to depi” respects, for every < ¢ < T

1. Labels (9,t)n A" =0 or Labels (,t)nB = 0;

. A’ ClLabels (7,t) or B’ C Labels (7,t);

3. A C Labels (9,t) iff B’ C Labels (3,t+ 1), where we consider the arith-
metic ont modulo2T;

4. A’ C Labels (7',1);

5. | trace 4/ (0)| = | tracep (0)| = T, for all patho in the unfolded tree.

N

Condition 1 states that each level can admit input actionsudput actions, but
not both. Condition 2 states that all input actions need tdidted in an input level,
and the same for output levels and actions (as we will see, svam if we need to
associate probability zero to an action). Condition 3 stétat input and output levels
must necessarily alternate. Condition 4 assures that wayalstart with an input level.
Condition 5 assures that all the leaves of the unfolded re@dahe same level, i.e., the
tree isbalanced

The proof is straightforward, but we shall give an intuitiohit. First, the new
symbolsa, andb, are place holders for the absence of an input and output dymbo
respectively. Now, if in a given level we want to have only input symbols, we can
postpone output symbols by addiagto the level and “moving” all the output symbols
to the subtree of, . Figure 6 exemplifies the local transformations we desitiree.

Note that in 6(b) the introduction of new nodes changed tbbailities. In general,
if we are in an input level, we need to introduceto postpone the output symbols, and
the probabilities change as follows:

1. Forevery,, 1 < i < n, the associated is probability is mantained;ﬁ@is: Pa,s

2. The probability of the new symbal, is introduced ag,,, = > Do, ;

3. If pa, # 0, then forl < i < m, the associated probability ¢f is updated to
pg)j =P, /Pa. = Pb,/ Do Pb,- I Pa. =0, thenp;)j =0,forl <i<m,and
pb* =1.



(a) Local nodes of the tree before the (b) Local nodes of the tree af-
transformation ter the transformation

Fig. 6. Local transformation on an IIHS tree

The subtrees of each node of the original tree are preses/éteg are, until we
apply the same transformation to them. If a node does notdauéree (i.e, no descen-
dants), we create a subtree by adding all the possible aatiof with probability 0,
and the actiod, with probability1.

If we are in an output level, the same rules apply, guardirgpitoper symmetry
between input and outputs. We proceed with the same tranafaom on the next levels
of the tree. Figure 7 shows an example of a full transfornmatina tree (for the sake of
readability, we omit the levels where only = 1 orb, = 1).

(a) Tree before transfor- (b) Tree after transformation
mation

Fig. 7. Transformation on an IIHS tree



