
Safe Equivalences for Security Properties

Mário S. Alvim1, Miguel E. Andŕes2, Catuscia Palamidessi1, and Peter van Rossum2.

1INRIA and LIX, École Polytechnique Palaiseau, France.
2Institute for Computing and Information Sciences, The Netherlands.

Abstract. In the field of Security, process equivalences have been used to char-
acterize various information-hiding properties (for instance secrecy, anonymity
and non-interference) based on the principle that a protocolP with a variablex
satisfies such property if and only if, for every pair of secretss1 ands2, P [s1/x]
is equivalent toP [s2/x]. We argue that, in the presence of nondeterminism, the
above principle relies on the assumption that the scheduler “works for the ben-
efit of the protocol”, and this is usually not a safe assumption. Non-safe equiv-
alences, in this sense, include complete-trace equivalence and bisimulation. We
present a formalism in which we can specify admissible schedulers and, corre-
spondingly, safe versions of these equivalences. We prove that safe bisimulation
is still a congruence. Finally, we show that safe equivalences can be used to es-
tablish information-hiding properties.

1 Introduction

One of the fundamental problems in computer security is the protection from informa-
tion leaks, namely how to make sure that a system does not reveal, by observations that
can be made during the execution, some information that we wish to maintain secret.

One way to prevent an attacker to infer the secret from the observables is to create
noise, namely to make sure that for every execution in which a given secret produces
a certain observable, there is at least another execution in which a different secret pro-
duces the same observable. In practice this is often done by using randomization, see
for instance the DCNet [10] and the Crowds [23] protocols.

In the literature about the foundations of Computer Security, however, the quanti-
tative aspects are often abstracted away, and probabilistic behavior is replaced by non-
deterministic behavior. Correspondingly, there have been various approaches in which
information-hiding properties are expressed in terms of equivalences based on nonde-
terminism, especially in a concurrent setting. For instance, [24] definesanonymityas
follows1: A protocolS is anonymous if, for every pair of culpritsa andb, S[a/x] and
S[b/x] produce the same observable traces. A similar definition is given in [1] for se-
crecy, with the difference thatS[a/x] andS[b/x] are required to be bisimilar. In [13],
an electoral systemS preserves theconfidentiality of the voteif for any votersv and
w, the observable behavior ofS is the same if we swap the votes ofv andw. Namely,
S[a/v |b /w] ∼ S[b/v |a /w], where∼ represents bisimilarity.

1 The actual definition of [24] is more complicated, but the spirit is the same.

These proposals are based on the implicit assumption thatall the nondeterministic
executions present in the specification ofS will always be possible under every imple-
mentation ofS. Or at least, that the adversary will believe so. In concurrency, however,
as argued in [8], nondeterminism has a rather different meaning: if a specificationS
contains some nondeterministic alternatives, typically it is because we want to abstract
from specific implementations, such as the scheduling policy. A specification is consid-
ered correct, with respect to some property, if every alternative satisfies the property.
Correspondingly, an implementation is considered correct if all executions are among
those possible in the specification, i.e. if the implementation is a refinement of the spec-
ification. There is no expectation that the implementation will actually make possible
all the alternatives indicated by the specification.

We argue that the use of nondeterminism in concurrency corresponds to ademonic
view: the scheduler, i.e. the entity that will decide which alternative to select, may try
to choose the worst alternative. Hence we need to make sure that “all alternatives are
good”, i.e. satisfy the intended property. In the above mentioned approaches to the for-
malization of security properties, on the contrary, the interpretation of nondeterminism
is angelic: the scheduler is expected to actually help the protocol to confuse the adver-
sary and thus protect the secret information.

There is another issue, orthogonal to the angelic/demonic dichotomy, but relevant
for the achievement of security properties: the schedulershould not be able to make
its choices dependent on the secret, or else nearly every protocol would be insecure,
i.e. the scheduler would always be able to leak the secret to an external observer (for
instance by producing different interleavings of the observables, depending on the se-
cret). This remark has been made several times already, and several approaches have
been proposed to cope with the problem of full-information scheduler (aka almighty,
omniscient, clairvoyant, etc.), see for example [6,7,9,8,3].

The risk of a naive use of nondeterminism to specify a security property, is not only
that it may rely on an implicit assumption that the scheduler behaves angelically, but
also that it is clairvoyant (fully-informed), i.e. that it peeks at the secrets (that it is not
supposed to be able to see) to achieve its angelic strategy.

Example 1.Consider the following system, in a CCS-like syntax:S
def= (c)(A ‖ H1 ‖

H2 ‖ Corr), with A
def= c〈sec〉, H1

def= c(s).out〈a〉, H2
def= c(s).out〈b〉, Corr def=

c(s).out〈s〉. Here‖ is the parallel operator,c〈sec〉 is a process that sendssec on channel
c, c(s).P is a process that receivess on channelc and then continues asP , and(c) is the
restriction operator, enforcing synchronization onc. The namesec represents a secret.

It is easy to see that we haveS [a/sec] ∼ S
[
b/sec

]
. Note that, in order to simulate

the third branch inS [a/sec], the processS
[
b/sec

]
needs to select its first branch. Vicev-

ersa, in order to simulate the third branch inS
[
b/sec

]
, the processS [a/sec] needs to

select its second branch. This means that, in order to achieve bisimulation, the scheduler
needs to know the secret, and change its choice accordingly.

This example shows a system that intuitively is not secure, because the third compo-
nent,Corr , reveals whatever secret it receives. However, according to the equivalence-
based notions of security discussed above,it is secure. But it is secure thanks to a

scheduler that angelically helps the system to protect the secret, and it does so by mak-
ing its choices dependent on the secret. We consider these assumptions on the scheduler
excessively strong.

We do not claim, however, that we should rule out the use of angelic nondetermin-
ism in security: on the contrary, angelic nondeterminism can be a powerful specification
concept. We only advocate a cautious use of this notion. In particular, it should not be
used in a context in which the scheduler may be in collusion with the attacker. The goal
of this paper is to define a framework in which we can combine both angelic and de-
monic nondeterminism in a setting in which also probabilistic behavior may be present,
and in a context in which the scheduler is restricted (i.e. not fully-informed). We define
“safe” variant of typical equivalence relations (complete traces and bisimulation), and
we show how to use them to characterize information-hiding properties.

1.1 Contribution

The main novelties of our work can be articulated as follows:

• We propose a formalism for concurrent systems which accounts for both probabilis-
tic and nondeterministic behaviour, and in which the latter is of two kinds:global
and local. The first represents the possible interleavings produced by the parallel
components, which may be influenced by the attacker. The second is associated to
the possible choices internal to each component, which may depend on the secrets
or other unknown parameters, not controlled by the attacker. Correspondingly, we
split the scheduler in two constituents: global and local. The latter is actually a tuple
of local schedulers, one for each component of the system.

• We propose a notion ofadmissible schedulerfor the above systems, in which the
global constituent is not allowed to see the secrets, and each local constituent is
not allowed to see any information about the other components. We then generalize
the standard definition of strong (probabilistic) information hiding (such as no-
interference and strong anonymity) to the case in which also nondeterminism is
present, under the assumption that the schedulers are admissible.

• We use admissible schedulers to define safe versions of complete-trace equivalence
and bisimilarity especially tuned for security (in this paper we often refer to com-
plete traces as simply traces). This means that we account for the possibility that the
global constituent of the scheduler is in collusion with the attacker, and therefore
does not necessarily help the system to obfuscate the secret. We show that the latter
is still a congruence, like in the classical case.

• We finally show that our notions of safe trace equivalence and bisimilarity imply
strong information hiding in the above sense.

2 Probabilistic Automata

In this section we gather preliminary notions and results related to probabilistic au-
tomata [26,25].

A function µ : Q → [0, 1] is a discrete probability distributionon a setQ if the
support ofµ is countable and

∑
q∈Q µ(q) = 1. The set of all discrete probability distri-

butions onQ is denoted byD(Q).
A probabilistic automatonis a quadrupleM = (Q,Σ, q̂, α) whereQ is a countable

set ofstates, Σ a finite set ofactions, q̂ theinitial state, andα is atransition functionα :
Q → P(Σ×D(Q)). HereP(X) is the set of all finite subsets ofX. If α(q) = ∅ thenq is
a terminalstate. We writeq

a→ µ for (a, µ) ∈ α(q). Moreover, we writeq
a→r whenever

q
a→ µ andµ(r) > 0. A fully probabilistic automatonis a probabilistic automaton

satisfying|α(q)| ≤ 1 for all states. In caseα(q) 6= ∅ in a fully probabilistic automaton,
we will overload notation and useα(q) to denote the distribution outgoing fromq. A
path in a probabilistic automaton is a sequenceσ = q0

a1→ q1
a2→ · · · whereqi ∈ Q,

ai ∈ Σ andqi
ai+1−→qi+1. A path can befinite in which case it ends with a state. A path is

completeif it is either infinite or finite ending in a terminal state. Given a pathσ, first(σ)
denotes its first state, and ifσ is finite thenlast(σ) denotes its last state. LetPathsq(M)
denote the set of all paths,Paths?

q(M) the set of all finite paths, andCPathsq(M) the
set of all complete paths of an automatonM , starting from the stateq. We will omit q
if q = q̂. Paths are ordered by the prefix relation, which we denote by≤. Thetraceof
a path is the sequence of actions inΣ∞ = Σ∗ ∪ Σω obtained by removing the states,
hence for the above pathσ we havetrace(σ) = a1a2 We denote byTraces(M) the
complete traces ofM , i.e.Traces(M) def= {trace(σ) | σ ∈ CPaths(M)}. If Σ′ ⊆ Σ,
thentraceΣ′(σ) is the projection oftrace(σ) on the elements ofΣ′.

Let M = (Q,Σ, q̂, α) be a (fully) probabilistic automaton,q ∈ Q a state, and let
σ ∈ Paths?

q(M) be a finite path starting inq. Theconegenerated byσ is the set of
complete paths〈σ〉 = {σ′ ∈ CPathsq(M) | σ ≤ σ′}. Given a fully probabilistic
automatonM = (Q, Σ, q̂, α) and a stateq, we can calculate theprobability value,
denoted byPq(σ), of any finite pathσ starting inq as follows:Pq(q) = 1 andPq(σ

a→
q′) = Pq(σ)·µ(q′), wherelast(σ) a→ µ. LetΩq

def= CPathsq(M) be the sample space,
and letFq be the smallestσ-algebra generated by the cones. ThenPq induces a unique
probability measureon Fq (which we will also denote byPq) such thatPq(〈σ〉) =
Pq(σ) for every finite pathσ starting inq. Forq = q̂ we writeP instead ofPq̂.

A scheduler for a probabilistic automatonM is a functionζ : Paths?(M) → (Σ ×
D(Q)∪ {⊥}) such that for all finite pathσ, if α(last(σ)) 6= ∅ thenζ(σ) ∈ α(last(σ)),
andζ(σ) = ⊥ otherwise. Hence, a schedulerζ selects one of the available transitions in
each state, and determines therefore a fully probabilistic automaton, obtained by prun-
ing fromM the alternatives that are not chosen byζ. A scheduler is history dependent
since it takes into account the path and not only the current state. It may be partial, i.e.
it may halt the execution at any time2.

3 Systems

In this section we describe the kind of systems we are dealing with. We start by intro-
ducing a variant of probabilistic automata, that we callTagged Probabilistic Automata

2 In this paper, however, we will consider only total schedulers, to be more in line with the
standard semantics of CCS.

(TPA). These systems are parallel compositions of probabilistic processes, calledcom-
ponents. Each component is equipped with a unique identifier, calledtag. Whenever
a component (or a pair of components in case of synchronization) makes a step, the
corresponding transition will be decorated with the associated tag (or pair of tags).

Similar systems have been already introduced in [3]. The main differences are that
here the components may contain nondetermism, and a secret can label any transition.

3.1 Tagged Probabilistic Automata

We now formalize the notion of TPA.

Definition 1. A Tagged Probabilistic Automatonis a tuple(Q, L,Σ, q̂, α), whereQ
is a set ofstates, L is a set of tags, Σ is a set ofactions, q̂ ∈ Q is the initial state,
α : Q → P(L×Σ ×D(Q)) is a transition function.

In the following we writeq
l:a−→ µ for (`, a, µ) ∈ α(q), and we useenab(q) to de-

note the tags of the components that are enabled to make a transition. Namely,enab(q) def=
{` ∈ L | there exists a ∈ Σ,µ ∈ D(Q) such that q

l:a−→ µ}. In these systems, we can
decompose the scheduler in two: aglobal scheduler, which decides which component
or pair of components makes the move next, and alocal scheduler, which solves the
internal nondeterminism of the selected component.

We assume that the local scheduler can only select enabled transitions, and that the
global scheduler can only select enabled components. This means that the execution
does not stop unless all components are blocked. This is in line with the tradition of pro-
cess algebra and of Markov Decision Processes, but contrasts with that of Probabilistic
Automata [26]. However, the results in this paper do not depend on this assumption.

Definition 2. LetM = (Q,L, Σ, q̂, α) be a Tagged Probabilistic Automaton.

• A global scheduler forM is a functionζ : Paths?(M) → (L ∪ {⊥}) such that for
all finite pathsσ, if enab(last(σ)) 6= ∅ thenζ(σ) ∈ enab(last(σ)), andζ(σ) = ⊥
otherwise.

• A local scheduler forM is a functionξ : Paths?(M) → (L × Σ × D(Q) ∪ {⊥})
such that, for all finite pathsσ, if α(last(σ)) 6= ∅ thenξ(σ) ∈ α(last(σ)), and
ξ(σ) = ⊥ otherwise.

• A global schedulerζ and a local schedulerξ for M are compatibleif, for all finite
pathsσ, ξ(σ) = (`, a, µ) impliesζ(σ) = `, andξ(σ) = ⊥ impliesζ(σ) = ⊥.

• A scheduler is a pair(ζ, ξ) of compatible global and local schedulers.

3.2 Components

We are going to use a simple probabilistic process calculus (a sort of probabilistic ver-
sion of CCS [20,21]) to specify the components.

We assume a set ofactionsor channel namesΣ with elementsa, a1, a2, · · · , includ-
ing the special symbolτ denoting asilent step. Exceptτ , each actiona has a co-action
ā ∈ Σ and we assumē̄a = a. Components are specified by the following grammar:

q ::= 0 | a.q | q1 + q2 |
∑

i

pi : qi | q1|q2 | (a)q | A

The constructs0, a.q, q1 + q2, q1|q2 and (a)q represent termination, prefixing, non-
deterministic choice, parallel composition, and the restriction operator, respectively.∑

i pi : qi is a probabilistic choice, wherepi represents the probability of thei-th
branch and must satisfy0 ≤ pi ≤ 1 and

∑
i pi = 1. The process callA is a simple

process identifier. For each identifier, we assume a corresponding unique process dec-
laration of the formA

def= q. The idea is that, wheneverA is executed, it triggers the
execution ofq. Note thatq can containA or another process identifier, which means
that our language allows (mutual) recursion. We will denote byf n(q) the free channel
namesoccurring inq, i.e. the channel names not bound by a restriction operator.

Components’ semantics:The operational semantics consists of probabilistic transitions
of the formq

a→µ whereq ∈ Q is a process,a ∈ Σ is an action andµ ∈ D(Q) is a
distribution on processes. They are specified by the following rules:

PRF
a.q

a→ δq

NDT
q1

a→ µ

q1 + q2
a→ µ

PRB ∑
i pi : qi

τ→ ◦∑i pi · δqi

PAR
q1

a→ µ

q1 | q2
a→ µ | q2

CALL
q

a→ µ

A
a→ µ

if A
def
= q COM

q1
a→ δr1 q2

ā→ δr2

q1 | q2
τ→ δr1|r2

RST
q

a→ µ

(b)q a→ (b)µ
a,ā 6=b

We assume also the symmetric versions of the rules NDT, PAR and COM. The symbol
δq is the delta of Dirac, which assigns probability1 to q and0 to all other processes. The
symbol ◦∑i is the summation on distributions. Namely,◦∑i pi · µi is the distributionµ
such thatµ(x) =

∑
i pi · µi(x). The notationµ | q represents the distributionµ′ such

thatµ′(r) = µ(q′) if r = q′ | q, andµ′(r) = 0 otherwise. Similarly,(b)µ represents the
distributionµ′ such thatµ′(q) = µ(q′) if q = (b)q′, andµ′(q) = 0 otherwise.

3.3 Systems

A system has the form(A) q1 ‖ q2 ‖ · · · ‖ qn, where theqi’s are components and
A ⊆ Σ. The restriction onA enforces synchronization on the channel names belonging
to A, in accordance with the CCS spirit.

Systems’ semanticsThe semantics of a system gives rise to a TPA, where the states
are terms representing systems during their evolution. A transition now is of the form
q

`:a−→ µ wherea ∈ Σ, µ ∈ D(Q), and ` ∈ L is either the tag of the component
which makes the move, or a (unordered) pair of tags representing the two partners of a
synchronization. We can simply defineL asL = I ∪ I2 whereI = {1, 2, . . . , n}.

Interleaving
qi

a→ ◦∑j pj · δqij

(A) q1 ‖ · · · ‖ qi ‖ · · · ‖ qj ‖ · · · ‖ qn
i:a−→ ◦∑j pj · δ(A)q1‖···‖qij‖···‖qn

a 6∈A

wherei is the tag indicating that the componenti is making the step. Note that we
assume that probabilistic choices are finite. This implies that every transitionq

`:a−→ µ
can be writtenq

`:a−→ ◦∑i pi · δqi , and justifies the notation used in the interleaving rule.

Synchronization
qi

a→ δq′i qj
ā→ δq′j

(A) q1 ‖ · · · ‖ qi ‖ · · · ‖ qj ‖ · · · ‖ qn
{i,j}:τ−→ δ(A)q1‖···‖q′i‖···‖q′j‖···‖qn

here{i, j} is the tag indicating that the components making the step arei andj. Note
that it is an unordered pair. Sometimes we will writei, j instead of{i, j}, for simplicity.

Example 2.Consider the systems of Example1. Figures1(a) and1(b) show the TPAs
of S [a/sec] and ofS

[
b/sec

]
respectively. For simplicity we do not write the restriction

on channelsc andout, and the termination symbol0. We use ’−’ to denote a component
that is stuck. The corresponding tags are indicated in the figure with numbers above the
components. The set of enabled transitions should be clear from the figures. For in-
stance, we haveenab(S

[
b/sec

]
) = {{1, 2}, {1, 3}, {1, 4}} andenab(− || out〈a〉 || −

|| −) = {2}. The schedulerζ defined as

ζ(σ) def=

{1, 4} if σ = S [a/sec] ,

2 if σ = S [a/sec]
1,2:τ−→ (− || out〈a〉 || − || −),

3 if σ = S [a/sec]
1,3:τ−→ (− || − || out〈b〉 || −),

4 if σ = S [a/sec]
1,4:τ−→ (− || − || − || out〈a〉),

⊥ otherwise,

is a global scheduler forS [a/sec].

1 2 3 4

c〈a〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈a〉

− || − || − || − − || − || − || − − || − || − || −

{1, 2} :τ
{1, 3} :τ

{1, 4} :τ

2:out〈a〉 3:out〈b〉 4:out〈a〉

1(a)

1 2 3 4

c〈b〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈b〉

− || − || − || − − || − || − || − − || − || − || −

{1, 2} :τ
{1, 3} :τ

{1, 4} :τ

2:out〈a〉 3:out〈b〉 4:out〈b〉

1(b)

Fig. 1.AutomataS [a/sec] andS
[
b/sec

]

4 Admissible schedulers

In this section we restrict the discerning power of the global and local schedulers in
order to avoid the problem of the information leakage induced in security by clairvoyant
schedulers. We impose two kinds of restrictions: For the global scheduler, following
[3], we assume that it can only see, and keep memory of, the observable actions and
the components that are enabled, but not the secret actions. As for the local scheduler,
we assume that the local nondeterminism of each component is solved on the basis of
the view of the history local to that component, i.e. the projection of the history of the
system on that component. In other words, each component has to make decisions based
only on the history of its own execution; it cannot see anything of the other components.

4.1 Restricting Global Schedulers

We assume that the set of actionsΣ is divided in two parts, thesecret actionsS and
theobservable actionsO. The secret actions are supposed to be invisible to the global
scheduler. Formally, this can be achieved using a functionsift with sift(a) equalsτ if
a ∈ S and equalsa otherwise. Then, we restrict the power of the global scheduler by
forcing it to make the same decisions on paths he cannot tell apart.

Definition 3. Given a TPAM , a global schedulerζ for M is admissible if for all paths

σ1 andσ2 we havet(σ1) = t(σ2) impliesζ(σ1) = ζ(σ2), where t
(
q̂

l1:a1−→ q1
l2:a2−→ · · ·

ln:an−→ qn+1

)
def= (enab(q̂), sift(a1), l1)(enab(q1), sift(a2), l2)· · ·(enab(qn), sift(an), ln).

The idea is thatt sifts the information of the path that the scheduler can see. Since
sift “hides” the secrets, the scheduler cannot take different decisions based on secrets.

4.2 Restricting Local Schedulers

The restriction on the local scheduler is based on the idea that a step of the componenti
of a system can only be based on the view thati has of the history, i.e. its own history. In
order to formalize this restriction, it is convenient to introduce the concept ofi-view of
a pathσ, or projectionof σ on i, which we will denote byσ¹i. We define it inductively:

(σ `:a−→ µ)¹i =

σ¹i
i:b−→ δqi if ` = {i, j} andµ = δ(A) q1‖...‖qi‖...‖qj‖...‖qn

σ¹i
i:a−→ µ if ` = i

σ¹i otherwise

In the above definition, the first line represents the case of a synchronization step
involving the componenti, where we assume that the premise fori is of the form
q′i

b−→ δqi . The second line represents an interleaving step in whichi is the active
component. The third line represents step in which the componenti is idle.

The restriction to the local scheduler can now be expressed as follows:

Definition 4. Given a TPAM and a local schedulerξ for M , we say thatξ is admissible
if for all pathsσ andσ′, if ξ(σ) = (`, a, µ), andξ(σ′) = (`′, a′, µ′) we have:

• if ` = `′ = i andσ¹i = σ′¹i, thenξ(σ) = ξ(σ′),
• if ` = `′ = {i, j}, σ¹i = σ′¹i, andσ¹j = σ′¹j thenξ(σ) = ξ(σ′).

A pair of compatible schedulers(ζ, ξ) is calledadmissibleif ζ andξ are admissible.

5 Safe equivalences

In this section we revise process equivalence notions to make them safe for security.

5.1 Safe Complete Traces

We define here a safe version of complete-trace semantics. The idea is that we compare
two processes based not only on their traces, but also on the choices that the global
scheduler makes at every step. We do this by recording explicitly the tags in the traces.

Definition 5.

• Given a TPAM = (Q,L, Σ, q̂, α), the (complete) safe traces ofM , denoted here
byTracess, are defined as the probabilities of sequences of tags and actions corre-
sponding to all possible complete executions, i.e.

Tracess(M) = { f : (L×Σ)∞ → [0, 1] |
there exists an admissible scheduler(ζ, ξ) s.t.∀t ∈ (L×Σ)∞

f(t) = PM,ζ,ξ({σ ∈ CPaths(M) | traces(σ) = t}) }

wherePM,ζ,ξ is the probability measure inM under(ζ, ξ), and traceta extracts
from a path the sequence of tags and actions, i.e.traceta(ε) = ε (on the empty path
traceta gives the empty string) andtraceta(q `:a−→ σ) = ` : a · traceta(σ).

• We denote byTracess(q) the safe traces of the automaton associated to a systemq.
• Two systemsq1 andq2 are safe-trace equivalent, denoted byq1 's q2, if and only

if Tracess(q1) = Tracess(q2).

The following example points out the difference between's and the standard (com-
plete) trace equivalence.

Example 3.Consider the TPAs of Example2. The two TPAs have the same complete
traces. In factTraces(S [a/sec]) = {τ · out〈a〉 , τ · out〈b〉} = Traces(S

[
b/sec

]
). On

the other hand, we haveTracess(S [a/sec]) = {f1, f2, f3} wheref1({1, 2} : τ · 2 :
out〈a〉) = f2({1, 3} : τ · 3 : out〈b〉) = f3({1, 4} : τ · 4 : out〈a〉}) = 1, andfi(t) = 0
otherwise (fori ∈ {1, 2, 3}), while Tracess(S

[
b/sec

]
) = {f1, f2, f4} with f1, f2 as

above, andf4({1, 4} : τ · 4 : out〈b〉) = 1, f4(t) = 0 otherwise.

5.2 Safe Bisimilarity

In this section we propose a security-safe version of strong bisimulation, that we call
safe bisimulation. This is an equivalence relation stricter than safe-trace equivalence,
with the advantage of being a congruence. Since in this paper schedulers can always
observe which component is making a step (even a silent step), it does not seem natural
to consider weak bisimulation.

We start with some notation. Given a TPAM = (Q, L,Σ, q̂, α), and a global sched-
uler ζ, we write q

a−→ζ µ if there existsσ ∈ Paths?(M) such thatζ(σ) 6= ⊥,
(ζ(σ), a, µ) ∈ α(q), andq = last(σ). Note that the restriction toζ still allows non-
determinism, i.e. there may beµ1, µ2, such thatq

a1−→ζ µ1 andq
a2−→ζ µ2 (with either

a1 = a2 or a1 6= a2).
We now define the notion of safe bisimulation. The idea is that, ifq and q′ are

bisimilar states, then every move fromq should be mimicked by a move fromq′ using
the same (admissible) scheduler.

Definition 6. Given a TPAM = (Q,L, Σ, q̂, α), we say that a relationR ⊆ Q × Q
is a safe bisimulation if, wheneverq1R q2, thenenab(q1) = enab(q2), and for all
admissible global schedulersζ for M such thatζ(σ1) = ζ(σ2) wheneverlast(σ1) = q1

and last(σ2) = q2:

• if q1
a−→ζ µ1, then there existsµ2 such thatq2

a−→ζ µ2 andµ1Rµ2, and
• if q2

a−→ζ µ2, then there existsµ1 such thatq1
a−→ζ µ1 andµ1Rµ2,

whereµ1Rµ2 means that for all equivalence classesX ∈ QR̂, we haveµ1(X) =
µ2(X), whereR̂ is the smallest equivalence class induced byR.

The following result is analogous to the case of standard bisimulation:

Proposition 1. The union of all the safe bisimulations is still a safe bisimulation.

Therefore the largest safe bisimulation exists, and coincides with the union of all
safe bisimulations. We call itsafe bisimilarity, and we denote it by∼s.

Given two TPAs on the sameL and Σ, M1 = (Q1, L, Σ, q̂1, α1) and M2 =
(Q2, L, Σ, q̂2, α2), we can define bisimulation and bisimilarity across their states, i.e.
as relations on(Q1 ∪Q2), in the obvious way, by constructing the TPAM with a new
initial stateq̂ and two transitions toδq̂1 and toδq̂2 , respectively.

Given two components or systems,q1 andq2, we will say thatq1 andq2 are safely
bisimilar, denoted byq1 ∼s q2, if the initial states of the corresponding TPAs are safely
bisimilar. Note thatq1 ∼s q2 is possible only ifq1 andq2 have the same number of
active components, where “active”, for a component, means that during the execution
of the system it will make at least one step. Note that in the case of components, or
of systems constituted by one component only, safe bisimulation and safe bisimilarity
coincide with standard bisimulation and bisimilarity (denoted by∼), respectively. This
is not the case for systems, as shown by the following example:

Example 4.Consider again the TPAs of Example2. As pointed out in the introduction,
we haveS [a/sec] ∼ S

[
b/sec

]
. HoweverS [a/sec] 6∼s S

[
b/sec

]
. To show this, let us

construct a new TPA (as described before) with initial stateq̂ such that̂q
`:τ−→ S [a/sec]

andq̂
`:τ−→ S

[
b/sec

]
. Now consider the (admissible) global schedulerζ such that

ζ(σ) def=

` if σ = q̂,

{1, 4} if σ = q̂
`:τ−→ S [a/sec] ,

2 if σ = q̂
`:τ−→ S [a/sec]

1,2:τ−→ (− || out〈a〉 || − || −),

3 if σ = q̂
`:τ−→ S [a/sec]

1,3:τ−→ (− || − || out〈b〉 || −),

4 if σ = q̂
`:τ−→ S [a/sec]

1,4:τ−→ (− || − || − || out〈a〉),

{1, 4} if σ = q̂
`:τ−→ S

[
b/sec

]
,

2 if σ = q̂
`:τ−→ S

[
b/sec

] 1,2:τ−→ (− || out〈a〉 || − || −),

3 if σ = q̂
`:τ−→ S

[
b/sec

] 1,3:τ−→ (− || − || out〈b〉 || −),

4 if σ = q̂
`:τ−→ S

[
b/sec

] 1,4:τ−→ (− || − || − || out〈b〉),
⊥ otherwise.

It is easy to see thatS
[
b/sec

]
cannot mimic the transition4 : out〈a〉 produced by

S [a/sec] using the same schedulerζ.

It turns out that safe bisimulation is a congruence with respect to all the operators
of our language, as expressed by the following theorem. (Statements2(a) and2(b) are
just the standard compositionality result for probabilistic bisimulation.)

Theorem 1.

1. ∼s is an equivalence relation.
2. Let a ∈ Σ and A,B, B′ ⊆ Σ. Let p1, . . . , pn be probability values, and let

q, q1, q2, . . . , qn, q′1, q
′
2, . . . , q

′
n be components.

(a) If q1 ∼s q2, then a.q1 ∼s a.q2, q1 + q ∼s q2 + q, (a)q1 ∼s (a)q2,
and q1 | q ∼s q2 | q.

(b) If q1 ∼s q′1, . . . , qn ∼s q′n , then
∑

i pi : qi ∼s

∑
i pi : q′i.

(c) If (B) q1 ‖ . . . ‖ qn ∼s (B′) q′1 ‖ . . . ‖ q′n, andf n(q) 6∈ B ∪B′, then

(A ∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn ∼s (A ∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q′n.

The following property shows that bisimulation is stronger than safe-trace equiva-
lence, like in the standard case.

Proposition 2. If q1 ∼s q2 thenq1 's q2.

Like in the standard case, the vice-versa does not hold, and safe-trace equivalence
is not a congruence3.

3 This is because we are considering thecompletetraces.

6 Safe Nondeterministic Information Hiding

In this section we define the notion of information hiding under the most general hy-
pothesis that the nondeterminism is handled partly in a demonic way and partly in an
angelic way. We assume that the demonic part is in the realm of the global scheduler,
while the angelic part is controlled by the local scheduler. The motivation is that in a
protocol the local components can be thought of as programs running locally in a single
machine, and locally predictable and controllable, while the network can be subject to
attacks that make the interactions unpredictable.

We recall that, in a purely probabilistic setting, the absence of leakage, such as no-
interference and strong anonymity, is expressed as follows (see for instance [5]). Given
a purely probabilistic automatonM , and a sequencẽa = a1a2 . . . an, let PM ([ã])
represent the probability measure of all complete paths with traceã in M . Let S be
a protocol containing a variable actionsecr , and lets be secret actions. LetMs be
the automaton corresponding toS[s/secr]. DefinePr(ã | s) asPMs

([ã]). ThenS is
leakage-free if for every observable traceã , and for every secrets1 ands2, we have
Pr(ã | s1) = Pr(ã | s2).

In a purely nondeterministic setting, on the other hand, the absence of leakage has
been characterized in the literature by the propertyS[s1/secr] ∼= S[s2/secr], where∼=
is an equivalence relation like trace equivalence, or bisimulation. As we have argued in
the introduction, this definition assumes an angelic interpretation of nondeterminism.

We want to combine the above notions so to cope with both probability and nonde-
terminism. Furthermore, we want to extend it to the case in which part of the nondeter-
minism is interpreted demonically. Let us first introduce some notation.

Let S be a system containing a variable actionsecr . Let s be a secret action. Let
Ms be the TPA associated toS[s/secr] and let(ζ, ξ) be a compatible pair of global and
local schedulers forMs. The probability of an observable traceã givens is defined as
Prζ,ξ(ã | s) = PMs,ζ,ξ([ã]).

The global nondeterminism is interpreted demonically, and therefore we need to en-
sure that the conditional of an observable, given the two secrets, are calculated with re-
spect to the same global scheduler. On the other hand, the local scheduler is interpreted
angelically, and therefore we can compare the conditional probabilities generated by
the two secrets as sets under different schedulers. In other words, we have the freedom
to match conditional probability from the first set with one of the other set, without
requiring the local scheduler to be the same.

Either angelic or demonic, we want to avoid the clairvoyant schedulers, i.e. a sched-
uler should not be able to use the secret information to achieve its goals. For this pur-
pose, we require both the global and the local scheduler to be admissible.

Definition 7. A system is leakage-free if, for every secretss1 and s2, every admissi-
ble global schedulerζ, and every observable tracẽa, {Prζ,ξ(ã | s1) | ξ admissible
and compatible withζ} = {Prζ,ξ(ã | s2) | ξ admissible and compatible withζ}.

The safe equivalences defined in Section5 imply the absence of leakage:

Theorem 2. Let S be a system with a variable actionsecr and assumeS[s1/secr] 's

S[s2/secr] for every pair of secretss1 ands2. ThenS is leakage-free.

Note that the vice versa is not true, i.e. it is not the case that the leakage-freedom
of S implies S[s1/secr] 's S[s2/secr]. This is because in the definition of safe-trace
equivalence we compare the set of probability functions (determined by the schedulers)
on traces, while in the definition of leakage-freedom we compare the set of probabili-
ties of each trace, which may come from different functions. This additional degree of
freedom generated by the local scheduler helps the system to obfuscate the secret, and
provides further justification for the adjective “angelic” for the local nondeterminism.

From the above theorem and from Proposition2, we also have the following corol-
lary (with the same premises as the previous theorem):

Corollary 1. If S[s1/secr] ∼s S[s2/secr] for every pair of secretss1 ands2, thenS is
leakage-free.

7 Related Work

The problem of deriving correct implementations from secrecy specifications has re-
ceived a lot of attention already. One of the first works to address the problem was
[18], which showed that the fact that an implementation is a consistent refinement w.r.t.
a specification does not imply that the (information-flow) security properties are pre-
served. More recently, [2] has proposed a notion of secrecy-preserving refinement, and a
simulation-based technique for proving that a system is the refinement of another. [11]
argues that important classes of security policies such as noninterference and average
response time cannot be expressed by traditional notion ofproperties, which consist of
sets of traces, and proposes to usehyperproperties(sets of properties) instead. [14] ad-
dresses the problem of supervisory control, i.e, given a critical systemG that may leak
confidential information, how to design a controllerC so that the systemG|C does not
leak. An effective algorithm is presented to compute the most permissible controller
such that the system is still opaque w.r.t. a secret.

Concerning angelic and demonic nondeterminism, there are various works which
investigate their relation and possible combination. In [4] it is shown that angelic and
demonic nondeterminism are dual. [19] uses multi-relations to express specifications
involving both angelic and demonic nondeterminism. There are two kinds of agents, de-
monic and angelic ones, and there is the point of view of the internal system and the one
of the external adversary. [22] considers the problem of refining specifications while
preserving ignorance. While the focus is on the reduction of demonic nondeterminism
of the specification, the hidden values are treated essentially in a angelic way.

The problem of the leakage caused by full-information schedulers has also been
investigated in literature. [6] and [7] work in the framework of probabilistic automata
and introduce a restriction on the scheduler to the purpose of making them suitable to
applications in security protocols. Their approach is based on dividing the actions of
each component of the system in equivalence classes (tasks). The order of execution
of different tasks is decided in advance by a so-calledtask scheduler, which is history-
independent and therefore much more restricted than our notion of global scheduler.
[3] proposes a notion of system and admissible scheduler very similar to our notion of
system and admissible global scheduler. The main difference is that in that work the
components are deterministic and therefore there is no notion of local scheduler.

The work in [9,8] is similar to ours in spirit, but in a sensedual from a technical
point of view. Instead of defining a restriction on the class of schedulers, they provide
a way to specify that a choice is transparent to the scheduler. They achieve this by
introducing labels in process terms, used to represent both the states of the execution
tree and the next action or step to be scheduled. They make two states indistinguish-
able to schedulers, and hence the choice between them private, by associating to them
the same label. We believe that every scheduler in our formalism can be expressed in
theirs, too. In [8] they also consider the problem of defining a safe version of bisimu-
lation for expressing security properties. They call itdemonic bisimulation. The main
difference with our work is that we consider a combination of angelic and demonic
nondeterminism, and this affects also the definition of bisimulation. Similarly, our def-
inition of leakage-freedom reflects this combination. In [8] the aspect of angelicity is
not considered, although they may be able to simulate it with an appropriate labeling.

The fact that full-information schedulers are unrealistic has also been observed in
fields other than security. First attempts used restricted schedulers in order to obtain
rules for compositional reasoning [12]. The justification for those restricted schedulers
is the same as for ours, namely, that not all information is available to all entities in the
system. However that work considers a synchronous parallel composition, so the setting
is rather different from ours. Later on, it was shown that model checking is unfeasible in
its general form for the restricted schedulers in [12] (see [16] and, more recently, [15]).
Despite of undecidability, not all results concerning such schedulers have been negative
as, for instance, the technique of partial-order reduction can be improved by assuming
that schedulers can only use partial information [17].

8 Conclusion and Future work

We have observed that some definitions of security properties based on process equiva-
lences may be too naive, in that they assume the scheduler to be angelic, and, worse yet,
to achieve its angelic strategy by peeking at the secrets. We have presented a formalism
allowing us to specify a demonic constituent of the scheduler, possibly in collusion with
the attacker, and an angelic one, under the control of the system. We have also consid-
ered restrictions on the schedulers to limit the power of what they can see, and extended
to our nondeterministic framework the (probabilistic) information-hiding properties like
non interference and strong anonymity. We then have defined “safe” equivalences. In
particular we have defined the notions of safe trace equivalence and safe bisimilarity,
and we have shown that the latter is still a congruence. Finally, we have shown that the
safe equivalences can be used to prove information-hiding properties.

For the future, we plan to extend our framework to quantitative notions of informa-
tion leakage, possibly based on information theory. We also plan to implement model
checking techniques to verify information hiding properties for our kind of systems. A
natural candidate for the implementation would be PRISM. Of course, we would need
to restrict the class of schedulers in PRISM so to meet the admissibility criteria.

Acknowledgement. The authors wish to thank the anonymous reviewers for their use-
ful comments, and Pedro D’Argenio for helpful discussion.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.Inf.
and Comp., 148(1):1–70, 1999.

2. R. Alur and S. Zdancewic. Preserving secrecy under refinement. InProc. of ICALP, number
4052 in LNCS, pages 107–118. Springer-Verlag, 2006.

3. M. E. Andŕes, C. Palamidessi, P. van Rossum, and A. Sokolova. Information hiding in prob-
abilistic concurrent systems.www.cs.ru.nl/M.Andres/downloads/SAuN.pdf .

4. R. J. R. Back and J. von Wright. Combining angels, demons and miracles in program speci-
fications.TCS, 100(2):365–383, 1992.

5. M. Bhargava and C. Palamidessi. Probabilistic anonymity. InProc. of CONCUR, volume
3653 ofLNCS, pages 171–185. Springer, 2005.

6. R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Task-
structured probabilistic i/o automata. InProc. of WODES, 2006.

7. R. Canetti, L. Cheung, D. K. Kaynar, M. Liskov, N. A. Lynch, O. Pereira, and R. Segala.
Time-bounded task-PIOAs: A framework for analyzing security protocols. InProc. of DISC,
volume 4167 ofLNCS, pages 238–253. Springer, 2006.

8. K. Chatzikokolakis, G. Norman, and D. Parker. Bisimulation for demonic schedulers. In
Proc. of FOSSACS, volume 5504 ofLNCS, pages 318–332. Springer, 2009.

9. K. Chatzikokolakis and C. Palamidessi. Making random choices invisible to the scheduler.
In Proc. of CONCUR’07, volume 4703 ofLNCS, pages 42–58. Springer, 2007.

10. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology, 1:65–75, 1988.

11. M. R. Clarkson and F. B. Schneider. Hyperproperties. InCSF, pages 51–65. IEEE, 2008.
12. L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositional methods for probabilistic sys-

tems. InProc. of CONCUR, volume 2154 ofLNCS. Springer, 2001.
13. S. Delaune, S. Kremer, and M. Ryan. Verifying privacy-type properties of electronic voting

protocols.Journal of Computer Security, 17(4):435–487, 2009.
14. J. Dubreil, P. Darondeau, and H. Marchand. Supervisory control for opacity.IEEE Transac-

tions on Automatic Control, 55(5):1089 –1100, 2010.
15. S. Giro. Undecidability results for distributed probabilistic systems. InProc. of SBMF,

volume 5902 ofLNCS, pages 220–235. Springer, 2009.
16. S. Giro and P. R. D’Argenio. Quantitative model checking revisited: Neither decidable nor

approximable. InFORMATS, volume 4763 ofLNCS, pages 179–194. Springer, 2007.
17. S. Giro, P. R. D’Argenio, and L. M. F. Fioriti. Partial order reduction for probabilistic sys-

tems: A revision for distributed schedulers. InProc. of CONCUR, volume 5710 ofLNCS,
pages 338–353. Springer, 2009.

18. J. Jacob. On the derivation of secure components. InS&P, pages 242–247. IEEE, 1989.
19. C. E. Martin, S. A. Curtis, and I. Rewitzky. Modelling angelic and demonic nondeterminism

with multirelations.Science of Computer Programming, 65(2):140–158, 2007.
20. R. Milner.Communication and Concurrency. Series in Comp. Sci. Prentice Hall, 1989.
21. R. Milner.Communicating and mobile systems: theπ-calculus. CUP, 1999.
22. C. Morgan. The shadow knows: Refinement and security in sequential programs.Science of

Computer Programming, 74(8):629–653, 2009.
23. M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transactions.ACM Transactions

on Information and System Security, 1(1):66–92, 1998.
24. S. Schneider and A. Sidiropoulos. CSP and anonymity. InProc. of ESORICS, volume 1146

of LNCS, pages 198–218. Springer, 1996.
25. R. Segala.Modeling and Verification of Randomized Distributed Real-Time Systems. PhD

thesis, 1995. Tech. Rep. MIT/LCS/TR-676.
26. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.Nordic Journal

of Computing, 2(2):250–273, 1995.

www.cs.ru.nl/M.Andres/downloads/SAuN.pdf�

