Safe Equivalences for Security Properties

Mario S. Alvimt, Miguel E. Andiés’, Catuscia Palamidessiand Peter van Rossdm

'INRIA and LIX, Ecole Polytechnique Palaiseau, France.
?Institute for Computing and Information Sciences, The Netherlands.

Abstract. In the field of Security, process equivalences have been used to char-
acterize various information-hiding properties (for instance secrecy, anonymity
and non-interference) based on the principle that a protBoeith a variablex
satisfies such property if and only if, for every pair of secsetandss, P[*! /5]

is equivalent taP[*2 /.]. We argue that, in the presence of nondeterminism, the
above principle relies on the assumption that the scheduler “works for the ben-
efit of the protocol”, and this is usually not a safe assumption. Non-safe equiv-
alences, in this sense, include complete-trace equivalence and bisimulation. We
present a formalism in which we can specify admissible schedulers and, corre-
spondingly, safe versions of these equivalences. We prove that safe bisimulation
is still a congruence. Finally, we show that safe equivalences can be used to es-
tablish information-hiding properties.

1 Introduction

One of the fundamental problems in computer security is the protection from informa-
tion leaks, namely how to make sure that a system does not reveal, by observations that
can be made during the execution, some information that we wish to maintain secret.

One way to prevent an attacker to infer the secret from the observables is to create
noise namely to make sure that for every execution in which a given secret produces
a certain observable, there is at least another execution in which a different secret pro-
duces the same observable. In practice this is often done by using randomization, see
for instance the DCNelllQ] and the Crowds23] protocols.

In the literature about the foundations of Computer Security, however, the quanti-
tative aspects are often abstracted away, and probabilistic behavior is replaced by non-
deterministic behavior. Correspondingly, there have been various approaches in which
information-hiding properties are expressed in terms of equivalences based on nonde-
terminism, especially in a concurrent setting. For instari24], definesanonymityas
follows!: A protocol S is anonymous if, for every pair of culpritsandb, S[¢/.] and
S[*/.] produce the same observable traces. A similar definition is givet] ifof se-
crecy, with the difference tha[*/,.] andS[®/,] are required to be bisimilar. IiLg],
an electoral syster§ preserves theonfidentiality of the voté for any votersv and
w, the observable behavior 6fis the same if we swap the voteswandw. Namely,

S[%/ o Jw] ~ S[P/v |* /w], Where~ represents bisimilarity.

! The actual definition of24] is more complicated, but the spirit is the same.

These proposals are based on the implicit assumptiorathite nondeterministic
executions present in the specificationSofvill always be possible under every imple-
mentation ofS. Or at least, that the adversary will believe so. In concurrency, however,
as argued ing], nondeterminism has a rather different meaning: if a specificafion
contains some nondeterministic alternatives, typically it is because we want to abstract
from specific implementations, such as the scheduling policy. A specification is consid-
ered correct, with respect to some property, if every alternative satisfies the property.
Correspondingly, an implementation is considered correct if all executions are among
those possible in the specification, i.e. if the implementation is a refinement of the spec-
ification. There is no expectation that the implementation will actually make possible
all the alternatives indicated by the specification.

We argue that the use of nhondeterminism in concurrency correspondketaanic
view: the scheduler, i.e. the entity that will decide which alternative to select, may try
to choose the worst alternative. Hence we need to make sure that “all alternatives are
good”, i.e. satisfy the intended property. In the above mentioned approaches to the for-
malization of security properties, on the contrary, the interpretation of nondeterminism
is angelic the scheduler is expected to actually help the protocol to confuse the adver-
sary and thus protect the secret information.

There is another issue, orthogonal to the angelic/demonic dichotomy, but relevant
for the achievement of security properties: the schedsheuld not be able to make
its choices dependent on the secimt else nearly every protocol would be insecure,

i.e. the scheduler would always be able to leak the secret to an external observer (for
instance by producing different interleavings of the observables, depending on the se-
cret). This remark has been made several times already, and several approaches have
been proposed to cope with the problem of full-information scheduler (aka almighty,
omniscient, clairvoyant, etc.), see for exam@,9,8/3].

The risk of a naive use of nondeterminism to specify a security property, is not only
that it may rely on an implicit assumption that the scheduler behaves angelically, but
also that it is clairvoyant (fully-informed), i.e. that it peeks at the secrets (that it is not
supposed to be able to see) to achieve its angelic strategy.

Example 1.Consider the following system, in a CCS-like syntsfx(%if (c)(A || Hy ||

Hy || Corr), with A e ¢(sec), Hy e c(s).out{a), Ho def c(s).out(by, Corr %ef

c(s).out(s). Here|| is the parallel operatog(sec) is a process that sends: on channel
¢, ¢(s).Pis a process that receive®n channet and then continues &3, and(c) is the
restriction operator, enforcing synchronizationcoifhe namesec represents a secret.

It is easy to see that we hag(® /s.c] ~ S [*/scc]. Note that, in order to simulate
the third branch it [*/...], the process [*/,..| needs to select its first branch. Vicev-
ersa, in order to simulate the third branchdri®/...|, the process [*/,..] needs to
select its second branch. This means that, in order to achieve bisimulation, the scheduler
needs to know the secret, and change its choice accordingly.

This example shows a system that intuitively is not secure, because the third compo-
nent, Corr, reveals whatever secret it receives. However, according to the equivalence-
based notions of security discussed abadvés secure But it is secure thanks to a

scheduler that angelically helps the system to protect the secret, and it does so by mak-
ing its choices dependent on the secret. We consider these assumptions on the scheduler
excessively strong.

We do not claim, however, that we should rule out the use of angelic nondetermin-
ism in security: on the contrary, angelic nondeterminism can be a powerful specification
concept. We only advocate a cautious use of this notion. In particular, it should not be
used in a context in which the scheduler may be in collusion with the attacker. The goal
of this paper is to define a framework in which we can combine both angelic and de-
monic hondeterminism in a setting in which also probabilistic behavior may be present,
and in a context in which the scheduler is restricted (i.e. not fully-informed). We define
“safe” variant of typical equivalence relations (complete traces and bisimulation), and
we show how to use them to characterize information-hiding properties.

1.1 Contribution
The main novelties of our work can be articulated as follows:

e We propose a formalism for concurrent systems which accounts for both probabilis-
tic and nondeterministic behaviour, and in which the latter is of two kigtisbal
andlocal. The first represents the possible interleavings produced by the parallel
components, which may be influenced by the attacker. The second is associated to
the possible choices internal to each component, which may depend on the secrets
or other unknown parameters, not controlled by the attacker. Correspondingly, we
split the scheduler in two constituents: global and local. The latter is actually a tuple
of local schedulers, one for each component of the system.

e We propose a notion afdmissible scheduldor the above systems, in which the
global constituent is not allowed to see the secrets, and each local constituent is
not allowed to see any information about the other components. We then generalize
the standard definition of strong (probabilistic) information hiding (such as no-
interference and strong anonymity) to the case in which also nondeterminism is
present, under the assumption that the schedulers are admissible.

e We use admissible schedulers to define safe versions of complete-trace equivalence
and bisimilarity especially tuned for security (in this paper we often refer to com-
plete traces as simply traces). This means that we account for the possibility that the
global constituent of the scheduler is in collusion with the attacker, and therefore
does not necessarily help the system to obfuscate the secret. We show that the latter
is still a congruence, like in the classical case.

e We finally show that our notions of safe trace equivalence and bisimilarity imply
strong information hiding in the above sense.

2 Probabilistic Automata

In this section we gather preliminary notions and results related to probabilistic au-
tomata R6/25].

A function u: @ — [0, 1] is adiscrete probability distributioron a setQ if the
support ofu is countable an(EqEQ u(g) = 1. The set of all discrete probability distri-
butions onQ is denoted byD(Q).

A probabilistic automatoris a quadrupleV/ = (Q, X, ¢, «) whereQ is a countable
set ofstates X a finite set ofactions g theinitial state, andy is atransition functionx :

Q — P(XxD(Q)). HereP(X) is the set of all finite subsets &f. If a(q) = @ theng is
aterminalstate. We write; % 1. for (a, 1) € a(q). Moreover, we write;-%r whenever

¢ = pandu(r) > 0. A fully probabilistic automatoris a probabilistic automaton
satisfying|a(q)| < 1 for all states. In case(q) # () in a fully probabilistic automaton,
we will overload notation and use(q) to denote the distribution outgoing from A
pathin a probabilistic automaton is a sequenrce= ¢y = ¢; 2 --- whereg; € Q,

a; € X andqi‘“—“>qi+1. A path can bédinite in which case it ends with a state. A path is
completdf it is either infinite or finite ending in a terminal state. Given a patlfirst(o)
denotes its first state, andifis finite thenlast (o) denotes its last state. LBtths, (M)
denote the set of all pathBaths™, (M) the set of all finite paths, an@dPaths, (1) the
set of all complete paths of an automatbh starting from the state. We will omit ¢

if ¢ = ¢. Paths are ordered by the prefix relation, which we denotg byhetrace of

a path is the sequence of actionslifi® = X* U X* obtained by removing the states,
hence for the above pathwe havetrace(o) = ajas We denote byTraces(M) the
complete traces ai/, i.e. Traces(M) e {trace(o) | o € CPaths(M)}. If X’ C X,
thentrace s (o) is the projection otrace(o) on the elements of”.

Let M = (Q, Y, ¢, «) be a (fully) probabilistic automatom, € @ a state, and let
o € Pathsj (M) be a finite path starting ip. The conegenerated by is the set of
complete pathgo) = {¢’ € CPaths,(M) | ¢ < ¢'}. Given a fully probabilistic
automatonM = (Q, X, j,«) and a statey, we can calculate therobability value
denoted byP, (o), of any finite pathr starting ing as follows:P,(¢) = 1 andP4(o 5
q') =Py(0)-u(q"), wherelast(c) % u.Lets, o CPaths, (M) be the sample space,
and letF, be the smallest-algebra generated by the cones. Tigrinduces a unique
probability measureon F, (which we will also denote byP,) such thatP,((c)) =
P, (o) for every finite pattv starting ing. Forg = ¢ we write P instead ofP ;.

A scheduler for a probabilistic automata is a function¢ : Paths* (M) — (X x
D(Q) U {L}) such that for all finite path, if a(last(c)) # 0 then{(c) € a(last(o)),
and((c) = L otherwise. Hence, a scheduteselects one of the available transitions in
each state, and determines therefore a fully probabilistic automaton, obtained by prun-
ing from M the alternatives that are not chosen(byA scheduler is history dependent
since it takes into account the path and not only the current state. It may be partial, i.e.
it may halt the execution at any tirde

3 Systems

In this section we describe the kind of systems we are dealing with. We start by intro-
ducing a variant of probabilistic automata, that we Galfjged Probabilistic Automata

2 n this paper, however, we will consider only total schedulers, to be more in line with the
standard semantics of CCS.

(TPA). These systems are parallel compositions of probabilistic processes,amatied

ponents Each component is equipped with a unique identifier, cabedWhenever

a component (or a pair of components in case of synchronization) makes a step, the

corresponding transition will be decorated with the associated tag (or pair of tags).
Similar systems have been already introduce®]nThe main differences are that

here the components may contain nondetermism, and a secret can label any transition.

3.1 Tagged Probabilistic Automata
We now formalize the notion of TPA.

Definition 1. A Tagged Probabilistic Automatos a tuple(Q, L, ¥, ¢, «), where@®
is a set ofstates L is a set oftags Y is a set ofactions § € @ is theinitial state
a: Q — P(L x ¥ x D(Q)) is atransition function

In the following we writeq La, wfor (4, a, 1) € a(q), and we usenab(q) to de-

note the tags of the components that are enabled to make a transition. Namé(y, def

{l € L | there exists a € X, u € D(Q) such that q La, u}. In these systems, we can
decompose the scheduler in twoglabal schedulerwhich decides which component
or pair of components makes the move next, atdcal schedulerwhich solves the
internal nondeterminism of the selected component.

We assume that the local scheduler can only select enabled transitions, and that the
global scheduler can only select enabled components. This means that the execution
does not stop unless all components are blocked. This is in line with the tradition of pro-
cess algebra and of Markov Decision Processes, but contrasts with that of Probabilistic
Automata R€]. However, the results in this paper do not depend on this assumption.

Definition 2. LetM = (Q, L, X, §, «) be a Tagged Probabilistic Automaton.

e A global scheduler fod/ is a function¢ : Paths*(M) — (L U {L}) such that for
all finite pathso, if enab(last(o)) # 0 then((o) € enab(last(c)), and((c) = L
otherwise.

e Alocal scheduler foi/ is a function¢ : Paths* (M) — (L x X' x D(Q) U {L})
such that, for all finite paths, if a(last(o)) # 0 thené(c) € a(last(o)), and
&(0) = L otherwise.

e A global schedulet and a local schedulef for M are compatibleif, for all finite
pathso, £(o) = (¢, a, p) implies((o) = ¢, andé(o) = L implies((o) = L.

e A scheduler is a paif¢, £) of compatible global and local schedulers.

3.2 Components

We are going to use a simple probabilistic process calculus (a sort of probabilistic ver-
sion of CCS/R20/21)) to specify the components.
We assume a set attionsor channel name&’ with elements:, aq, as, - - -, includ-
ing the special symbat denoting asilent step Exceptr, each actior has a co-action
a € X and we assume = a. Components are specified by the following grammar:

g =0 | ag | a+a | Y.mia | ale | (¢ | A

The construct$), a.q, g1 + g2, ¢1|g2 and (a)q represent termination, prefixing, non-
deterministic choice, parallel composition, and the restriction operator, respectively.
>-;pi : ¢ is a probabilistic choice, wherg; represents the probability of theth

branch and must satisfy < p; < 1 and),p; = 1. The process calll is a simple
process identifier. For each identifier, we assume a corresponding unique process dec-
laration of the formA ' q. The idea is that, whenevet is executed, it triggers the
execution ofg. Note thatg can containA or another process identifier, which means
that our language allows (mutual) recursion. We will denotgbfy) thefree channel
namesoccurring ing, i.e. the channel names not bound by a restriction operator.

Components’ semanticS:he operational semantics consists of probabilistic transitions
of the form¢-% . whereq € Q is a processg € X is an action and: € D(Q) is a
distribution on processes. They are specified by the following rules:

a
q —
PRF ———— NDT 175
a.q — g Q1+ Q2 — b
QS
1
PRB _ PAR —
Zipi:qi_)Eipi'éqi Q1|QQ—’H|Q2
q N) 46 q = 2
CALL ——— if 4%, COM &= On qu ZORST —————— aab
A= p a1l g = Oryjr, (b)g — (b)u

We assume also the symmetric versions of the rules NDT, PAR and COM. The symbol
d4 is the delta of Dirac, which assigns probabilitjo ¢ and0 to all other processes. The
symbol)". is the summation on distributions. Name}y,, p; - j; is the distributiory

such thatu(z) =). p; - ni(x). The notatiory | ¢ represents the distributiqel such
thaty'(r) = u(q’) if r = ¢' | ¢, andy/(r) = 0 otherwise. Similarly(b) . represents the
distributiony” such that'(¢) = u(q’) if ¢ = (b)¢’, andy/(q) = 0 otherwise.

3.3 Systems

A system has the formiA) ¢; || ¢2 || - || ¢n, Where theg;'s are components and
A C Y. The restriction oM enforces synchronization on the channel names belonging
to A, in accordance with the CCS spirit.

Systems’ semantic¥he semantics of a system gives rise to a TPA, where the states
ar%erms representing systems during their evolution. A transition now is of the form
qg — p wherea € ¥, u € D(Q), and? € L is either the tag of the component
which makes the move, or a (unordered) pair of tags representing the two partners of a
synchronization. We can simply defifieasZ = I U I? wherel = {1,2,...,n}.

a
. qi — Ej by - 6(1117'
Interleaving ag A

Wall-lall- gl 1am =%, Sa)al Il

where;: is the tag indicating that the componenis making the step. Note that we
assume that probablllstlc choices are finite. This implies that every transltfbﬂ 1
can be writtery La, »., pi - 44,, and justifies the notation used in the interleaving rule.

a a
4G — 0y g5 — Oy
Synchronization T
Wall-lall-lal- e 2% O(A)qu -+ Nalll-- g -+l an

here{i, j} is the tag indicating that the components making the step anelj. Note
that it is an unordered pair. Sometimes we will wiitg instead of7, j }, for simplicity.

Example 2.Consider the systems of Exam{dleFiguresl(a) and1(b) show the TPAs

of S [*/sec] and of S [*/ .| respectively. For simplicity we do not write the restriction

on channels andout, and the termination symb6l We use >’ to denote a component

that is stuck. The corresponding tags are indicated in the figure with numbers above the
components. The set of enabled transitions should be clear from the figures. For in-
stance, we havenab(S [*/sec|) = {{1,2},{1,3},{1,4}} andenab(— || out(a) || —

[| =) = {2}. The schedulef defined as

(L4} ifo=5["sed,
2 if 0 =5"/sec 25 (— || outla) || — || -),

(o) {3 if o =5/ =5 (|| — |lout(d) || -),
4 ifo=S8["secd 2 (— || — || — |loutla)),
il otherwise,

is a global scheduler fof [*/s.c].

1 2 3 4

(b) || c(s)-out(a) || c(s)-out(b) || c(s)-out(s)

{1,4}:7

= Ilout(a) | = || - == lout® =~ = |l = |loua) — [loutla) || = || - == out®) = =1l = [l = |l out(d)
zzm(@l l;s;mag l4;m<a> Z:W(@l l&::m@) li;ﬂ(b)

1(a) 1(b)

Fig. 1. Automatas [*/s..] andS [*/sec]

4 Admissible schedulers

In this section we restrict the discerning power of the global and local schedulers in
order to avoid the problem of the information leakage induced in security by clairvoyant
schedulers. We impose two kinds of restrictions: For the global scheduler, following
[3], we assume that it can only see, and keep memory of, the observable actions and
the components that are enabled, but not the secret actions. As for the local scheduler,
we assume that the local nondeterminism of each component is solved on the basis of
the view of the history local to that component, i.e. the projection of the history of the
system on that component. In other words, each component has to make decisions based
only on the history of its own execution; it cannot see anything of the other components.

4.1 Restricting Global Schedulers

We assume that the set of actiohsis divided in two parts, theecret actionsS and

the observable action®. The secret actions are supposed to be invisible to the global
scheduler. Formally, this can be achieved using a funatifinvith sift(a) equalsr if

a € S and equals otherwise. Then, we restrict the power of the global scheduler by
forcing it to make the same decisions on paths he cannot tell apart.

Definition 3. Given a TPAM, a global schedule¢ for M is admissible if for all paths

~litay lo:as

o1 andos we havet(o1) = t(o2) implies¢(o1) = ((o2), where ¢ (q —q =

Iniag qn+1> déf(enab(d), sift(ar),l1)(enab(q), sift(az),l2)- - -(enab(qy), sift(an), ly).

The idea is that sifts the information of the path that the scheduler can see. Since
sift “hides” the secrets, the scheduler cannot take different decisions based on secrets.

4.2 Restricting Local Schedulers

The restriction on the local scheduler is based on the idea that a step of the comiponent
of a system can only be based on the view itats of the history, i.e. its own history. In
order to formalize this restriction, it is convenient to introduce the concepvieiv of

a patho, or projectionof o on4, which we will denote byr;. We define it inductively:

ib . ..
v o1 — O, I €= {i, 7} andp = 6ca) gy ...z - Nas - llan
(6= mi=9 0y X%y ifo=i

o otherwise

In the above definition, the first line represents the case of a synchronization step
involving the component, where we assume that the premise fds of the form
q LN dq,- The second line represents an interleaving step in whishthe active
component. The third line represents step in which the companemd|e.

The restriction to the local scheduler can now be expressed as follows:

Definition 4. Given a TPAV and a local schedulef for M, we say thaf is admissible
if for all pathso ando’, if £(0) = (¢, a, u), and&(c’) = (¢, a’, ') we have:

o if ¢ =/{"=iando}; = o}, then(o) = £(o'),
o if¢=10"={i,j}, o1 =0}, andoy; = o}, thenf(o) = £(o’).

IRl

A pair of compatible schedule(s, &) is calledadmissiblef ¢ and¢ are admissible.

5 Safe equivalences

In this section we revise process equivalence notions to make them safe for security.

5.1 Safe Complete Traces

We define here a safe version of complete-trace semantics. The idea is that we compare
two processes based not only on their traces, but also on the choices that the global
scheduler makes at every step. We do this by recording explicitly the tags in the traces.

Definition 5.

e Givena TPAM = (Q, L, Y, §,), the (complete) safe traces df, denoted here
by Tracess, are defined as the probabilities of sequences of tags and actions corre-
sponding to all possible complete executions, i.e.

Tracess(M) = { f: (L x X)>*° — [0,1] |
there exists an admissible scheduleré) s.tvt € (L x X))
f(t) =Parce({o € CPaths(M) | traces(o) =t}) }

whereP ;¢ ¢ is the probability measure idd under (¢, §), and trace,, extracts
from a path the sequence of tags and actionsti@:e;,(¢) = ¢ (on the empty path
trace,, gives the empty string) antdacey, (¢ — o) = £ : a - trace, (o).
e We denote bylraces(q) the safe traces of the automaton associated to a sygtem
e Two systemsg; andq, are safe-trace equivalent, denotedday~; ¢-, if and only
if Tracess(q1) = Tracess(qa).

The following example points out the difference betwegrand the standard (com-
plete) trace equivalence.

Example 3.Consider the TPAs of Examp The two TPAs have the same complete
traces. In factlraces(S [*/sec]) = {7 - out(a) , 7 - out(b)} = Traces(S [*/sec]). ON
the other hand, we hav&races; (S [*/sec]) = {f1, f2, fs} wheref1({1,2} : 7-2:
out{a)) = fo({1,3} : 7+ 3 : out(b)) = f3({1,4} : 7- 4 : out(a)}) = 1,andf;(t) = 0
otherwise (fori € {1,2,3}), while Traces (S [*/sec|) = {f1, fo, fa} with f1, fo as
above, andf,({1,4} : 7 - 4 : out(b)) = 1, f4(t) = 0 otherwise.

5.2 Safe Bisimilarity

In this section we propose a security-safe version of strong bisimulation, that we call
safe bisimulationThis is an equivalence relation stricter than safe-trace equivalence,
with the advantage of being a congruence. Since in this paper schedulers can always
observe which component is making a step (even a silent step), it does not seem natural
to consider weak bisimulation.

We start with some notation. Givena TRA = (Q, L, X, 4, «), and a global sched-
uler ¢, we write ¢ —, p if there existsoc € Paths*(M) such that((o) # L,
(((0),a,n) € a(q), andg = last(c). Note that the restriction tg still allows non-
determinism, i.e. there may bha, 12, such thay i»c (1 andgq &C 1o (with either
a] = az Oray 7& CLQ).

We now define the notion of safe bisimulation. The idea is that, ahd ¢’ are
bisimilar states, then every move fraprshould be mimicked by a move frogi using
the same (admissible) scheduler

Definition 6. Given a TPAM = (Q, L, X, §, «), we say that a relatiolrR C @ x @
is a safe bisimulation if, whenevei R g2, thenenab(q1) = enab(gz), and for all
admissible global schedule¢dor M such that/(o1) = ((02) whenevelast(o1) = 1
andlast(o2) = go:

e if g ——¢ 1, then there existg, such thatgs —¢ 2 andpu; R p2, and
o if o ¢ po, then there existg; such thaly, ¢ 11, andpy R jia,

where i, R iz means that for all equivalence class&s c 3, we haveu, (X) =
pa(X), whereR is the smallest equivalence class inducedby

The following result is analogous to the case of standard bisimulation:
Proposition 1. The union of all the safe bisimulations is still a safe bisimulation.

Therefore the largest safe bisimulation exists, and coincides with the union of all
safe bisimulations. We call gafe bisimilarity and we denote it by.

Given two TPAs on the samé and X, M; = (Q1,L, %, ¢1,1) and My =
(Q2, L, X, 42, a2), we can define bisimulation and bisimilarity across their states, i.e.
as relations 0@, U Q-), in the obvious way, by constructing the TR& with a new
initial stateg and two transitions té;, and tod,,, respectively.

Given two components or systengs,andq., we will say thatg; andg, are safely
bisimilar, denoted by, ~ g, if the initial states of the corresponding TPAs are safely
bisimilar. Note thaty; ~, ¢- is possible only ifg; and g, have the same number of
active components, where “active”, for a component, means that during the execution
of the system it will make at least one step. Note that in the case of components, or
of systems constituted by one component only, safe bisimulation and safe bisimilarity
coincide with standard bisimulation and bisimilarity (denotec\jyrespectively. This
is not the case for systems, as shown by the following example:

Example 4.Consider again the TPAs of Exam#eAs pointed out in the introduction,
we haveS [*/ ec] ~ S [*/sec]. HoweverS [*/ ec] s S [*/sec]. To show this, let us

construct a new TPA (as described before) with initial sjagech thay RIS [/ sec)
andq RSN [b/sec]. Now consider the (admissible) global schedglsuch that

V4 ifo=4q,

(1,4} ifo=q"5 5[/,

2 ifo=q"0 5 e "2 (—|loutla) || — || -),

3 if o =G50 S secdd 25 (— || — || out(v) || -),
oy 4 o= Sl FE (=] - oue))

{1,4y ifo=4-"55["sec]

2 ifo =455 8 [sec] 23 (— |l out(a) || — ||),

3 ifo =458 o] 25 (|| — || out(d) || -),

4 ifo =458 see) 5 (=1l = |l = |l out(d)),

1 otherwise.

It is easy to see tha§ [*/...] cannot mimic the transitiod : out(a) produced by
S [*/ sec] UsSiNg the same schedulér

It turns out that safe bisimulation is a congruence with respect to all the operators
of our language, as expressed by the following theorem. (StateR(entand2(b) are
just the standard compositionality result for probabilistic bisimulation.)

Theorem 1.

1. ~; is an equivalence relation.
2. Leta € Y and A,B,B’ C X. Letps,...,p, be probability values, and let
4,q1,42, - - qn, 41, @5, - - - , 4., e components.
@ Ifq ~s g2, then a.q ~s a.q2, 1 +q~ @2 +¢ (a)q ~s (a)ga,
and q1|q~sq|q
(0) g1 ~s @1y Gn~sqy, then Y7ipiigi~s D pitq.
@ UEB)all---llan ~s B)ar ... Il g andfn(q) € BUB', then

AUB)aq |- llall---llan ~s (AUB) G |- gl | g

The following property shows that bisimulation is stronger than safe-trace equiva-
lence, like in the standard case.

Proposition 2. If g; ~ g2 theng; ~4 ¢s.

Like in the standard case, the vice-versa does not hold, and safe-trace equivalence
is not a congruende

3 This is because we are considering toenpleteraces.

6 Safe Nondeterministic Information Hiding

In this section we define the notion of information hiding under the most general hy-
pothesis that the nondeterminism is handled partly in a demonic way and partly in an
angelic way. We assume that the demonic part is in the realm of the global scheduler,
while the angelic part is controlled by the local scheduler. The motivation is that in a
protocol the local components can be thought of as programs running locally in a single
machine, and locally predictable and controllable, while the network can be subject to
attacks that make the interactions unpredictable.

We recall that, in a purely probabilistic setting, the absence of leakage, such as no-
interference and strong anonymity, is expressed as follows (see for inskjne&iyen
a purely probabilistic automatof/, and a sequencé = ajas...a,, let Py ([a])
represent the probability measure of all complete paths with tidoeM . Let S be
a protocol containing a variable actieacr, and lets be secret actions. Le¥/; be
the automaton corresponding $§°/sc..-]. Define Pr(a | s) asPu, ([a]). ThenS is
leakage-free if for every observable trae and for every secret; andss, we have
Pr(a|s1) = Pr(a] sz2).

In a purely nondeterministic setting, on the other hand, the absence of leakage has
been characterized in the literature by the propéity /secr] = S[°2/secr|, Where
is an equivalence relation like trace equivalence, or bisimulation. As we have argued in
the introduction, this definition assumes an angelic interpretation of nondeterminism.

We want to combine the above notions so to cope with both probability and nonde-
terminism. Furthermore, we want to extend it to the case in which part of the nondeter-
minism is interpreted demonically. Let us first introduce some notation.

Let S be a system containing a variable actienr. Let s be a secret action. Let
M, be the TPA associated 8]°/..-] and let(¢,) be a compatible pair of global and
local schedulers fol. The probability of an observable tragegiven s is defined as
Pree(al s) =P, ce(a]).

The global nondeterminism is interpreted demonically, and therefore we need to en-
sure that the conditional of an observable, given the two secrets, are calculated with re-
spect to the same global scheduler. On the other hand, the local scheduler is interpreted
angelically, and therefore we can compare the conditional probabilities generated by
the two secrets as sets under different schedulers. In other words, we have the freedom
to match conditional probability from the first set with one of the other set, without
requiring the local scheduler to be the same.

Either angelic or demonic, we want to avoid the clairvoyant schedulers, i.e. a sched-
uler should not be able to use the secret information to achieve its goals. For this pur-
pose, we require both the global and the local scheduler to be admissible.

Definition 7. A system is leakage-free if, for every secrgtand s,, every admissi-
ble global schedule¢, and every observable traée {Prq¢(a | s1) | £ admissible
and compatible witl{} = {Pr. ¢(a | s2) | £ admissible and compatible wit3}.

The safe equivalences defined in Sec&imply the absence of leakage:

Theorem 2. Let S be a system with a variable actiorer and assume&|[* / eer| ~
S[%2 / seerr] TOr every pair of secrets; ands,. ThenS is leakage-free.

Note that the vice versa is not true, i.e. it is not the case that the leakage-freedom
of S implies S[** /secr] ~s S[*2/seer]- This is because in the definition of safe-trace
equivalence we compare the set of probability functions (determined by the schedulers)
on traces, while in the definition of leakage-freedom we compare the set of probabili-
ties of each trace, which may come from different functions. This additional degree of
freedom generated by the local scheduler helps the system to obfuscate the secret, and
provides further justification for the adjective “angelic” for the local nondeterminism.

From the above theorem and from Proposit®mve also have the following corol-
lary (with the same premises as the previous theorem):

Corollary 1. If S[*t/secr] ~s S[°2/secr] TOr €very pair of secrets; ands,, thenS is
leakage-free.

7 Related Work

The problem of deriving correct implementations from secrecy specifications has re-
ceived a lot of attention already. One of the first works to address the problem was
[18], which showed that the fact that an implementation is a consistent refinement w.r.t.
a specification does not imply that the (information-flow) security properties are pre-
served. More recently?] has proposed a notion of secrecy-preserving refinement, and a
simulation-based technique for proving that a system is the refinement of andttier. [
argues that important classes of security policies such as noninterference and average
response time cannot be expressed by traditional notipnopierties which consist of

sets of traces, and proposes to bgperpropertiegsets of properties) insteadl4] ad-
dresses the problem of supervisory control, i.e, given a critical sySté¢inat may leak
confidential information, how to design a controli&rso that the syster@|C does not

leak. An effective algorithm is presented to compute the most permissible controller
such that the system is still opaque w.r.t. a secret.

Concerning angelic and demonic nondeterminism, there are various works which
investigate their relation and possible combination. 4ipitfis shown that angelic and
demonic nondeterminism are duallS[uses multi-relations to express specifications
involving both angelic and demonic nondeterminism. There are two kinds of agents, de-
monic and angelic ones, and there is the point of view of the internal system and the one
of the external adversary22] considers the problem of refining specifications while
preserving ignorance. While the focus is on the reduction of demonic nondeterminism
of the specification, the hidden values are treated essentially in a angelic way.

The problem of the leakage caused by full-information schedulers has also been
investigated in literaturelf] and [7] work in the framework of probabilistic automata
and introduce a restriction on the scheduler to the purpose of making them suitable to
applications in security protocols. Their approach is based on dividing the actions of
each component of the system in equivalence clasasky The order of execution
of different tasks is decided in advance by a so-cattatt schedulemwhich is history-
independent and therefore much more restricted than our notion of global scheduler.
[3] proposes a notion of system and admissible scheduler very similar to our notion of
system and admissible global scheduler. The main difference is that in that work the
components are deterministic and therefore there is no notion of local scheduler.

The work in 9/8] is similar to ours in spirit, but in a senskial from a technical
point of view. Instead of defining a restriction on the class of schedulers, they provide
a way to specify that a choice is transparent to the scheduler. They achieve this by
introducing labels in process terms, used to represent both the states of the execution
tree and the next action or step to be scheduled. They make two states indistinguish-
able to schedulers, and hence the choice between them private, by associating to them
the same label. We believe that every scheduler in our formalism can be expressed in
theirs, too. Inlg8] they also consider the problem of defining a safe version of bisimu-
lation for expressing security properties. They catlémonic bisimulationThe main
difference with our work is that we consider a combination of angelic and demonic
nondeterminism, and this affects also the definition of bisimulation. Similarly, our def-
inition of leakage-freedom reflects this combination. 8hthe aspect of angelicity is
not considered, although they may be able to simulate it with an appropriate labeling.

The fact that full-information schedulers are unrealistic has also been observed in
fields other than security. First attempts used restricted schedulers in order to obtain
rules for compositional reasonindid]. The justification for those restricted schedulers
is the same as for ours, namely, that not all information is available to all entities in the
system. However that work considers a synchronous parallel composition, so the setting
is rather different from ours. Later on, it was shown that model checking is unfeasible in
its general form for the restricted schedulers1ig][(see [L6] and, more recently15]).
Despite of undecidability, not all results concerning such schedulers have been negative
as, for instance, the technique of partial-order reduction can be improved by assuming
that schedulers can only use partial informatidv] [

8 Conclusion and Future work

We have observed that some definitions of security properties based on process equiva-
lences may be too naive, in that they assume the scheduler to be angelic, and, worse yet,
to achieve its angelic strategy by peeking at the secrets. We have presented a formalism
allowing us to specify a demonic constituent of the scheduler, possibly in collusion with
the attacker, and an angelic one, under the control of the system. We have also consid-
ered restrictions on the schedulers to limit the power of what they can see, and extended
to our nondeterministic framework the (probabilistic) information-hiding properties like
non interference and strong anonymity. We then have defined “safe” equivalences. In
particular we have defined the notions of safe trace equivalence and safe bisimilarity,
and we have shown that the latter is still a congruence. Finally, we have shown that the
safe equivalences can be used to prove information-hiding properties.

For the future, we plan to extend our framework to quantitative notions of informa-
tion leakage, possibly based on information theory. We also plan to implement model
checking techniques to verify information hiding properties for our kind of systems. A
natural candidate for the implementation would be PRISM. Of course, we would need
to restrict the class of schedulers in PRISM so to meet the admissibility criteria.

Acknowledgement. The authors wish to thank the anonymous reviewers for their use-
ful comments, and Pedro D’Argenio for helpful discussion.

References

1.

2.

10.

11.
12.

13.

14.

15.

16.

17.

24.

25.

26.

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calcuis.
and Comp.148(1):1-70, 1999.

R. Alur and S. Zdancewic. Preserving secrecy under refinemeRtotn of ICALR humber
4052 in LNCS, pages 107-118. Springer-Verlag, 2006.

. M. E. Andgs, C. Palamidessi, P. van Rossum, and A. Sokolova. Information hiding in prob-

abilistic concurrent systemsiww.cs.ru.nl/M.Andres/downloads/SAuN.pdf

. R.J. R. Back and J. von Wright. Combining angels, demons and miracles in program speci-

fications. TCS 100(2):365-383, 1992.

. M. Bhargava and C. Palamidessi. Probabilistic anonymityPrbt. of CONCURvolume

3653 ofLNCS pages 171-185. Springer, 2005.

. R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Task-

structured probabilistic i/o automata. Rroc. of WODES2006.

. R. Canetti, L. Cheung, D. K. Kaynar, M. Liskov, N. A. Lynch, O. Pereira, and R. Segala.

Time-bounded task-PIOAs: A framework for analyzing security protocolBrde. of DISG
volume 4167 oLNCS pages 238-253. Springer, 2006.

. K. Chatzikokolakis, G. Norman, and D. Parker. Bisimulation for demonic schedulers. In

Proc. of FOSSACSolume 5504 o NCS pages 318-332. Springer, 2009.

. K. Chatzikokolakis and C. Palamidessi. Making random choices invisible to the scheduler.

In Proc. of CONCUR’07volume 4703 o NCS pages 42-58. Springer, 2007.

D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology1:65-75, 1988.

M. R. Clarkson and F. B. Schneider. Hyperpropertie<C$f;, pages 51-65. IEEE, 2008.

L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositional methods for probabilistic sys-
tems. InProc. of CONCURvolume 2154 o£ NCS Springer, 2001.

S. Delaune, S. Kremer, and M. Ryan. Verifying privacy-type properties of electronic voting
protocols.Journal of Computer Security7(4):435-487, 2009.

J. Dubreil, P. Darondeau, and H. Marchand. Supervisory control for optgii Transac-

tions on Automatic Contrpb5(5):1089 —1100, 2010.

S. Giro. Undecidability results for distributed probabilistic systems.Priszc. of SBME
volume 5902 oLNCS pages 220-235. Springer, 2009.

S. Giro and P. R. D’Argenio. Quantitative model checking revisited: Neither decidable nor
approximable. IFORMATSvolume 4763 oL NCS pages 179-194. Springer, 2007.

S. Giro, P. R. D’'Argenio, and L. M. F. Fioriti. Partial order reduction for probabilistic sys-
tems: A revision for distributed schedulers. Pnoc. of CONCURvolume 5710 ol.NCS
pages 338-353. Springer, 2009.

. J. Jacob. On the derivation of secure componentS&R, pages 242—-247. IEEE, 1989.
. C.E. Martin, S. A. Curtis, and I. Rewitzky. Modelling angelic and demonic nondeterminism

with multirelations.Science of Computer Programmir@H(2):140-158, 2007.

. R. Milner. Communication and Concurrenc$eries in Comp. Sci. Prentice Hall, 1989.
. R. Milner. Communicating and mobile systems: thealculus CUP, 1999.
. C. Morgan. The shadow knows: Refinement and security in sequential pro@eiersce of

Computer Programming/4(8):629—653, 2009.

. M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transacti®f®M Transactions

on Information and System Securify1):66—-92, 1998.

S. Schneider and A. Sidiropoulos. CSP and anonymitrée. of ESORICSrolume 1146
of LNCS pages 198-218. Springer, 1996.

R. SegalaModeling and Verification of Randomized Distributed Real-Time Systemd
thesis, 1995. Tech. Rep. MIT/LCS/TR-676.

R. Segala and N. Lynch. Probabilistic simulations for probabilistic proce¥eedic Journal
of Computing2(2):250-273, 1995.

www.cs.ru.nl/M.Andres/downloads/SAuN.pdf�

