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Abstract. We consider the problem of defining the information leakag@t
teractive systems where secrets and observables canaddtetaring the com-
putation. We show that the information-theoretic approabich interprets such
systems as (simple) noisy channels is not valid anymore.dderythe principle
can be recovered if we consider more complicated types ofreig, that in Infor-
mation Theory are known as channels with memory and feedh¥elshow that
there is a complete correspondence between interactitensysnd such kind of
channels. Furthermore, we show that the capacity of thengharassociated to
such systems is a continuous function of the Kantorovichimet

1 Introduction

Information leakage refers to the problem that the obsdevadrts of the behavior of
a system may reveal information that we would like to keepeted¢n recent years,
there has been a growing interest in the quantitative aspedhis problem, partly
because itis convenientto representthe partial knowletltie secrets as a probability
distribution, and partly because the mechanisms to prétectnformation may use
randomization to obfuscate the relation between the searet the observables.

Among the quantitative approaches, some of the most popukes are based on
Information Theory [5, 12, 4, 16]. The system is interpreascn information-theoretic
channe]where the secrets are the input and the observables aratthé.drhe channel
matrix is constituted by the conditional probabilitie® | a), defined as the measure
of the executions that give observablaithin those which contain the secret The
leakage is represented by thmutual information and the worst-case leakage by the
capacityof the channel.

In the above works, the secret value is assumed to be chogska bheginning of
the computation. In this paper, we are interestet¢hieractive systemsd.e. systems
in which secrets and observables can alternate during tiuetation, and influence
each other. Examples of interactive protocols incladetion protocoldike [21, 18,
17]. Some of these have become very popular thanks to thegrition in Internet-
based electronic commerce platforms [9, 10, 14]. As foratttve programs, examples
include web servers, GUI applications, and command-liog@ms [3].

We investigate the applicability of the information-thetic approach to interactive
systems. In [8] it was proposed to define the matrix elemgfitsa) as the measure of
the traces with (secret, observable)-projectiar), divided by the measure of the trace
with secret projection. This follows the definition of conditional probability ietms
of joint and marginal probability. However, it does not defamn information-theoretic



channel. In fact, by definition a channel should be invanaitih respect to the input
distribution, and such construction is not, as shown by ¢flewing example.

Example 1.Figure 1 represents a web-based interaction between oee artl two
possible buyersgjch andpoor. The seller offers two different productheapandex-
pensive with given probabilities. Once the product is offered,fedayer may try to
buy the product, with a certain probability. For simplicitye assume that the buyers
offers are exclusive. We assume that the offers are obdesjab the sense that they
are made public in the website, while the identity of the iupat actually buys the
product should be secret to an external observer. The sympslt, 7, 5, t represent
the probabilities, with the convention that= 1 — r.

Following [8] we can compute the conditional probabili-

ties asp(bla) = p}g?j)’) , thus obtaining the matrix on Table 1.

- . . . che exrpensive
However, the matrix is not invariant with respect to the r 7
input distribution. For instance, if we fix = 7 = 0.5 and  poor }Rrich R rich
5 t

consider two different input distributions, obtained bywa 5
ing the values of{, t), we get two different matrices of condi-
tional probabilities which are represented in Table 2. Hence,
when the secrets occafter the observables we cannot con-
sider the conditional probabilities as representing as@ital) channel, and we cannot
apply the standard information-theoretic concepts. Ini@aar, we cannot adopt the
(classical) capacity to represent the worst-case leaksigeg the capacity is defined
using a fixed channel matrix over all possible input disttitms.

The first contribution of this paper is to consider an exten-
sion of the theory of channels which makes the informatidn- [cheap|exzpensive]
theoretic approach applicable also the case of interasyise [, - %
tems. It turns out that a richer notion of channels, known i = =
Information Theory aghannels with memory and feedback ™|l miri | 517
serves our purposes. The dependence of inputs on previ
outputs corresponds to feedback, and the dependence of _@;@e 1. Cond. proba-

. . bilities of Example 1
puts on previous inputs and outputs corresponds to memary.

Fig. 1. Inter. System

| ||cheap|e:rpensive|| Input dist. | | ||cheap|expensive|| Input dist. |

poor % g’ p(poor) = % poor i % p(poor) = %

rich g’ % p(rich) = % rich % 116 p(rich) = %
@r=3s=2t=1 O)r=1s=24t=23

Table 2. Two different channel matrices induced by two differentungistributions

A second contribution of our work is the proof that the
channel capacity is a continuous function of the Kantorfowetric on interactive sys-
tems. This was pointed out also in [8], however their cortsiolmn does not work in our



case due to the fact that (as far as we understand) it asshateke probability of a se-
cret action, in any point of the computation, is 00T his assumption is not guaranteed
in our case and therefore we had to proceed differently.

A more complete version of this paper (with proofs) is on [ibe

2 Preliminaries

2.1 Concepts from Information Theory

For more detailed information on this part we refer to [6]t Ue B denote two random
variables with corresponding probability distributiops(-), ps(-), respectively. We
shall omit the subscripts when they are clear from the caritexA = {a,,...,a,},B =
{b,...,b,,} denote, respectively, the sets of possible valuesifand forB.

Theentropyof A is defined agi(A) = — ) 4 p(a;)logp(a;) and it measures the
uncertainty ofA. It takes its minimum valuéf (A) = 0 whenpy4(-) is a delta of Dirac.
The maximum valuéi (A) = log |A| is obtained whem 4(+) is the uniform distribu-
tion. Usually the base of the logarithm is set toband the entropy is measured in
bits. The conditional entropyof A given B is H(A|B) = — 3 5z p(b;) >_ 4 p(a;[b;)
logp(a,|b;), and it measures the uncertaintyfvhenB is known. We can prove that
0 < H(A|B) < H(A). The minimum value), is obtained whem is completely de-
termined byB. The maximum valuéZ (A) is obtained whem and B are independent.
Themutual informatiorbetweenAd and B is defined ad (A; B) = H(A) — H(A|B),
and it measures the amount of information ahddhat we gain by observing. It can
be shown thaf (A; B) = I(B; A) and0 < I(A; B) < H(A).

The entropy and mutual information respect thain laws Namely, given a se-

quence of random variablek , A,, ..., A; and B, we have:
k
H(A, Az, .. Ay) = ZH(AilAla---aAi—l) (2)
=1
I(Ay, Ag,..., Ag;B) = I(A;BlAy,..., Aiy) )

i=1

A (discrete memorylesshannelis a tuple(A, B, p(-|-)), where A, B are the sets of
input and output symbols, respectively, an@,|a,) is the probability of observing
the output symbob; when the input symbol is,. An input distributionp(a;) over.A
determines, together with the channel, the joint distidsup(a;, b;) = p(a,|b;) - p(a;)
and consequentlli(A; B). The maximun¥ (4; B) over all possible input distributions
is the channel'sapacity Shannon’s famous result states that the capacity coisicide
with the maximum rate by which information can be transmditising the channel.

In this paper we consider input and outgatjuencemstead of just symbols.

Convention 1. Let A = {a,,...,a,} be afinite set of: different symbolsglphabek
When we have a sequence of symbols (ordered in time), we useel Bttera, to
denote the symbol at tinte The notatiom! stands for the sequeneg s, . .. a,. For
instance, in the sequenega,a;, we haver, = a, anda? = asa,.
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Convention 2. Let X be a random variableX® denotes the sequencetafonsecutive
occurrencesXy, ..., X; of the random variablex .

When the channel is used repeatedly, the discrete memsrgiesinel described
above represents the case in which the behavior of the chainthe present time does
not depend upon the past history of inputs and outputs.dfaksumption does not hold,
then we have a channeith memory Furthermore, if the outputs from the channel can
be fed back to the encoder, thus influencing the generatidheohext input symbol,
then the channel is said to bath feedbackotherwise it iswithout feedback

Equation 3 makes explicit the probabilistic behavior of miels regarding those
classifications. Suppose a general channel frbta B with the associated random vari-
ablesA for input andB for output. Using the notation introduced in Conventionhk, t
channel behavior aftéf uses can be fully described by the joint probabitity” , 37).

Using probability laws we derive:

T
p(a”, 57) = [[ plaxla’", 8" )p(Bela’, B~")  (by the expansion law) (3)

t=1

The first termp(a,|a~1, 371) indicates that the probability of, depends not
only ona?~!, but also on3‘~* (feedback The second term(3,|at, 3~ 1) indicates
that the probability of eac¥, depends on previous history of input$ and outputs
Bt~ (memory.

If the channel is without feedback, then we have thiat, |a! =1, 3771) = p(a,|af~1),
and if the channel is without memory, then we have al§8|a!, 5:~1) = p(8,|a,).
From these we derive(57|a”) = []/_, p(3,]e,), which is the classic equation for
discrete memoryless channels without feedback.

Let(V, K) be a Borel space and Iet’, B) and(), By) be Polish spaces equipped
with their Borelo-algebras. Lep(dz|v) be a family of measures oki givenV. Then
p(dz|v) is astochastic kerndf and only if and only ifp(-|v) is @ random variable from
V into the power seP(X).

2.2 Probabilistic automata

A functionp: S — [0,1] is adiscrete probability distributioron a countable sef if
> scs i(s) = Landu(s) > 0 for all s. The set of all discrete probability distributions
onSisD(S).

A probabilistic automatoifil 5] is a quadruplé! = (S, £, §,v) whereS is a count-
able set obtates £ a finite set ofabelsor actions s theinitial state, and) atransition
functiond : S — p;(D(L x S)). Herep;(X) is the set of all finite subsets of . If
9(s) = () thens is aterminalstate. We writess—p for u € 9(s), s € S. Moreover, we
write s-57 for s, € S whenevers—y andy (¢, ) > 0. A fully probabilistic automa-
tonis a probabilistic automaton satisfyimg(s)| < 1 for all states. Wherd(s) # (§ we
overload the notation and denaiés) the distribution outgoing from.

Lo

A pathin a probabilistic automaton is a sequence= sg 4, sy — --- where
s; €8,¢; € Lands; = s;+1. A path can bdinite in which case it ends with a state.



A path iscompleteif it is either infinite or finite ending in a terminal state.v@&h a
finite patho, last(o) denotes its last state. LBaths, (M) denote the set of all paths,
Paths™; (M) the set of all finite paths, andPaths, (M) the set of all complete paths
of an automator/, starting from the state We will omit s if s = 3. Paths are ordered
by the prefix relation, which we denote ky. Thetrace of a path is the sequence of
actions in£* U £ obtained by removing the states, hence for the alsowe have
trace(o) = lila.... If L' C L, thentraces: (o) is the projection oftrace(o) on the
elements of’.

Let M = (S, L, 5,9) be a (fully) probabilistic automatos, € S a state, and let
o € Pathss(M) be a finite path starting in. The conegenerated by is the set of
complete pathgo) = {¢o’ € CPathss(M) | ¢ < ¢'}. Given a fully probabilistic
automatonM = (S, L, §,9) and a states, we can calculate theprobability value

denoted byP (o), of any finite pathr starting ins as follows:P4(s) = 1 andPg (o 4
s') =Ps(o) u(¢,s'), wherelast(o) — p.

Let 2, £ CPathss (M) be the sample space, and JEf be the smallest-algebra
generated by the cones. ThBrinduces a uniquprobability measuren F, (which we
will also denote byP,) such that?,((c)) = P(c) for every finite pathr starting in
s. Fors = 5 we write P instead ofP;.

Given a probability spac&?, F, P) and two eventsl, B € F with P(B) > 0, the
conditional probabilityof A givenB, P(A | B), is defined as®(A N B)/P(B).

3 Discrete channels with memory and feedback

We adopt the model proposed in [19] for discrete channels mi#mory and feedback.
Such model, represented in Figure 2, can be decomposed uers& components
as follows. At timet the internal channel’s behavior is represented by the tiondi
probabilitiesp(3,|at, 3~1). The internal channel takes the inpytand, according to
the history of inputs and outputs up to the momentst—!, produces an output symbol
B, The output is then fed back to the encoder with delay oneh@wther side, at time
t the encoder takes the message and the past output sy@ibdisand produces a
channel input symbal,. At final time T' the decoder takes all the channel outpgits
and produces the decoded mességeThe order is the following:

MessageW, «y,B;, 9,89, ..., ap,Br, DecodedMessagéf/

Let us describe such channelin more detail. 4etndB be two finite sets. Lef A}/ ;
(channel'sinput) and B;}7_; (channel's output) be families of random variables4in
andB respectively. Moreover, lett” andB” represent theif-fold product spaces. A
channels a family of stochastic kernele (3, |at, 381} ;.

Let F; be the set of all measurable mags: B!~! — A endowed with a probability
distribution, and let; be the corresponding random variable. 2%, F'” denote the
Cartesian product on the domain and the random variablggctigely. Achannel code
functionis an elemenp? = (4, ..., ¢p) € FL.

Note that, by probability lawg) () = T],_, p(¢|¢""). Hence the distribution
onFT is uniquely determined by a sequerggy, |©* 1)}, . We will use the notation
ot (5171) to represent thel-valuedt-tuple (o, 05 (B8Y), . . ., 0, (B171)).
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Fig. 2. Model for discrete channel with memory and feedback

In Information Theory this kind of channels are used to ercaxd transmit mes-
sages. IW is a message set of cardinality with typical elementv, endowed with
a probability distribution, @hannel codeés a set ofM channel code functiong” [w],
interpreted as follows: for message if at time ¢ the channel feedback j&—, then
the channel encoder outputs[w](3:~1). A channel decodeis a map fromB7 to W
which attempts to reconstruct the input message after vingeall the output history
BT from the channel.

3.1 Directed information and capacity of channels with feeddack

In classical Information Theory, the channel capacity,ahihis related to the channel’s
transmission rate by Shannon’s fundamental result, cabtaéned as the supremum of
the mutual information over all possible input’s distrilauts. In presence of feedback,
however, this correspondence does not hold anymore. Mefgally, mutual infor-
mation does not represent any longer the information flomfed” to 57, Intuitively,
this is due to the fact that mutual information expressesetation, and therefore it
is increased by feedback. But the feedback, i.e the way thmubinfluences the next
input, is part of the a priori knowledge, and therefore smdt be counted when we
measure the output’s contribution to the reduction of theeutainty about the input. If
we want to maintain the correspondence with the transrmsaie and with information
flow, we need to replace mutual information witlrected informatiorj13].

Definition 1. In a channel with feedback, the directed information fropuinA™ to
output BT is defined as/(A” — BT) = Y. I(a;3,/6"1). In the other di-
rection, the directed information frons” to A” is defined asI(BT — AT) =

Sy I(oy; B Mol ).

Note that the directed information defined above are not sgtrioa the flow from
AT to BT takes into account the correlation betweénand 3,, while the flow from
BT to AT is based on the correlation betwe@it! andq, . Intuitively, this is because
o' influencess,, but, in the other direction, it i8'~* that influencesy,.

It can be proved [19] that(AT; BT) = (AT — BT)+I1(BT — AT).Ifachannel
does not have feedback, thefB? — AT) = 0 andI(AT; BT) = 1(AT — B7).

In a channel with feedback the information transmitted ésdfrected information,
and not the mutual information. The following example slichelp understanding why.



Example 2.Consider the discrete memoryless channel with input akpbéb= {a,, a,}
and output alphabéd = {b,, b,} whose matrix is represented in Table 3.

Suppose that the channel is used with feedback, in such a .l
way that, for allt’s, o, ; = a4 if 8, = by, ande,; = a, if a,]]0.5]0.5]
B, = by. Itis easy to show that if > 2 thenI(A?; B) # 0. a,][0.5]0.5]
However, there is no leakage from front to B?, since the
rows of the matrix are all equal. We have indeed that’ — Table 3.Channel ma-
B!) = 0, and the mutual informatioh(A*; B') is only due to trix for Example 2
the feedback information flow( B* — A?).

The concept of capacity is generalized for channels witdfeek as follows. Let
Dr = {{p(a,]a?=1, 8771}, } be the set of all input distributions. For finite, the
capacity of a channdlp(8,|at, 3~} is:

Cr = sup lI(AT — BT) 4)
pr T

4 Interactive systems as channels with memory and feedback

(General) Interactive Information Hiding Systems ([2])e @ variant of probabilistic
automata in which we separate actions in secret and obdeyVatieractive” means
that secret and observable actions can interleave andnicfiusach other.

Definition 2. A generalllHS is a quadruplel = (M, A, B, L), whereM is a prob-
abilistic automaton(S, £, 5,v9), L = AU B U L, where 4, B, and L. are pair-

wise disjoint sets of secret, observable, and internalcaxtirespectively, and(s) C

DB UL, x S) implies|d(s)| < 1, for all s. The condition on) ensures that all
observable transitions are fully probabilistic.

Assumption In this paper we assume that general IIHSsravamalizedi.e. once un-
folded, all the transitions between two consecutive lekalge either secret labels only,
or observable labels only. Moreover, the occurrences akesemnd observable labels
alternate between levels. We will calecret statethe states from which only secrets-
labeled transitions are possible, amldlservable statethe others. Finally, we assume
that for everys and{ there exists a uniguesuch that £ 7. Under this assumption we
have that the traces of a computation determine the fina, statexpressed by the next
proposition. In the followingrace 4 andiraces indicate the projection of the traces on
secret and observable actions, respectively. Given a geltidss, it is always possible
to find an equivalent one that satisfies this assumptionsirfaeested reader can find
in [1] the formal definition of the transformation.

Proposition 1. Letd = (M, A, B, L,) be a generallHS. Consider two paths and
o'. Then,trace 4 (o) = trace o(c’) andtraces (o) = traceg(o’) implieso = o’.

In the following, we will consider two particular cases: fadly probabilisticlHSs,
where there is no nondeterminism, and seeret -nondeterministitHSs, where each
secret choice is fully nondeterministic. The latter willdeled simply I1IHSs.



Definition 3. Let] = ((S, L, §,9), A, B, L) be a generallHS. Then] is:

— fully probabilistic if¥(s) C D(A x S) implies|d(s)| < 1 for eachs € S.
— secret-nondeterministicif(s) C D(A x §) implies that for eacls € S there exist
s;" such thatd(s) = {0(as, ;) 1.

We show now how to construct a channel with memory and feddfvam IIHSs.
We will see that an IIHS corresponds precisely to a chanrdtesmined by its stochas-
tic kernel, while a fully probabilistic IIHS determines,ditlonally, the input distribu-
tion. In the following, we consider an IIH&= ((S, L, §,9), A, B, L) is in normal-
ized form Given a pathr of length2t — 1, we denoterace 4 (o) by of, andtraces(o)
by gt~ 1.

Definition 4. For eacht, the channel's stochastic kernel corresponding te defined
asp(B,]at, 371) = 9(q)(B,, ¢'), whereg is the state reached from the root via the path
o whose input-trace ia‘ and output traces* 1.

Note thatq and¢’ in previous definitions are well defined: by Proposition is
unigque, and since the choice @fis fully probabilistic,q’ is also unique.

If Jis fully probabilistic, then it determines also the inpustdibution and the de-
pendency ofy, uponst—! (feedback) and!~!.

Definition 5. If J is fully probabilistic, the associated channel has a coodil input
distribution for eacht defined a®(«,|a!~1, 871) = ¥(q)(«y, ¢'), Whereq is the state
reached from the root via the pathwhose input-trace is*~! and output trace ig* 1.

4.1 Lifting the channel inputs to reaction functions

Definitions 4 and 5 define the joint probabilitig&:t, 5?) for a fully probabilistic 11HS.
We still need to show in what sense these define a informatiearetic channel.
The{p(3,|at, 3~1)}L_, determined by the IIHS correspond to a channel’s stochas-
tic kernel. The problem resides in the conditional probghuif {p(«a,|af =1, B8}, .
In an information-theoretic channel, the valuexgfis determined in the encoder by a
deterministic functiorp, (3'~!). However, inside the encoder there is no possibility for
a probabilistic description of,. Furthermore, in our setting the concept of encoder
makes no sense as there is no information to encode. A solgtithis problem is to
externalize the probabilistic behavior@f: the code functions become simpéaction
functionsy, that depend only op'~! (the message does not play a role any more),
and these reaction functions are endowed with a probakliktyibution that generates
the probabilistic behavior of the values@f.

Definition 6. A reactoris a distribution on reaction functions, i.e., a stochadter-
nel {p(p,|e*~1)},. A reactor R is consistent with a fully probabilistic IHS if it
induces the compatible distributia@ (', o™, 37) such that, for every < ¢t < T,
Qo= 1) = p(ay]at™t, 311), where the latter is the probability distribution
induced byl.

The main result of this section states that for any fully @dabstic IIHS there is a
reactor that generates the probabilistic behavior of tH&1I



Theorem 3. Given a fully probabilistidIHS J , we can construct a channel with mem-
ory and feedback, and probability distributigp(o”', o', 37, which corresponds t

in the sense that, for evetya! ands?, with1 <t < T, Q(at, 5?) def door QT at, ) =

p(at, 4) holds, wherep(at, 3t) is the joint probability of input and output traces in-
duced byl.

Corollary 1. Let aJ be a fully probabilisticlHS. Let {p(3,|a, 3771)}1; be a se-
quence of stochastic kernels afig(,|a!~t, 3*=1)}L_; a sequence of input distribu-
tions defined by according to Definitions 4 and 5. Then the reactbe= {p(p, |0 1) }E
compatible with respect to tteis given by:

plpy) = p(a1|a0, 50) =play) 5)
plee™") = [] ple(B M1 (872),871), 2<t<T (6)
Bt*l

Figure 3 depicts the model for IIHS. Note that, in relationFigure 2, there are
some simplifications: (1) no messageis needed; (2) the decoder is not used. At the
beginning, a reaction function sequengé is chosen and then the channel is used
T times. At each usage the encoder decides the next input symbépbased on the
reaction functionp, and the output fed bagk—*. Then the channel produces an output
3, based on the stochastic kerngl3,|a, 3~1). The output is then fed back to the
encoder with a delay one.

X | |
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Fig. 3. Channel with memory and feedback model for IIHS

We conclude this section by remarking an intriguing coieaice: The notion of
reaction function sequeng€g’, on the IIHSs, corresponds to the notion of deterministic
scheduler. In fact, each reaction functipnselects the next step,, on the basis of the
Bt~1 anda!~! (generated by'~1), ands!~!, o'~ represent the path until that state.

5 Leakage in Interactive Systems

In this section we propose a notion of information flow basedaor model. We fol-
low the idea of defining leakage and maximum leakage usingadheepts of mutual
information and capacity (see for instance [4]), makingrieeessary adaptations.



Since the directed informatiai{ A” — BT is a measure of how much information
flows from AT to BT in a channel with feedback (cfr. Section 3.1), it is natuaal t
consider it as a measure of leakage of information by theopobt

Definition 7. The information leakage of aHHS is defined asI(A? — BT) =
ZtT:1 H(A| A, Bt=Y) — H(AT|BT).

Note thaty;_, H(A,|A""!, B'~1) can be seen as the entrofly; of reactorR.
Compare this definition with the classical Informationdhetic approach to infor-
mation leakage: when there is no feedback, the leakage isedidis:

I(AT; B) = H(AT) - H(AT|B") 7)

The principle behind (7) is that the leakage is equal to tfferdince between the
priori uncertainty H (A”") and thea posteriori uncertaintyd (A”'| BT) (gain in knowl-
edge about the secret by observing the output). Our definitiaintains the same prin-
ciple, with the proviso that the a priori uncertainty is napresented byi z.

5.1 Maximum leakage as capacity

In the case of secret-nondeterministic IIHS, we have a ststahkernel but no distri-
bution on the code functions. In this case it seems natu@isider the worst leakage
over all possible distributions on code functions. Thisdaatly the concept of capacity.

Definition 8. Themaximum leakagef an IIHS is defined as the capacityr of the
associated channel with memory and feedback.

6 Modeling IIHSs as channels: An example

In this section we show the application of our approach taGbeaine Auction Proto-
col[17]. Let us imagine a situation where several mob individaae gathered around
a table. An auction is about to be held in which one of themreffés next shipment
of cocaine to the highest bidder. The seller describes threlmmadise and proposes a
starting price. The others then bid increasing amountd tivere are no bids for 30
consecutive seconds. At that point the seller declaresubtoa closed and arranges a
secret appointment with the winner to deliver the goods.

The basic protocol is fairly simple and is organized as a asgion of rounds of
bidding. Round starts with the seller announcing the bid pré¢éor that round. Buyers
havet seconds to make an offer (i.e. to say yes, meaning “I'm vgllia buy at the
current bid priceb;”). As soon as one buyer anonymously says yes, he becomes the
winnerw; of that round and a new round begins. If nobody says anytlinggeconds,
roundi is concluded by timeout and the auction is won by the winmgr; of the
previous round, if one exists. If the timeout occurs duringrd 0, this means that
nobody made any offers at the initial prieg so there is no sale.

Although our framework allows the forrmalization of thisopocol for an arbitrary
number of bidders and bidding rounds, for illustration msgs, we will consider the



case of two biddergGandlemakeandScarfacg¢ and two rounds of bids. Furthermore,
we assume that the initial bid is alwaysdollar, so the first bid does not need to be
announced by the seller. In each turn the seller can choosentich he wants to
increase the actual bid. This is done by adding an increntetté last bid. There
are two options of increments, namehe; (1 dollar) andinc, (2 dollars). In that way,
b;11 is eitherb; + incy or b; 4+ incy. We can describe this protocol asarmalized
IIHSZ = (M, A, B, L), whereA = {CandlemakeiScarfacea*} is the set of secret
actions,B = {incy,inca,b,} is the set of observable actions, = § is the set of
hidden actions, and the probabilistic automatdris represented in Figure 4. For clarity
reasons, we omit transitions with probabilityn the automaton. Note that the special
secret actior,, represents the situation where neit@@ndlemakenor Scarfacebid.
The special observable actibnis only possible after no one has bidden, and signalizes
the end of the auction and, therefore, no bid is allowed amgmo

P1
incs incy

incy
Ili* q32

Fig. 4. Cocaine Auction example

Table 4 shows all the stochastic kernels for this example.fétmalization of this
protocol in terms of 1IHSs using our framework makes it pbkesto prove the claim
in[17] suggesting that if the seller knows the identity o thidders then the (strong)
anonymity guaranties are not provided anymore.

7 Topological properties oflIHSs and their Capacity

In this section we show how to extend to [IHSs the notion ofupeenetric defined
in [8] for Concurrent Labelled Markov Chains, and we provattthe capacity of the
corresponding channels is a continuous function on thisgm®etric. The metric con-
struction is sound for general IIHSs, but the result on ciéyp&conly valid for secret-
nondeterministic IIHSs.

Given a set of stateS, a pseudometric (or distance) is a functidthat yields a
non-negative real number for each pair of states and sattbiéefollowing:d(s, s) = 0;
d(s,t) = d(t,s), andd(s,t) < d(s,u) + d(u,t). We say that a pseudometrids c-
bounded ifvs,t : d(s,t) < ¢, wherec is a positive real number. We now define a
complete lattice on pseudometrics, and define the distagtoeln IIHSs as the greatest
fixpoint of a distance transformation, in line with the caiietive theory of bisimilarity.



lag, B1, a0 — Bs [CheapExpensiveb, |

Candlemakegnci ,Candlemakear g2 q23 0
Candlemakegnc; ,Scarface G24 q25 0
Candlemakeinci ,a, 0 0 1
Candlemakegince,Candlemaker 27 q2s 0
| o =5 || iner | incs 1b. Candlemakegncz,Scarface q29 q30 0
Candlemakeincs,a, 0 0 1

Candlemak qa qs 0 -
Scarfaceinc; ,Candlemaker q32 q33 0

Scarface g6 qr 0 -
- 0 0 1 Scarfaceinc; ,Scarface q34 q3s 0
a Scarfacenc,a, 0 0 1
Scarfaceince,Candlemaker qs7 qs3s 0

a)t=1 1 g0

@t=1p(Brla’, 57) Scarfaceinc,,Scarface 39 g |0
Scarfacencs,a, 0 0 1
a,,b.,a, 0 0 1
All other lines 0 0 1

(b)t = 27p(ﬁ2|a27/61)

Table 4. Stochastic kernels for the Cocaine Auction example.

Definition 9. M is the class ofl-bounded pseudometrics on states with the ordering
d=<difVs,s €S :d(ss)>d(s,s).

It is easy to see thdtM, <) is a complete lattice. In order to define pseudometrics
on lIHSs, we now need to lift the pseudometrics on stateseagsmetrics on distribu-
tions inD(L x S). Following standard lines [20, 8, 7], we apply the consinrcbased
on the Kantorovich metric [11].

Definition 10. For d € M, andu, ' € D(L x S), we definei(u, ') (overloading
the notationd) asd(u, 1') = max} ., o epxs(illi,si) — ' (4, si))z: where the
maximization is on all possible values of tijlés, subject to the constraints< z; < 1

andx; — T < d((&,si), (fj,sj)), Whered((£i78i)7(€j,8j)) = 1if ¢ 75 éj, and
d((€i;5:), (¢, 7)) = d(ss, ;) otherwise.

It can be shown that with this definition is a pseudometric oR(L x S).

Definition 11. d € M is abisimulation metridf, forall € € [0,1), d(s, s") < eimplies
that if s — p, then there exists somé such thats’ — p/ andd(p, ') < e.

The greatest bisimulation metricds, ., = | [{d € M | d is a bisimulation metrik.
We now characterizé,, ., as a fixed point of a monotonic functi@ghon M. For sim-
plicity, from now on we consider only the distance betweatest belonging to different
IIHSs with disjoint sets of states.



Definition 12. Given twollHSs with transition relationsy and 6’ respectively, and a
preudometrial on states, define@ : M — M as:

masx; d(si, s i 0(8) = {8(arsr)s- -+ o)}
a.nd '(9/(8/) = {6(11175/1)7 R 6((171175{,71)}

B(d)(s,s') = { dlp, ') if 9(s) = {u} and?’(s") = {u'}
0 if 9(s) = 9/ (s') = 0
1 otherwise

Itis easy to see that the definition®fis a particular case of the functidgndefined
in [8, 7]. Hence it can be proved, by adapting the proofs ofath@ogous results in [8,
7], that F'(d) is a pseudometric, and théts a bisimulation metric ifil < &(d). This
implies thatd, ., = | |{d € M | d < &(d)}, and still as a particular case Bfin [8, 7],
we have tha® is monotonic on\. By Tarski’s fixed point theorend,, ... is the greatest
fixed point of®. Furthermore, in [1] we show that,, . is indeed a bisimulation metric,
and that it is the greatest bisimulation metric. In additidre finite branchingness of
IIHSs ensures that the closure ordinakiofs w (cf. Lemma 3.10 in the full version of
[8]). Therefore one can show thd, ., =[1{®(T) | i € N}, whereT is the greatest
pseudometric (i.€T (s, s’') = 0 for everys, s’), and®®(T) = T.

Given two IIHSsJ andJ’, with initial statess ands’ respectively, we define the dis-
tance betweefiandd’ asd(J,J’) = dma. (s, s’). Next theorem states the continuity of
the capacity w.r.t. the metric on IIHSs. It is crucial thagytare secret-nondeterministic
(while the definition of the metric holds in general).

Theorem 4. Consider two normalizedHSsJ andJ’, and fix aT" > 0. For everye > 0
there exists’ > 0 such that ifd(J,7") < v then |Cr(J) — Cr(¥)] <e.

We conclude this section with an example showing that théiroity result for the
capacity does not hold if the construction of the channebisedstarting from a system
in which the secrets are endowed with a probability distidyu This is also the reason
why we could not simply adopt the proof technique of the aaurity result in [8] and
we had to come up with a different reasoning.

Example 3.Consider the two following programs, wheig, a; are secretdy, by are
observable|| is the parallel operator, ang, is a binary probabilistic choice that assigns
probabilityp to the left branch, and probability— p to the right one.
S) (send(a1) +p send(a2)) || receive(x).output(ba)
t) (send(a1)+4 send(az2)) || receive(z).if * = a1 then output(b1) else output(bs).
Table 5 shows the fully probabilistic IIHSs correspondinghese programs, and
their associated channels, which in this case (since ttretsactions are all at the top-
level) are classic channels, i.e. memoryless and withadtfack. As usual for classic
channels, they do not depend prandq. It is easy to see that the capacity of the
first channel i9) and the capacity of the second ond isHence their difference i,
independently fronp andg.
Let nowp = 0 andg = e. It is easy to see that the distance betweamdt is .
Therefore (when the automata have probabilities on theesgcthe capacity is not a
continuous function of the distance.



LS ] [t [[0s]ba]

al 0 1 ail 1 0
az 0 1 a2 0 1
@ (b)

Table 5. The IIHSs of Example 3 and their corresponding channels

8 Conclusion and future work

In this paper we have investigated the problem of infornmdgakage in interactive sys-
tems, and we have proved that these systems can be modeleahaets with memory
and feedback. The situation is summarized in Table 6(a) cbhgarison with the clas-
sical situation of non-interactive systems is represemet). Furthermore, we have
proved that the channel capacity is a continuous functicghe@kantorovich metric.

[IIHSs as automata

|IIHSs as channels

[Notion of leakage

Normalized [IHSs with nondeterminis
inputs and probabilistic outputs

Bequence of stochastic ker
{p(B; |at: ﬂtil)}zﬂ:1

tlsakage as capacity

Normalized IIHSs with a deterministic

Sequence of stochastic ker
scheduler solving the nondeterminism{p(8,|a’, 8* ") }i2, +
reaction function seqp”

els

Fully probabilistic normalized IIHSs

Sequence of stochastic ker
{p(Belat, B ) o +
reactor{p(y:|¢" ") }im

tlsakage as directed

information7 (AT — BT)

@)

|Classical channels

[Channels with memory and feedback |

The protocol is modeled in independent useg
the channel, often a unique use.

STdie protocol is modeled in several
consecutive uses of the channel.

The channel is frod” — BT, i.e., its input
is a single stringv” = a ... ap of secret
symbols and its output is a single strifg =
B ... By of observable symbols.

The channel is fronF — B, i.e. its
input is a reaction functiop, and its
output is an observablé,.

The channel is memoryless and in general
implicitly it is assumed the absence of
feedback.

The channel has memory. Despite the fact tha
channel fromF — B does not have
feedback, the internal stochastic kernels
do.

t the

The capacity is calculated using information

I(AT; BT).

The capacity is calculated using mutual

directed informationf (AT — BT).

(b)
Table 6.



For future work we would like to provide algorithms to comgtlhe leakage and
maximum leakage of interactive systems. These problem# resy challenging given
the exponential growth of reaction functions (needed tomate the leakage) and the
quantification over infinitely many reactors (given by théimidon of maximum leak-
age in terms of capacity). One possible solution is to sthdyrélation between deter-
ministic schedulers and sequence of reaction functionpahticular, we believe that
for each sequence of reaction functions and distributicgr dvthere exists a proba-
bilistic scheduler for the automata representation of #wet-nondeterministic IIHS.
In this way, the problem of computing the leakage and maxiraakage would reduce
to a standard probabilistic model checking problem (whieeechallenge is to compute
probabilities ranging over infinitely many schedulers).

In addition, we plan to investigate measures of leakagenteractive systems other
than mutual information and capacity.
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