Improved Functional Mappings via Product Preservation

Workshop: Imaging and Vision March 15th, 2018

Maks Ovsjanikov

Joint with: *D. Nogneng, Simone Melzi, Emanuele Rodolà, Umberto Castellani, Michael Bronstein...*

Shape Matching

Problem:

Given a pair of shapes, find corresponding points.

Functional Approach to Mappings

Given two shapes and a pointwise map $T: \mathcal{N} \to \mathcal{M}$

The map *T* induces a functional correspondence: $T_F(f) = g$, where $g = f \circ T$

Functional maps: a flexible representation of maps between shapes, *O., Ben-Chen, Solomon, Butscher, Guibas,* SIGGRAPH 2012

Functional Approach to Mappings

Given two shapes and a pointwise bijection $T : \mathcal{N} \to \mathcal{M}$

The induced functional correspondence is linear:

 $T_F(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 T_F(f_1) + \alpha_2 T_F(f_2)$

Functional Map Representation

Given two shapes and a pointwise bijection $T : \mathcal{N} \to \mathcal{M}$

The induced functional correspondence is complete. Can recover *T* from T_F .

Observation

Assume that both: $f \in \mathcal{H}^1_0(\mathcal{M}), g \in \mathcal{H}^1_0(\mathcal{N})$

Express both f and $T_F(f)$ in terms of *basis functions*:

$$f = \sum_{i} a_i \phi_i^{\mathcal{M}} \qquad g = T_F(f) = \sum_{j} b_j \phi_j^{\mathcal{N}}$$

Since T_F is linear, there is a linear transformation from $\{a_i\}$ to $\{b_j\}$.

Functional Map Definition

Functional map: matrix C that translates coefficients from $\Phi_{\mathcal{M}}$ to $\Phi_{\mathcal{N}}$.

Functional Map Representation

Choice of Basis:

Eigenfunctions of the Laplace-Beltrami operator: $\Delta \phi_i = \lambda_i \phi_i$

- Generalization of *Fourier bases* to surfaces.
- Ordered by eigenvalues and provide a natural notion of *scale*.
- Can be computed efficiently, with a sparse matrix eigensolver.

Shape Matching

In practice we do not know *C*. Given two objects our goal is to find the correspondence.

How can the functional representation help to compute the map in practice?

Matching via Function Preservation

Suppose we do not know *C*. However, we expect a pair of functions $f : \mathcal{M} \to \mathbb{R}$ and $g : \mathcal{N} \to \mathbb{R}$ to correspond. Then, *C* must be s.t. $C\mathbf{a} \approx \mathbf{b}$

where $f = \sum_{i} a_i \phi_i^{\mathcal{M}}, \quad g = \sum_{j} b_j \phi_j^{\mathcal{N}}$

Given enough $\{a, b\}$ pairs, we can recover *C* through *a linear least squares system*.

Basic Pipeline

Given a pair of shapes \mathcal{M}, \mathcal{N} :

- 1. Compute the multi-scale bases for functions on the two shapes. Store them in matrices: $\Phi_{\mathcal{M}}, \Phi_{\mathcal{N}}$
- 2. Compute descriptor functions (e.g., Gauss curvature) on \mathcal{M}, \mathcal{N} . Express them in $\Phi_{\mathcal{M}}, \Phi_{\mathcal{N}}$, as columns of : **A**, **B**

3. Solve
$$C_{\text{opt}} = \underset{C}{\arg\min} \|C\mathbf{A} - \mathbf{B}\|^2 + \|C\Delta_{\mathcal{M}} - \Delta_{\mathcal{N}}C\|^2$$

 $\Delta_{\mathcal{M}}, \Delta_{\mathcal{N}}$: Laplacian operators.

4. Convert the functional map C_{opt} to a point to point map *T*.

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, Solomon, Butscher, Guibas, SIGGRAPH 2012

Questions for Today

Can we enforce functional maps to be:

- 1. Closer to **point-to-point maps**?
- 2. Be able to transfer higher-frequency information?

While retaining the computational advantages.

Question 1:

When does a linear functional mapping correspond to a pull-back by a point-to-point map?

Question 1a:

When does a linear functional mapping correspond to a pull-back by a point-to-point map?

Question 1b:

Given a *single perfect* descriptor that identifies each point uniquely, why does our system not recover the map?

$$C_{\text{opt}} = \underset{C}{\arg\min} \|C\mathbf{a} - \mathbf{b}\|$$

We're not using the full information from the descriptors!

(Main) Question:

When does a linear functional mapping correspond to a pull-back by a point-to-point map?

(Known) Theoretical result:

A linear transformation across function spaces is a pullback of a point-to-point map iff it preserves pointwise products of functions:

$$C(f \odot h) = C(f) \odot C(h), \ \forall \ f, h \quad (f \odot h)(x) = f(x)h(x)$$

J. von Neumann, Zur operatoren methode in der klassichen Mechanik, Ann. of Math. (2) 33 (1932)

(Known) Theoretical result:

A functional map is point-to-point iff it preserves pointwise products of functions:

$$C(f \odot h) = C(f) \odot C(h), \; \forall \; f, h$$

(Known) Theoretical result:

A functional map is point-to-point iff it preserves pointwise products of functions:

$$C(f \odot h) = C(f) \odot C(h), \ \forall \ f, h$$

Approach:

Suppose we are given a pair of (descriptor) functions f_k, g_k for which we expect: $C(f_k) = g_k$. Then, the above implies:

$$C(S_{f_k}(h)) = S_{g_k}(C(h)) \forall h$$

Let: $S_f(h) = f \odot h$

(Known) Theoretical result:

A functional map is point-to-point iff it preserves pointwise products of functions.

Approach

Represent descriptor functions via their action on functions through multiplication.

 $C(f_k \odot h) = g_k \odot C(h) \iff CS_{f_k} = S_{g_k}C$

Approach

Represent descriptor functions via their action on functions through multiplication.

Theorem 1 (in both full **or** reduced basis):

$$CF = GC$$
, and $C\mathbf{1} = \mathbf{1} \Longrightarrow Cf = g$

Theorem F_2 ; G are the multiplicative operators of f, g. If f, g have the same values, then in the full basis for any doubly stochastic matrix Π :

$$\Pi f = g \Longleftrightarrow \Pi F = G\Pi$$

where F, G are the multiplicative operators of f, g. ¹⁹

Extended Basic Pipeline

Given a pair of shapes \mathcal{M}, \mathcal{N} :

- 1. Compute the multi-scale bases for functions on the two shapes. Store them in matrices: $\Phi_{\mathcal{M}}, \Phi_{\mathcal{N}}$
- 2. Compute descriptor functions (e.g., Gauss curvature) on \mathcal{M}, \mathcal{N} . Express them in $\Phi_{\mathcal{M}}, \Phi_{\mathcal{N}}$, as columns of : **A**, **B**

3. Solve
$$C_{\text{opt}} = \underset{C}{\arg\min} \|C\mathbf{A} - \mathbf{B}\|^2 + \|C\Delta_{\mathcal{M}} - \Delta_{\mathcal{N}}C\|^2 + \sum_k \|CS_{f_k} - S_{g_k}C\|^2$$

4. Convert the functional map C_{opt} to a point to point map *T*.

Informative Descriptor Preservation via Commutativity for Shape Matching, Nogneng, O., Eurographics 2017

Results with extended pipeline

Incorporating multiplicative operators improves results significantly.

Informative Descriptor Preservation via Commutativity for Shape Matching, Nogneng, O., Eurographics 2017

Questions for Today

Can we enforce functional maps to be:

1. Closer to **point-to-point maps**?

2. Be able to transfer higher-frequency information?

While retaining the computational advantages.

In practice conversion to p2p is costly and error-prone.

Given C, can transfer **f** without pointwise map.

Example:

Segmentation transfer via characteristic functions.

Problem:

Only works if the function is in the span of the basis:

$$\mathbf{f} \longrightarrow \Phi_{\mathcal{N}} \mathbf{C} \Phi_{\mathcal{M}}^+ \mathbf{f}$$

Question:

Can use **C** to transfer higher frequency functions?

Main idea:

If **C** is "good", it should preserve products. Thus, knowing how to transfer basis functions, allows us to *also transfer their pointwise products*!

Main idea:

Express f as a combination of basis and their products:

$$f = \sum_{i} a_{i} \phi_{i}^{\mathcal{M}} + \sum_{i,j} a_{i} b_{j} \phi_{i}^{\mathcal{M}} \odot \phi_{j}^{\mathcal{M}}$$

If we know how to transfer $\phi_i^{\mathcal{M}}$ (using **C**), and assuming preservation of products:

$$\mathbf{C}(f) = \sum_{i} a_i \mathbf{C}(\phi_i^{\mathcal{M}}) + \sum_{i,j} a_i b_j \mathbf{C}(\phi_i^{\mathcal{M}}) \odot \mathbf{C}(\phi_j^{\mathcal{M}})$$
Same idea applies to higher order products.

Example in 1D

Using pointwise products allows to capture higher frequency information.

Using higher order products can introduce noise. Can we find the "best" approximation?

(unfortunate) Theorem

The problem of approximating a function to a given precision, with the smallest number of products of basis functions is NP-hard.

(somewhat) related to minimum L_0 norm approximation.

In practice, construct an *extended basis* using basis functions and (all) their first-order pointwise products.

$$\mathbf{B}_{\mathcal{M}} = \left(\Phi_{\mathcal{M}}, \widetilde{\Phi}_{\mathcal{M}}\right), \text{ s.t. } \widetilde{\phi}_{i} = \phi_{l}^{\mathcal{M}} \odot \phi_{m}^{\mathcal{M}}$$

29

Approximate and transfer functions expressed in the *extended basis*.

One (slight) challenge: extended basis is not orthonormal. Can use SVD/basis pursuit.

Theorem

For a fixed C, there is *a linear transformation* between extended bases, given in closed-form expression:

$$\widetilde{\mathbf{C}} = \begin{bmatrix} \mathbf{C} & \mathcal{R}(\mathbf{C}) \\ 0 & \mathbf{C}(1:k,1:k) \otimes \mathbf{C}(1:k,1:k) \end{bmatrix}$$

with

$$\mathcal{R}(\mathbf{C}) = \begin{bmatrix} \phi_0 \mathbf{C}(0,1:k) \otimes \mathbf{C}(0:k,1:k) \\ +\phi_0 \begin{bmatrix} 0 \dots 0 \\ \mathbf{C}(1:k,1:k) \end{bmatrix} \otimes \mathbf{C}(0,1:k) \end{bmatrix}$$

31

Note that $\mathbf{\tilde{C}}$ is not linear in \mathbf{C} but is a *linear map across extended bases*.

Example 2: Approximating *and transferring* a smooth function:

Evaluations:

Transfer of various functions using computed (approximate) functional maps:

computed		approx	:		transfei	r			
function	std	our A	our B	std	our A	our B	original	non uniform	pathological
hk k	0.00	0.03	0.01	0.13	0.13	0.13			
hk K	0.82	0.54	0.49	0.82	0.57	0.58		X X	X X
HKS	0.55	0.14	0.00	0.55	0.22	0.22			
WKS	0.14	0.03	0.00	0.14	0.07	0.06			
Random	0.48	0.04	0.01	0.49	0.15	0.15			
XYZ	0.12	0.09	0.06	0.13	0.11	0.11	i " 👹 🛛 🤊	r 🛯 🖉 👌 🖉 🖉	1 ° WW 1 ° WW
Indicator	0.28	0.19	0.17	0.28	0.20	0.19	i 🛛 📲 🦉		
SHOT	0.81	0.76	0.74	0.81	0.77	0.78			
AWFT	0.24	0.19	0.17	0.25	0.20	0.20	2 👢	A 👔 🖉	
			•				•	std 0.57 prod 0.2	27 std 0.60 prod 0.22

Application:

Joint quadrangulation of triangle meshes

Based on: Consistent Functional Cross Field Design for Mesh Quadrangulation, Azencot, Corman, Ben-Chen, O. SIGGRAPH 2017

Conclusions & Follow-up

Functional maps provide a convenient representation for computing correspondences.

In addition to the vector space structure, can exploit the *functional algebra* for:

- Descriptor preservation
- Function transfer

SIGGRAPH Course Website:

http://www.lix.polytechnique.fr/~maks/fmaps_SIG17_course/

or http://bit.do/fmaps2017

Contains detailed course notes and **sample code**.

Thank you!

Questions?

Acknowledgements:

D. Nogneng, Simone Melzi, Emanuele Rodolà, Umberto Castellani, Michael Bronstein... Work supported by chair a Google Focused Research Award, ERC Starting Grant No. 758800 (EXPROTEA), ERC Consolidator Grant No. 724228 (LEMAN), and Rudolf Diesel fellow- ship from the TUM Institute for Advanced Study.

Reconstructing from LB basis

Map reconstruction error using a fixed size matrix.

