Some Structural Properties of Functional Map Computation

Geometry Workshop in Obergurgl,
September 24th, 2017

Maks Ovsjanikov

Joint with: E. Corman, D. Nogneng, R. Huang, M. Ben-Chen, J. Solomon, A. Butscher, L. Guibas…
Shape Matching

Problem:
Given a pair of shapes, find corresponding points.
Why Shape Matching

Given a correspondence, we can transfer:

- texture and parametrization
- segmentation and labels
- deformation

Other applications: shape interpolation, reconstruction ...

Sumner et al. ’04.
What is a Shape?

• Continuous: a surface embedded in 3D.

• Discrete: a triangle mesh.

Shapes from the SCAPE, TOSCA and FAUST datasets
Functional Approach to Mappings

Given two shapes and a pointwise bijection $T : \mathcal{N} \rightarrow \mathcal{M}$:

The map T induces a functional correspondence:

$$T_F(f) = g, \text{ where } g = f \circ T$$

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, Solomon, Butscher, Guibas, SIGGRAPH 2012
Functional Approach to Mappings

Given two shapes and a pointwise bijection $T : \mathcal{N} \rightarrow \mathcal{M}$

$$T_F(f) = g : \mathcal{N} \rightarrow \mathbb{R}$$

The map T induces a functional correspondence:

$$T_F(f) = g, \text{ where } g = f \circ T$$

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, Solomon, Butscher, Guibas, SIGGRAPH 2012
Functional Approach to Mappings

Given two shapes and a pointwise bijection $T : \mathcal{N} \to \mathcal{M}$

$$T_F(f) = g : \mathcal{N} \to \mathbb{R}$$

The induced functional correspondence is **linear**:

$$T_F(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 T_F(f_1) + \alpha_2 T_F(f_2)$$
Given two shapes and a pointwise bijection $T : \mathcal{N} \to \mathcal{M}$,

$$T_F(f) = g : \mathcal{N} \to \mathbb{R}$$

$f : \mathcal{M} \to \mathbb{R}$

The induced functional correspondence is **complete**.
Observation

Assume that both: \(f \in \mathcal{L}_2(\mathcal{M}), g \in \mathcal{L}_2(\mathcal{N}) \)

Express both \(f \) and \(T_F(f) \) in terms of basis functions:

\[
f = \sum_i a_i \phi_i^\mathcal{M} \quad g = T_F(f) = \sum_j b_j \phi_j^\mathcal{N}
\]

Since \(T_F \) is linear, there is a linear transformation from \(\{a_i\} \) to \(\{b_j\} \).
Functional Map Representation

Choice of Basis:

Eigenfunctions of the Laplace-Beltrami operator:

$$\Delta \phi_i = \lambda_i \phi_i \quad \Delta(f) = -\text{div} \nabla(f)$$

Minimize Dirichlet energy: $$\int_M \|\nabla \phi_i(x)\|^2 d\mu$$

Ordered by eigenvalues and provide a natural notion of scale.

$$\lambda_0 = 0 \quad \lambda_1 = 2.6 \quad \lambda_2 = 3.4 \quad \lambda_3 = 5.1 \quad \lambda_4 = 7.6$$
Since the functional Mapping T_F is linear:

\[T_F(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 T_F(f_1) + \alpha_2 T_F(f_2) \]

T_F can be represented as a matrix C, given a choice of basis for function spaces.
Functional Map Definition

Functional map:
matrix C that translates coefficients from Φ_M to Φ_N.

$$f \approx a_1 + a_2 + \cdots + a_k$$

$$g \approx b_1 + b_2 + \cdots + b_k$$

$$T_F \approx \Phi_N C \Phi_M^\top$$

Translates coefficients from Φ_M to Φ_N.

Reconstructing from LB basis

Map reconstruction error using a fixed size matrix.

source Cat10 Cat1 Cat2 Cat6 27.9k vertices

Graph showing reconstruction error vs. number of basis (eigen) functions.
Shape Matching

In practice we do not know C. Given two objects our goal is to find the correspondence.

How can the functional representation help to compute the map in practice?
Matching via Function Preservation

Suppose we do not know C. However, we expect a pair of functions $f : \mathcal{M} \to \mathbb{R}$ and $g : \mathcal{N} \to \mathbb{R}$ to correspond. Then, C must be s.t.

$$C a \approx b$$

where $f = \sum_i a_i \phi_i^\mathcal{M}$, $g = \sum_j b_j \phi_j^\mathcal{N}$

Given enough $\{a, b\}$ pairs, we can recover C through a linear least squares system.
Basic Pipeline

Given a pair of shapes \mathcal{M}, \mathcal{N}:

1. Compute the multi-scale bases for functions on the two shapes. Store them in matrices: $\Phi_{\mathcal{M}}, \Phi_{\mathcal{N}}$

2. Compute descriptor functions (e.g., Gauss curvature) on \mathcal{M}, \mathcal{N}. Express them in $\Phi_{\mathcal{M}}, \Phi_{\mathcal{N}}$, as columns of: A, B

3. Solve $C_{\text{opt}} = \arg \min_C \|CA - B\|^2 + \|C\Delta_{\mathcal{M}} - \Delta_{\mathcal{N}}C\|^2$

 $\Delta_{\mathcal{M}}, \Delta_{\mathcal{N}}$: Laplacian operators.

4. Convert the functional map C_{opt} to a point to point map T.

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, Solomon, Butscher, Guibas, SIGGRAPH 2012
Structural Questions for Today

Can we promote functional maps to be:

1. Closer to point-to-point maps?

2. Closer to being bijective?

3. Encode extrinsic (embedding-dependent) information?

While retaining the computational advantages.
Making Functional Maps Point-to-Point

Question 1:

When does a linear functional mapping correspond to a pull-back by a point-to-point map?
Making Functional Maps Point-to-Point

Question 1a:
When does a linear functional mapping correspond to a pull-back by a point-to-point map?

Question 1b:
Given a single perfect descriptor that identifies each point uniquely, why does our system not recover the map?

\[C_{opt} = \arg \min_C \| Ca - b \| \]

We’re not using the full information from the descriptors!
Making Functional Maps Point-to-Point

(Main) Question:
When does a linear functional mapping correspond to a pull-back by a point-to-point map?

(Known) Theoretical result:
A functional map is point-to-point iff it preserves pointwise products of functions:
\[C(fh) = C(f)C(h) \quad \forall f, h \quad (fh)(x) = f(x)h(x) \]

J. von Neumann, Zur operatoren methode in der klassichen Mechanik, Ann. of Math.(2) 33 (1932)
Making Functional Maps Point-to-Point

(Known) Theoretical result:
A functional map is point-to-point iff it preserves pointwise products of functions:

\[C(fh) = C(f)C(h) \quad \forall \ f, h \quad (fh)(x) = f(x)h(x) \]

Can we use this in the algorithm?

Challenges:
1) Leads to non-convex energy.
2) Large number of constraints (mixing primal and spectral domains)

Would like to exploit this fact without losing convexity.
Making Functional Maps Point-to-Point

(Known) Theoretical result:
A functional map is point-to-point iff it preserves pointwise products of functions:

\[C(fh) = C(f)C(h) \forall f, h \quad (fh)(x) = f(x)h(x) \]

Approach:
Consider the linear operator:

\[S_f(h) = fh \quad S_f(h)(x) = f(x)h(x) \]
Making Functional Maps Point-to-Point

(Known) Theoretical result:
A functional map is point-to-point iff it preserves pointwise products of functions:

\[C(fh) = C(f)C(h) \forall f, h \quad (fh)(x) = f(x)h(x) \]

Approach:
Consider the linear operator:

\[S_f(h) = fh \quad S_f(h)(x) = f(x)h(x) \]

given a pair of functions \(f_k, g_k \) for which we expect: \(C(f_k) = g_k \), the above implies:

\[C \circ S_{f_k}(h) = S_{g_k} \circ C(h) \forall h \]
(Known) Theoretical result: A functional map is point-to-point iff it preserves pointwise products of functions.

Approach
Represent descriptor functions via their action on functions through multiplication.

\[\mathcal{C}(f_k h) = g_k \mathcal{C}(h) \iff \mathcal{C} \mathcal{S}_{f_k} = \mathcal{S}_{g_k} \mathcal{C} \]
Making Functional Maps Point-to-Point

Approach
Represent descriptor functions via their action on functions through multiplication.

Theorem 1 (even in the reduced basis):

\[CF = GC, \quad \text{and} \quad C1 = 1 \implies Cf = g \]

Theorem 2:
If \(f, g \) have the same values, then in the full basis for any doubly stochastic matrix \(\Pi \):

\[\Pi f = g \iff \Pi F = G\Pi \]

where \(F, G \) are the multiplicative operators of \(f, g \).
Extended Basic Pipeline

Given a pair of shapes \mathcal{M}, \mathcal{N}:

1. Compute the multi-scale bases for functions on the two shapes. Store them in matrices: $\Phi_{\mathcal{M}}, \Phi_{\mathcal{N}}$

2. Compute descriptor functions (e.g., Gauss curvature) on \mathcal{M}, \mathcal{N}. Express them in $\Phi_{\mathcal{M}}, \Phi_{\mathcal{N}}$, as columns of: A, B

3. Solve $C_{\text{opt}} = \arg \min_C \|CA - B\|^2 + \|C\Delta_{\mathcal{M}} - \Delta_{\mathcal{N}}C\|^2$

 $$+ \sum_k \|CS_{f_k} - S_{g_k}C\|^2$$

4. Convert the functional map C_{opt} to a point to point map T.

Informative Descriptor Preservation via Commutativity for Shape Matching, Nogneng, O., Eurographics 2017
Results with extended pipeline

Incorporating multiplicative operators improves results significantly.

Informative Descriptor Preservation via Commutativity for Shape Matching, Nogneng, O., Eurographics 2017
Results with extended pipeline

Incorporating multiplicative operators improves results significantly.

Informative Descriptor Preservation via Commutativity for Shape Matching, Nogneng, O., Eurographics 2017
Improving Map Bi-directionality

Question 2a:
Can we remove the direction bias?

\[C_{opt} = \arg \min_C \|CA - B\|^2 + \|C\Delta_M - \Delta_NC\|^2 \]

Source/target shapes are not interchangeable.

Question 2b:
What does the functional map adjoint/transpose encode?
Given a functional map C and choice of inner products on the source/target, the adjoint C_{adj} is defined implicitly:

$$<C(f), g>_{\mathcal{N}} = <f, C_{\text{adj}}(g)>_{\mathcal{M}} \quad \forall f, g$$
Improving Map Bi-directionality

We define the adjoints based on two inner products:

\[
< f, g >_{L^2} = \int f g d\mu \\
< f, g >_{H^1} = \int < \nabla f, \nabla g > d\mu
\]

\[
C_{\text{adj}}^{L^2} = C^T \\
C_{\text{adj}}^{H^1} = \Delta^+_M C^T \Delta_N
\]

Theorem:

If a functional map \(C \) comes from a pointwise bijection \(T \) between surfaces then:

- \(T \) is locally area-preserving if and only if \(C^{-1} = C_{\text{adj}}^{L^2} \)
- \(T \) is conformal if and only if \(C^{-1} = C_{\text{adj}}^{H^1} \)
Improving Map Bi-directionality

Removing direction bias:

\[
\arg \min_{C_{MN}, C_{NM}} E_1(C_{MN}) + E_2(C_{NM}) + \|C_{MN} - C_{NM}^T\| + \|\Delta_N C_{MN} - C_{NM}^T \Delta_M\|
\]

Overall energy remains quadratic in \(C_{MN}, C_{NM} \).

Tends to promote invertibility and near-isometry.

Source Shape
Regular Fmap
[ERGB]
Adjoint Regularization

Adjoint Map Representation for Shape Analysis and Matching, Huang, O., SGP 2017
Improving Map Bi-directionality

Removing direction bias:

$$\arg \min_{C_{MN}, C_{NM}} \quad E_1(C_{MN}) + E_2(C_{NM}) + \|C_{MN} - C_{NM}^T\| + \|\Delta_N C_{MN} - C_{NM}^T \Delta_M\|$$

Overall energy remains quadratic in C_{MN}, C_{NM}.

Tends to promote invertibility and near-isometry.
Encoding Extrinsic Information

Question 3a:
Can we encode extrinsic (embedding-dependent) information?

Question 3b:
Surfaces are encoded via:
- First fundamental form (intuitively: geodesics).
- Second fundamental form (intuitively: principal curvatures).

Can we translate this into functional representation?
Encoding More Complex Data

Recall our earlier lemma:

Lemma 1:

The mapping is *isometric*, if and only if the functional map matrix commutes with the Laplacian:

\[C \Delta_M = \Delta_N C \]

The first fundamental form (geodesics) is fully encoded by the Laplacian.
Encoding Extrinsic Information

Intuitively:
Curvature is encoded by the change of the local lengths along the normal direction.

A bit more formally:
Given a family of shapes
\[F_t : M \rightarrow \mathbb{R}^3 \text{ s.t. } \frac{\partial F_t}{\partial t}(p) = n(p) \]
then:
\[\frac{\partial g_{ij}}{\partial t} \bigg|_{t=0} = 2h_{ij} \bigg|_{t=0} \]

Functional Characterization of Intrinsic and Extrinsic Geometry, Corman et al. ACM TOG 2017
The second fundamental form (principal curvatures) is fully encoded by the Laplacian in the normal direction.

Lemma 2:

A map preserves the second fundamental form, if and only if the functional map commutes with the derivative of the Laplacian along the normal:

\[
C \frac{\partial \Delta_{M+tn}}{\partial t} \bigg|_{t=0} = \frac{\partial \Delta_{N+tn}}{\partial t} \bigg|_{t=0}
\]

The second fundamental form (principal curvatures) is fully encoded by the Laplacian in the normal direction.

Encoding the Second Fundamental Form

Define a functional operator E^n implicitly such that:

$$\int_M \langle \nabla g, \nabla E^n(f) \rangle d\mu = \int_M \mathcal{L}_n g(\nabla g, \nabla f) d\mu$$

Where \mathcal{L} is the infinitesimal strain tensor:

$$\mathcal{L}_n g(x, y) = \langle x, \nabla_y n \rangle + \langle \nabla_x n, y \rangle$$

We can now require the functional map to commute:

$$\| C_{MN} E^n_M - E^n_N C_{MN} \|$$
Encoding the Second Fundamental Form

Theorem

Two surfaces are related by a rigid motion if and only if:

\[\| C_{MN} \Delta_M - \Delta_N C_{MN} \| + \| C_{MN} E^n_M - E^n_N C_{MN} \| = 0 \]

Objective remains quadratic in C.
Promotes preservation of principal curvature information.
Functional Deformation Fields

Same machinery allows deformation transfer without pointwise correspondences
Encoding More Complex Data

And even intrinsic symmetrization without pointwise correspondences.

Follow-ups and References

SIGGRAPH Course Website:
http://www.lix.polytechnique.fr/~maks/fmaps_SIG17_course/
or http://bit.do/fmaps2017

Contains detailed course notes and sample code

Some references and follow-up works:

- Functional maps: a flexible representation of maps between shapes, ACM SIGGRAPH 2012
- Informative Descriptor Preservation via Commutativity for Shape Matching, Eurographics 2017
- Adjoint Map Representation for Shape Analysis and Matching, SGP 2017
- Functional Characterization of Intrinsic and Extrinsic Geometry, ACM TOG 2017
Thank you!

Questions?

Acknowledgements:
Mirela Ben-Chen, Justin Solomon, Etienne Corman, Dorian Nogneng, Leonidas Guibas, Raif Rustamov, Omri Azencot, Frédéric Chazal.... Work supported by the CNRS chaire d’excellence, Marie Curie Career Integration Grant, chaire Jean Marjoulet, and a Google Focused Research Award.