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Shape Comparison

Given a pair of 3D shapes, quantify if they are similar.



Shape Comparison

Given a set of 3D shapes, quantity if they are similar.
If not, find regions of dissimiliarity.
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What is a Shape?

¢, Continuous: a surface embedded in 3D.

¢ Discrete: a graph embedded in 3D (triangle mesh).
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Shapes from the SCAPE, TOSCA and FAUST datasets



Today

O Encoding differences between shapes.

& Recovering shapes from functional operators.

©  Unbiased (base shape-free) shape comparison.

Main observation:

© Can fully encode shape spaces with functional maps
without assuming fixed connectivity.



Background: Functional Maps

Rather than comparing points on objects it is often easier
to compare real-valued functions defined on them!~.
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! Functional Maps: A Flexible Representation of Maps Between Shapes, O., Ben-Chen, Solomon, Butscher.
Guibas, SIGGRAPH 2012

2 Computing and Processing Correspondences with Functional Maps, O. et al., SIGGRAPH Courses 2017



Background: Functional Maps

Rather than comparing points on objects it is often easier
to compare real-valued functions defined on them. Such
maps can be represented as matrices.
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! Functional Maps: A Flexible Representation of Maps Between Shapes, O., Ben-Chen, Solomon, Butscher.
Guibas, SIGGRAPH 2012

2 Computing and Processing Correspondences with Functional Maps, O. et al., SIGGRAPH Courses 2017



Background: Functional Maps

Computing functional maps is often much easier
(reduces to least squares) than point-to-point maps.
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Can think of a functional map as an matrix of size
ny, X ny, , or of size, ko X k1, in a reduced basis.

Computing and Processing Correspondences with Functional Maps, O. et al., SIGGRAPH Courses 2017



Problem Setup

) Given a pair of shapes and a functional map between them,
detect similarities and differences (distortion) across them.

) Do it in a multi-scale way (not be sensitive to local changes).

() Accommodate approximate soft (functional) maps

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot,
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Shape Differences Definition

Given a functional map Cyy : F(M) — F(N)
and a choice of functional inner products: (-, "), (-, )N

Define a shape difference operator as linear operator D, s.t.

<f7D(g)>M — <CMN(f)7CMN(g)>N Vg

M fi f2
\ D(f1) D(f2)



Shape Differences Definition

Given a functional map Cyn : F(M) — F(N)
and a choice of functional inner products: (-, "), (-, )N

Define a shape difference operator as linear operator D, s.t.

<f7D(g)>M — <CMN(f)7CMN(g)>N Vg

Existence and uniqueness of D is guaranteed by the

Riesz representation theorem.

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot,
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Shape Differences Definition

Given a functional map Cyn : F(M) — F(N)
and a choice of functional inner products: (-, "), (-, )N

Define a shape difference operator as linear operator D, s.t.

<f7D(g)>M — <CMN(f)7CMN(g)>N Vg

We let V and R, be operators associated with Lo and H;
inner products:

Vi< frg >1,— / F(2)g(@)dp

R:< f.q >u— / (V f(2), Vg(z)) du



Shape Differences Definition

Given a functional map Cyn : F(M) — F(N)
and a choice of functional inner products: (-, "), (-, )N

Define a shape difference operator as linear operator D, s.t.

<f7D(g)>M — <CMN(f)7CMN(g)>N Vg

We let V and R, be operators associated with Lo and H;
inner products:

Vi< frg >0, / F(@)g(x)du

Ri< f,g>m— / (Vf(2), V(@) dp =< f,Ag >1.,



Shape Differences Definition

Given a functional map Cyn : F(M) — F(N)
and a choice of functional inner products: (-, "), (-, )N

Define a shape difference operator as linear operator D, s.t.

<f7D(g)>M — <CMN(f)7CMN(g)>N Vg

We let V and R, be operators associated with Lo and H;
inner products. In the discrete setting, reduces to simply
matrix transposes and inverses:

< f,g>r, = [FAg
< f,g>m, = f'Lg



Shape Differences Properties

If C'pry comes from a point to point map, then:

V = Id if and only if the map is area-preserving.
R = Id if and only if the map is conformal.

<f7.g>L2(M) — <CMN(f)7CMN(g)>L2(N) \v/fvg

<f79>H1(M) - <CMN(f)vCMN<9)>H1(N) Vi, g



Shape Differencesin Collections

() Since shape differences Dy, n1, Dy y2 are operators with the
same domain/range, we can compare distortion on multiple shapes.
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Shape Differencesin Collections

() Since shape differences Dy, n1, D v are operators with the
same domain/range, we can compare distortion on multiple shapes.
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Can we recover the metric?

Given a base shape M and two shape ditference
operators, can we recover the target shape?

Functional Characterization of Intrinsic and Extrinsic Geometry
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



Can we recover the metric?

Given a base shape M and two shape ditference
operators, can we recover the target shape?

Possible limitation:
Shape difference operators are blind to isometric
deformations.

<f>D(9)>M — <CMN(f)>CMN(g)>N Vf,g

If Cprn preserves inner products, then D = Id.

Functional Characterization of Intrinsic and Extrinsic Geometry
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



Can we recover the metric?

Given a base shape M and two shape ditference
operators, can we recover the target shape?

Possible limitation:
Shape difference operators are blind to isometric
deformations.
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Can we recover the metric?

Given a base shape M and two shape ditference
operators, can we recover the target shape?

Possible limitation:
Shape difference operators are blind to isometric
deformations.

Best hope:

Recover the metric and solve for the pose.

Functional Characterization of Intrinsic and Extrinsic Geometry
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



A metric on the triangle mesh

From inner products to the metric on a triangle mesh:

ng = < Vei,Vej >

COt(Oéij) —+ %Cot(ﬁij)

Given the inner product between every pair of
functions can we recover the metric? Probably'?

When the information is exact

1Zeng et al. Discrete heat kernel determines discrete Riemannian metric. Graph. Models, 2012
2De Goes et al. Weighted triangulations for geometry processing, TOG, 2014



A metric on the triangle mesh

From metric to inner products on a triangle mesh:

LZ] = < V@i,VEBj >

1 1
o § COt(Cvij) + 5 COt(ﬁij)

Given the Laplacian of a shape can we recover the metric?

*  What if it is known approximately?
* Using Shape Difference Operators?



Recovering the metric

From metric to inner products on a triangle mesh:

Given the two shape difference operators, the
discrete metric can be recovered by solving 2
linear systems that are " "almost always” full-rank.

Propose convex regularization, for noisy/underconstrained systems.

Functional Characterization of Intrinsic and Extrinsic Geometry
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



Recovering the shape

With only the edge-lengths, there are multiple near-
isometries. Recovering the exact pose is hard.

PRR
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Source Target Intrinsic

Functional Characterization of Intrinsic and Extrinsic Geometry
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



Extrinsic Information

Can we add additional extrinsic information? Encode
the second fundamental form?

One Option:
Use dihedral angles to represent encode principal
curvatures.

Difficulty:
Angle-based values are both unstable and difficult
to recover in the presence of noise.

Second Fundamental Form is a quadratic form, not an angle.



Extrinsic Information

Can we add additional extrinsic information? Encode
the second fundamental form?

Main idea : offset surfaces.

Cincreases Given a family of immersions, where each
point follows the outward normal direction:

99
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O
= 2h|i—g and — = H

: Metric (first fundamental form)
: Second fundamental form

Edge-lengths change according to : Local area

curvature of the offset surface.

T = = <«

- Mean curvature



Shape Differences Based on Offset Surfaces

Given two shapes, compute four difference operators:
two between the shapes, and two between their offsets.
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Exploring shapes with extrinsic information
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Reconstruction from shape differences

Consequence:

Given the four shape difference operators, the
shape can be recovered by solving 4 linear
systems of equations.

>

Shape reconstruction can be phrased as reconstruction
based on lengths of tetrahedra.
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Mesh (blue) and offset (red) Thickening




Reconstruction from shape differences

Consequence:

An operator view:
The shape is fully encoded by two operators for
the first and two for the second fundamental forms.

A coherent, parallel theory in the continuous
and discrete case.

Functional Characterization of Intrinsic and Extrinsic Geometry
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



Shape Recovery from operators
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Shape Recovery from operators

Can use the pipeline for interpolation/extrapolation,
even with different connectivity.

Source Target Interpolation Factor



Shape Recovery from operators

1ARAR

dg =0.119 dyg =0.069 dyg =0.064 dyg =0.036 dg = 0.023
Source Target ke =20 ky = 40 ky = 60 ky = 80 kyr = 100

Functional Characterization of Intrinsic and Extrinsic Geometry
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



Unbiased Shape Differences

Basic shape differences require a star-shaped graph.

Si < D507Si

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot,
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Unbiased Shape Differences

Basic shape differences require a star-shaped graph.
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Unbiased Shape Differences

What happens if there is no single base shape?

A
Y

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018
(arXiv:1806.03967)



Unbiased Shape Differences

Can define and compute a latent shape with well-
defined geometric structure.

3 1

Every shape in the collection is represented as a small-
sized matrix, independent of a base shape!

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018
(arXiv:1806.03967)



Latent Shape Spaces

Given a functional map nework, enforcing loop closure
by creating a “latent” shape:

Cijy = Y;Y;
5 ) ? " q Z
Find the optimal latent space by solving: m‘}n IC:5Y: — Y I%

If Y'Y = Id this reducesto an eigenvalue problem.

Given Y; ‘s, solve for C;; to enforce consistency. Restart.

Image Co-Segmentation via Consistent Functional Maps Wang, Huang, Guibas, CVPR 2013
Functional map networks for analyzing and exploring large shape collections, Huang, Wang, Guibas, SSIGGRAPH 2014



Latent Shape Spaces

Given a functional map nework, enforcing loop closure
by creating a “latent” shape:

ve | O, = Y-Yi_l
S - ? J J

>
o 1

Main observation: the latent shape can be endowed with
metric and measure structure (although is not embeddable).

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018
(arXiv:1806.03967)



Unbiased Shape Differences

Given a chain-shaped functional map graph:
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Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018

(arXiv:1806.03967)



Functional Shape Differences + Learning

Each shape is represented as a small-sized matrix. Can
use deep-learning (CNN-based) techniques!

'
SZ' < Dcmsz. —

& .AU'

Shape reconstruction with convolutional neural networks:

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018
(arXiv:1806.03967)



Functional Shape Differences + Learning

Algebraic operations on the difference matrices:
—1
Dg; s, = Dg Dg,;

Usetul for deformation and style transter.

Pose Transfer Style Transfer

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018
(arXiv:1806.03967)



Functional Shape Differences + Learning

Each shape is represented as a small-sized matrix. Can
use deep-learning (CNN-based ) techniques!

i
Si < ngsi —

Shape analysis via deep learning;:

Estimation accuracy:

! —

Shape Collection Cirronaion of the Laterst Bases

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018
(arXiv:1806.03967)



Conclusion

¢ Shape differences allow to encode the shapes as
linear operators.

) Can recover the metric from a inner products
(shape differences or Laplacian) evenin a
noisy/approximate case.

€ Define unbiased shape differences, by considering
latent shapes.



Thank you!

Questions?



Exploring shapes with extrinsic information
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Extrinsic shape differences can distinguish between “inward” and “outward” deformations.



Shape Differences

) Fully characterize intrinsic (metric) distortion using two
linear functional operators.

) Can compute areas of maximal distortion through eigen-
decomposition.

€ Can compare distortion of different pairs A->B, vs C->D.

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot,
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Functional Approach to Mappings

Given two shapes and a pointwise bijection 7 : N' — M

. N
M

«
!
-

The map T induces a functional correspondence:
Ti(f) = g, where g = foT

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen,
Solomon, Butscher, Guibas, SIGGRAPH 2012



Functional Approach to Mappings

Given two shapes and a pointwise map T : N — M
TF(f) =g N =R

The map T induces a functional correspondence:
Ti(f) = g, where g = foT

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen,
Solomon, Butscher, Guibas, SIGGRAPH 2012



Functional Approach to Mappings

Given two shapes and a pointwise map T : N — M
Tr(f)=g: N =R

The induced functional correspondence is linear:

Tr(aifi +axfo) = aiTr(f1) + aTr(f2)



Observation

Assume that both: f € £4(M), g € Lo(N)

Express both f and Tr(f) in terms of basis functions:
f=>Y apM g="Tr(f) =) bi¢Y
@ J




