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Shape Comparison

=
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Given a pair of 3D shapes, quantify if they are similar.



Shape Comparison

Given a set of 3D shapes, quantify if they are similar. 
If not, find regions of dissimiliarity.
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What is a Shape?

5k – 200k triangles

Shapes from the SCAPE, TOSCA and FAUST datasets

Discrete: a graph embedded in 3D (triangle mesh).

Continuous: a surface embedded in 3D.



Today

Encoding differences between shapes.

Main observation:

Can fully encode shape spaces with functional maps 
without assuming fixed connectivity.   

Recovering shapes from functional operators.

Unbiased (base shape-free) shape comparison.    



Background: Functional Maps

Rather than comparing points on objects it is often easier 
to compare real-valued functions defined on them1,2. 

1 Functional Maps: A Flexible Representation of Maps Between Shapes, O., Ben-Chen, Solomon, Butscher. 
Guibas, SIGGRAPH 2012
2 Computing and Processing Correspondences with Functional Maps, O. et al., SIGGRAPH Courses 2017



Background: Functional Maps

Rather than comparing points on objects it is often easier 
to compare real-valued functions defined on them. Such 
maps can be represented as matrices.

1 Functional Maps: A Flexible Representation of Maps Between Shapes, O., Ben-Chen, Solomon, Butscher. 
Guibas, SIGGRAPH 2012
2 Computing and Processing Correspondences with Functional Maps, O. et al., SIGGRAPH Courses 2017



Background: Functional Maps

Computing functional maps is often much easier 
(reduces to least squares) than point-to-point maps.

Computing and Processing Correspondences with Functional Maps, O. et al., SIGGRAPH Courses 2017

Can think of a functional map as an matrix of size
, or of size, , in a reduced basis.  nV2 ⇥ nV1



Problem Setup

Given a pair of shapes and a functional map between them,
detect similarities and differences (distortion) across them.

Do it in a multi-scale way (not be sensitive to local changes).

Accommodate approximate soft (functional) maps

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov,  O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Shape Differences Definition

D(f1) D(f2)

hf,D(g)iM = hCMN (f), CMN (g)iN 8f, g

CMN

Given a functional map
and a choice of functional inner products: 

Define a shape difference operator as linear operator D, s.t.

CMN : F(M) ! F(N)



Given a functional map
and a choice of functional inner products: 

Define a shape difference operator as linear operator D, s.t.

Existence and uniqueness of D is guaranteed by the 
Riesz representation theorem. 

Shape Differences Definition

hf,D(g)iM = hCMN (f), CMN (g)iN 8f, g

CMN : F(M) ! F(N)

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov,  O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



We let V and R, be operators associated with        and        
inner products:

Shape Differences Definition

hf,D(g)iM = hCMN (f), CMN (g)iN 8f, g

L2 H1

V :< f, g >L2=

Z
f(x)g(x)dµ

R :< f, g >H1=

Z
hrf(x),rg(x)i dµ

Given a functional map
and a choice of functional inner products: 

Define a shape difference operator as linear operator D, s.t.

CMN : F(M) ! F(N)



We let V and R, be operators associated with        and        
inner products:

Shape Differences Definition

hf,D(g)iM = hCMN (f), CMN (g)iN 8f, g

L2 H1

V :< f, g >L2=

Z
f(x)g(x)dµ

R :< f, g >H1=

Z
hrf(x),rg(x)i dµ =< f,�g >L2

Given a functional map
and a choice of functional inner products: 

Define a shape difference operator as linear operator D, s.t.

CMN : F(M) ! F(N)



We let V and R, be operators associated with        and        
inner products. In the discrete setting, reduces to simply 
matrix transposes and inverses:

Shape Differences Definition

hf,D(g)iM = hCMN (f), CMN (g)iN 8f, g

L2 H1

< f, g >L2 = fTAg

< f, g >H1 = fTLg

Given a functional map
and a choice of functional inner products: 

Define a shape difference operator as linear operator D, s.t.

CMN : F(M) ! F(N)



Theorem:

If comes from a point to point map, then:  
if and only if the map is area-preserving.V = Id

Shape Differences Properties

if and only if the map is conformal.R = Id

CMN

hf, giL2(M) = hCMN (f), CMN (g)iL2(N) 8f, g

hf, gi
H1(M) = hCMN (f), CMN (g)i

H1(N) 8f, g

1)

2)

1)
2)



Shape Differences in Collections

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov,  O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013

Since shape differences                            are operators with the 
same domain/range, we can compare distortion on multiple shapes.

DM,N1, DM,N2



Shape Differences in Collections

Since shape differences                            are operators with the 
same domain/range, we can compare distortion on multiple shapes.

DM,N1, DM,N2

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov,  O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Can we recover the metric?
Theorem:

Given a base shape M and two shape difference 
operators, can we recover the target shape?

Functional Characterization of Intrinsic and Extrinsic Geometry 
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017

?



Can we recover the metric?
Theorem:

Given a base shape M and two shape difference 
operators, can we recover the target shape?

Functional Characterization of Intrinsic and Extrinsic Geometry 
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017

Possible limitation:
Shape difference operators are blind to isometric 

deformations.
hf,D(g)iM = hCMN (f), CMN (g)iN 8f, g

If preserves inner products, then   



Can we recover the metric?
Theorem:

Given a base shape M and two shape difference 
operators, can we recover the target shape?

Functional Characterization of Intrinsic and Extrinsic Geometry 
Solomon, Corman, Ben-Chen, Guibas, O. Conditionally accepted at TOG 2016

Possible limitation:
Shape difference operators are blind to isometric 

deformations.

V R



Can we recover the metric?
Theorem:

Given a base shape M and two shape difference 
operators, can we recover the target shape?

Functional Characterization of Intrinsic and Extrinsic Geometry 
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017

Possible limitation:
Shape difference operators are blind to isometric 

deformations.

Best hope:
Recover the metric and solve for the pose.



A metric on the triangle mesh
Theorem:

1Zeng et al. Discrete heat kernel determines discrete Riemannian metric. Graph. Models , 2012
2 De Goes et al. Weighted triangulations for geometry processing, TOG, 2014

From inner products to the metric on a triangle mesh:

Given the inner product between every pair of 
functions can we recover the metric?

i

j

↵ij �ij
t1 t2

Probably1,2

When the	information	is exact

< rei,rej >=Lij =

LijA(j) =
1

2
cot(↵ij) +

1

2
cot(�ij)Lij =



A metric on the triangle mesh
Theorem:
From metric to inner products on a triangle mesh:

Given the Laplacian of a shape can we recover the metric?
• What if it is known approximately?
• Using Shape Difference Operators?

< rei,rej >=Lij =

LijA(j) =
1

2
cot(↵ij) +

1

2
cot(�ij)Lij =

i

j

↵ij �ij
t1 t2

Zeng et al. Discrete heat kernel determines discrete Riemannian metric. Graph. Models , 2012
De Goes et al. Weighted triangulations for geometry processing, TOG, 2014



Recovering the metric
Theorem:

Functional Characterization of Intrinsic and Extrinsic Geometry 
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017

From metric to inner products on a triangle mesh:

Theorem:

Given the two shape difference operators, the 
discrete metric can be recovered by solving 2 
linear systems that are ``almost always” full-rank.

Propose convex regularization, for noisy/underconstrained systems.



Recovering the shape

Theorem:

Functional Characterization of Intrinsic and Extrinsic Geometry 
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017

With only the edge-lengths, there are multiple near-
isometries. Recovering the exact pose is hard.



Extrinsic Information

Theorem:Can we add additional extrinsic information? Encode 
the second fundamental form?

One Option:
Use dihedral angles to represent encode principal 
curvatures.

Difficulty:
Angle-based values are both unstable and difficult 
to recover in the presence of noise.

Second Fundamental Form is a quadratic form, not an angle.



Extrinsic Information

Theorem:Can we add additional extrinsic information? Encode 
the second fundamental form?

Main idea : offset surfaces.

Edge-lengths change according to 
curvature of the offset surface.

Given a family of immersions, where each 
point follows the outward normal direction:

@g

@t

����
t=0

= 2h|t=0 and
@µ

@t

����
t=0

= Hµ,

Metric (first fundamental form)

Second fundamental form

Local area

Mean curvature

g :

h :

µ :

H :



Shape Differences Based on Offset Surfaces

Theorem:Given two shapes, compute four difference operators: 
two between the shapes, and two between their offsets.

M N

VM,N

RM,N

VMo,No

RMo,No

encode change in metric, 
encode change in curvature

VM,N , RM,N

VMo,No , RMo,No



Exploring shapes with extrinsic information

Theorem:

PCA of various shape difference operators



Reconstruction from shape differences

Theorem:
Consequence:

Given the four shape difference operators, the 
shape can be recovered by solving 4 linear 
systems of equations.

Shape reconstruction can be phrased as reconstruction 
based on lengths of tetrahedra. 



Reconstruction from shape differences

Theorem:
Consequence:

An operator view: 
The shape is fully encoded by two operators for 

the first and two for the second fundamental forms.

A coherent, parallel theory in the continuous 
and discrete case.

Functional Characterization of Intrinsic and Extrinsic Geometry 
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



Shape Recovery from operators



Shape Recovery from operators

Can use the pipeline for interpolation/extrapolation, 
even with different connectivity. 



Shape Recovery from operators

Functional Characterization of Intrinsic and Extrinsic Geometry 
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



Basic shape differences require a star-shaped graph. 

Unbiased Shape Differences

Si () DS0,Si =

S0

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov,  O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Unbiased Shape Differences

Si () DS0,Si =

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov,  O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013

Basic shape differences require a star-shaped graph. 

S0



What happens if there is no single base shape?

Unbiased Shape Differences

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018 
(arXiv:1806.03967)



L0

Si () DL0,Si =

Every shape in the collection is represented as a small-
sized matrix, independent of a base shape!

Can define and compute a latent shape with well-
defined geometric structure.  

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018 
(arXiv:1806.03967)

Unbiased Shape Differences



Latent Shape Spaces

Find the optimal latent space by solving:
If this reduces to an eigenvalue problem.

Cij = YjY
�1
i

Given a functional map nework, enforcing loop closure 
by creating a “latent” shape:

min
Y

kCijYi � Yjk2F
YTY = Id

Yi Cij = YjY
�1
i

Functional map networks for analyzing and exploring large shape collections, Huang, Wang, Guibas, SIGGRAPH 2014

Image Co-Segmentation via Consistent Functional Maps Wang, Huang, Guibas, CVPR 2013

Given       ‘s, solve for          to enforce consistency.  Restart.



Latent Shape Spaces

Main observation: the latent shape can be endowed with 
metric and measure structure (although is not embeddable).

Cij = YjY
�1
i

Given a functional map nework, enforcing loop closure 
by creating a “latent” shape:

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018 
(arXiv:1806.03967)



Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018 
(arXiv:1806.03967)

Given a chain-shaped functional map graph:

Unbiased Shape Differences



Si () DL0,Si =

Shape reconstruction with convolutional neural networks:

Functional Shape Differences + Learning

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018 
(arXiv:1806.03967)

Each shape is represented as a small-sized matrix. Can 
use deep-learning (CNN-based) techniques!



Algebraic operations on the difference matrices:
DSi,Sj = D�1

Si
DSj

Useful for deformation and style transfer.

Pose Transfer
D̂

D̂

Functional Shape Differences + Learning

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018 
(arXiv:1806.03967)

Style Transfer



Shape analysis via deep learning:

Shape	Collection

Estimation	accuracy:

Functional Shape Differences + Learning

Latent Space Representation for Shape Analysis and Learning, Huang, Achlioptas, Guibas, O. 2018 
(arXiv:1806.03967)

Si () DL0,Si =

Each shape is represented as a small-sized matrix. Can 
use deep-learning (CNN-based) techniques!



Conclusion

Shape differences allow to encode the shapes as 
linear operators.

Can recover the metric from a inner products 
(shape differences or Laplacian) even in a 
noisy/approximate case.

Define unbiased shape differences, by considering 
latent shapes.



Thank you!

Questions?



Exploring shapes with extrinsic information

Theorem:

Extrinsic shape differences can distinguish between “inward” and “outward” deformations.



Shape Differences

Fully characterize intrinsic (metric) distortion using two 
linear functional operators.

Can compute areas of maximal distortion through eigen-
decomposition.

Can compare distortion of different pairs A->B, vs C->D.

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov,  O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Functional Approach to Mappings

Given two shapes and a pointwise bijection

The map induces a functional correspondence:
TF (f) = g, where g = f � T

T : N ! M

M
NT

T

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, 
Solomon, Butscher, Guibas, SIGGRAPH 2012



Functional Approach to Mappings

f : M ! R
TF

TF (f) = g : N ! R

The map induces a functional correspondence:T
TF (f) = g, where g = f � T

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, 
Solomon, Butscher, Guibas, SIGGRAPH 2012

Given two shapes and a pointwise map T : N ! M



Functional Approach to Mappings

The induced functional correspondence is linear:

f : M ! R
TF

TF (f) = g : N ! R

TF (↵1f1 + ↵2f2) = ↵1TF (f1) + ↵2TF (f2)

Given two shapes and a pointwise map T : N ! M



Observation

Express both     and in terms of basis functions:f TF (f)

Since is linear, there is a linear transformation from          to        . TF {ai} {bj}

M

f : M ! R
g : N ! R

TF

N

f =
X

i

ai�
M
i

Assume that both: f 2 L2(M), g 2 L2(N )

g = TF (f) =
X

j

bj�
N
j


